1
|
Feng H, Yu J, Xu Z, Sang Q, Li F, Chen M, Chen Y, Yu B, Zhu N, Xia J, He C, Hou J, Wu X, Yan C, Zhu Z, Su L, Li J, Dai W, Li YY, Liu B. SLC7A9 suppression increases chemosensitivity by inducing ferroptosis via the inhibition of cystine transport in gastric cancer. EBioMedicine 2024; 109:105375. [PMID: 39437660 PMCID: PMC11536348 DOI: 10.1016/j.ebiom.2024.105375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND SLC7A9 is responsible for the exchange of dibasic amino acids and cystine (influx) for neutral amino acids (efflux). Cystine/cysteine transport is related to ferroptosis. METHODS Sanger sequencing detected TP53 status of cancer cells. Transcriptomic sequencing and untargeted metabolome profiling were used to identify differentially expressed genes and metabolites, respectively, upon SLC7A9 overexpression. CCK8, cell clonality, and EdU assays were used to observe cell proliferation. Cystine probes, glutathione (GSH) probes, and lipid ROS probes were used to examine cystine, GSH, and lipid ROS levels. 13C metabolic flow assays were used to monitor cellular cystine and GSH metabolism. Patient-derived organoids (PDO), immunocompetent MFC mice allograft models and patient-derived xenograft (PDX) models were used to evaluate SLC7A9 impact on chemotherapeutic response and to observe therapeutic effect of SLC7A9 knockdown. FINDINGS Elevated SLC7A9 expression levels in gastric cancer cells were attributed to p53 loss. SLC7A9 knockdown suppressed the proliferation and increased the chemotherapy sensitivity of the cells. Chemotherapy was more effective in PDX and immunocompetent mice models upon SLC7A9 knockdown. Differentially expressed genes and metabolites between the SLC7A9 overexpression and control groups were associated with ferroptosis and GSH metabolism. SLC7A9 knockdown reduced cystine transport into cells, hampered intracellular cystine and GSH metabolic flow, decreased GSH synthesis, and increased lipid ROS levels in gastric cancer cells. Erastin was more effective at inducing ferroptosis in PDO and PDX models upon SLC7A9 knockdown. INTERPRETATION SLC7A9 promotes gastric cancer progression by acting as a suppressor of ferroptosis, independent of SLC7A11, which is negatively regulated by p53. FUNDING This work was supported by National Natural Science Foundation of China, Innovation Promotion Program of NHC and Shanghai Key Labs SIBPT, and Shanghai Academy of Science & Technology.
Collapse
Affiliation(s)
- Haoran Feng
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Junxian Yu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhuoqing Xu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qingqing Sang
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fangyuan Li
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mengdi Chen
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yunqin Chen
- Shanghai-MOST Key Laboratory of Health and Disease Genomics & NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 200080, China
| | - Beiqin Yu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Nan Zhu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiazeng Xia
- Department of General Surgery, Jiangnan University Medical Center, Wuxi 200240, China
| | - Changyu He
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Junyi Hou
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiongyan Wu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chao Yan
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhenggang Zhu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liping Su
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jianfang Li
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wentao Dai
- Shanghai-MOST Key Laboratory of Health and Disease Genomics & NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 200080, China.
| | - Yuan-Yuan Li
- Shanghai-MOST Key Laboratory of Health and Disease Genomics & NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 200080, China.
| | - Bingya Liu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
2
|
Lei L, Zhao LY, Cheng R, Zhang H, Xia M, Chen XL, Kudriashov V, Liu K, Zhang WH, Jiang H, Chen Y, Zhu L, Zhou H, Yang K, Hu T, Hu JK. Distinct oral-associated gastric microbiota and Helicobacter pylori communities for spatial microbial heterogeneity in gastric cancer. mSystems 2024; 9:e0008924. [PMID: 38940519 PMCID: PMC11265414 DOI: 10.1128/msystems.00089-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Abstract
The gastric microbial community plays a fundamental role in gastric cancer (GC), and the two main anatomical subtypes of GC, non-cardia and cardia GC, are associated with different risk factors (Helicobacter pylori for non-cardia GC). To decipher the different microbial spatial communities of GC, we performed a multicenter retrospective analysis to characterize the gastric microbiota in 223 GC patients, including H. pylori-positive or -negative patients, with tumors and paired adjacent normal tissues, using third-generation sequencing. In the independent validation cohort, both dental plaque and GC tumoral tissue samples were collected and sequenced. The prevalence of H. pylori and oral-associated bacteria was verified using fluorescence in situ hybridization (FISH) assays in GC tumoral tissues and matched nontumoral tissues. We found that the vertical distribution of the gastric microbiota, at the upper, middle, and lower third sites of GC, was likely an important factor causing microbial diversity in GC tumor tissues. The oral-associated microbiota cluster, which included Veillonella parvula, Streptococcus oralis, and Prevotella intermedia, was more abundant in the upper third of the GC. However, H. pylori was more abundant in the lower third of the GC and exhibited a significantly high degree of microbial correlation. The oral-associated microbiota module was co-exclusive with H. pylori in the lower third site of the GC tumoral tissue. Importantly, H. pylori-negative GC patients with oral-associated gastric microbiota showed worse overall survival, while the increase in microbial abundance in H. pylori-positive GC patients showed no difference in overall survival. The prevalence of V. parvula in both the dental plaque and GC tissue samples was concordant in the independent validation phase. We showed that the oral-associated species V. parvula and S. oralis were correlated with overall survival. Our study highlights the roles of the oral-associated microbiota in the upper third of the GC. In addition, oral-associated species may serve as noninvasive screening tools for the management of GC and an independent prognostic factor for H. pylori-negative GCs. IMPORTANCE Our study highlights the roles of the oral-associated microbiota in the upper third of gastric cancer (GC).We showed that the oral-associated species Veillonella parvula and Streptococcus oralis were correlated with overall survival. In addition, oral-associated species may serve as noninvasive screening tools for the management of GC and an independent prognostic factor for Helicobacter pylori-negative GCs.
Collapse
Affiliation(s)
- Lei Lei
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Gastric Cancer Center and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lin-Yong Zhao
- Gastric Cancer Center and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Ran Cheng
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hongyu Zhang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengying Xia
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiao-Long Chen
- Gastric Cancer Center and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Valentin Kudriashov
- Gastric Cancer Center and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Kai Liu
- Gastric Cancer Center and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Wei-Han Zhang
- Gastric Cancer Center and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Han Jiang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Chen
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China
| | - Liang Zhu
- Nuffield Department of Medicine, University of Oxford, Target Discovery Institute, Center for Medicines Discovery, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), Oxford, United Kingdom
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kun Yang
- Gastric Cancer Center and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Tao Hu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian-Kun Hu
- Gastric Cancer Center and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
3
|
Thorel L, Perréard M, Florent R, Divoux J, Coffy S, Vincent A, Gaggioli C, Guasch G, Gidrol X, Weiswald LB, Poulain L. Patient-derived tumor organoids: a new avenue for preclinical research and precision medicine in oncology. Exp Mol Med 2024; 56:1531-1551. [PMID: 38945959 PMCID: PMC11297165 DOI: 10.1038/s12276-024-01272-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/18/2024] [Accepted: 04/14/2024] [Indexed: 07/02/2024] Open
Abstract
Over the past decade, the emergence of patient-derived tumor organoids (PDTOs) has broadened the repertoire of preclinical models and progressively revolutionized three-dimensional cell culture in oncology. PDTO can be grown from patient tumor samples with high efficiency and faithfully recapitulates the histological and molecular characteristics of the original tumor. Therefore, PDTOs can serve as invaluable tools in oncology research, and their translation to clinical practice is exciting for the future of precision medicine in oncology. In this review, we provide an overview of methods for establishing PDTOs and their various applications in cancer research, starting with basic research and ending with the identification of new targets and preclinical validation of new anticancer compounds and precision medicine. Finally, we highlight the challenges associated with the clinical implementation of PDTO, such as its representativeness, success rate, assay speed, and lack of a tumor microenvironment. Technological developments and autologous cocultures of PDTOs and stromal cells are currently ongoing to meet these challenges and optimally exploit the full potential of these models. The use of PDTOs as standard tools in clinical oncology could lead to a new era of precision oncology in the coming decade.
Collapse
Grants
- AP-RM-19-020 Fondation de l'Avenir pour la Recherche Médicale Appliquée (Fondation de l'Avenir)
- PJA20191209649 Fondation ARC pour la Recherche sur le Cancer (ARC Foundation for Cancer Research)
- TRANSPARANCE Fondation ARC pour la Recherche sur le Cancer (ARC Foundation for Cancer Research)
- TRANSPARANCE Ligue Contre le Cancer
- ORGAPRED Ligue Contre le Cancer
- 3D-Hub Canceropôle PACA (Canceropole PACA)
- Pré-néo 2019-188 Institut National Du Cancer (French National Cancer Institute)
- Conseil Régional de Haute Normandie (Upper Normandy Regional Council)
- GIS IBiSA, Cancéropôle Nord-Ouest (ORGRAFT project), the Groupement des Entreprises Françaises dans la Lutte contre le Cancer (ORGAVADS project), the Fonds de dotation Patrick de Brou de Laurière (ORGAVADS project),and Normandy County Council (ORGATHEREX project).
- GIS IBiSA, Cancéropôle Nord-Ouest (OrgaNO project), Etat-région
- GIS IBiSA, Region Sud
- GIS IBiSA, Cancéropôle Nord-Ouest (OrgaNO project), and Normandy County Council (ORGAPRED, PLATONUS ONE, POLARIS, and EQUIP’INNOV projects).
Collapse
Affiliation(s)
- Lucie Thorel
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), Université de Caen Normandie, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Marion Perréard
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), Université de Caen Normandie, Caen, France
- Department of Head and Neck Surgery, Caen University Hospital, Caen, France
| | - Romane Florent
- ORGAPRED core facility, US PLATON, Université de Caen Normandie, Caen, France
| | - Jordane Divoux
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), Université de Caen Normandie, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
- ORGAPRED core facility, US PLATON, Université de Caen Normandie, Caen, France
| | - Sophia Coffy
- Biomics, CEA, Inserm, IRIG, UA13 BGE, Univ. Grenoble Alpes, Grenoble, France
| | - Audrey Vincent
- CNRS UMR9020, INSERM U1277, CANTHER Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, CNRS, Inserm, CHU Lille, Lille, France
| | - Cédric Gaggioli
- CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), 3D-Hub-S Facility, CNRS University Côte d'Azur, Nice, France
| | - Géraldine Guasch
- CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Team, Aix-Marseille University, Marseille, France
| | - Xavier Gidrol
- Biomics, CEA, Inserm, IRIG, UA13 BGE, Univ. Grenoble Alpes, Grenoble, France
| | - Louis-Bastien Weiswald
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), Université de Caen Normandie, Caen, France.
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France.
- ORGAPRED core facility, US PLATON, Université de Caen Normandie, Caen, France.
| | - Laurent Poulain
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), Université de Caen Normandie, Caen, France.
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France.
- ORGAPRED core facility, US PLATON, Université de Caen Normandie, Caen, France.
| |
Collapse
|
4
|
Gong Y, Liu M, Zhang Q, Li J, Cai H, Ran J, Ma L, Ma Y, Quan S. Lysine acetyltransferase 14 mediates TGF-β-induced fibrosis in ovarian endometrioma via co-operation with serum response factor. J Transl Med 2024; 22:561. [PMID: 38867256 PMCID: PMC11167823 DOI: 10.1186/s12967-024-05243-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/28/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Fibrogenesis within ovarian endometrioma (endometrioma), mainly induced by transforming growth factor-β (TGF-β), is characterized by myofibroblast over-activation and excessive extracellular matrix (ECM) deposition, contributing to endometrioma-associated symptoms such as infertility by impairing ovarian reserve and oocyte quality. However, the precise molecular mechanisms that underpin the endometrioma- associated fibrosis progression induced by TGF-β remain poorly understood. METHODS The expression level of lysine acetyltransferase 14 (KAT14) was validated in endometrium biopsies from patients with endometrioma and healthy controls, and the transcription level of KAT14 was further confirmed by analyzing a published single-cell transcriptome (scRNA-seq) dataset of endometriosis. We used overexpression, knockout, and knockdown approaches in immortalized human endometrial stromal cells (HESCs) or human primary ectopic endometrial stromal cells (EcESCs) to determine the role of KAT14 in TGF-β-induced fibrosis. Furthermore, an adeno-associated virus (AAV) carrying KAT14-shRNA was used in an endometriosis mice model to assess the role of KAT14 in vivo. RESULTS KAT14 was upregulated in ectopic lesions from endometrioma patients and predominantly expressed in activated fibroblasts. In vitro studies showed that KAT14 overexpression significantly promoted a TGF-β-induced profibrotic response in endometrial stromal cells, while KAT14 silencing showed adverse effects that could be rescued by KAT14 re-enhancement. In vivo, Kat14 knockdown ameliorated fibrosis in the ectopic lesions of the endometriosis mouse model. Mechanistically, we showed that KAT14 directly interacted with serum response factor (SRF) to promote the expression of α-smooth muscle actin (α-SMA) by increasing histone H4 acetylation at promoter regions; this is necessary for TGF-β-induced ECM production and myofibroblast differentiation. In addition, the knockdown or pharmacological inhibition of SRF significantly attenuated KAT14-mediating profibrotic effects under TGF-β treatment. Notably, the KAT14/SRF complex was abundant in endometrioma samples and positively correlated with α-SMA expression, further supporting the key role of KAT14/SRF complex in the progression of endometrioma-associated fibrogenesis. CONCLUSION Our results shed light on KAT14 as a key effector of TGF-β-induced ECM production and myofibroblast differentiation in EcESCs by promoting histone H4 acetylation via co-operating with SRF, representing a potential therapeutic target for endometrioma-associated fibrosis.
Collapse
Affiliation(s)
- Yi Gong
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong, 510515, China
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, Department of Reproductive Medicine, Hainan Medical University, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 54-1 LongHua road, Haikou, Hainan, 570100, China
| | - Mian Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong, 510515, China
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, Department of Reproductive Medicine, Hainan Medical University, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 54-1 LongHua road, Haikou, Hainan, 570100, China
| | - Qianqian Zhang
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523001, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jinjing Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, Department of Reproductive Medicine, Hainan Medical University, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 54-1 LongHua road, Haikou, Hainan, 570100, China
| | - Hong Cai
- Department of Obstetrics and Gynecology, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, China
| | - Jing Ran
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361102, China
| | - Linna Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, Department of Reproductive Medicine, Hainan Medical University, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 54-1 LongHua road, Haikou, Hainan, 570100, China
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, Department of Reproductive Medicine, Hainan Medical University, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 54-1 LongHua road, Haikou, Hainan, 570100, China.
| | - Song Quan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
5
|
Bachus S, Akkerman N, Fulham L, Graves D, Helwer R, Rempel J, Pelka P. ARGLU1 enhances promoter-proximal pausing of RNA polymerase II and stimulates DNA damage repair. Nucleic Acids Res 2024; 52:5658-5675. [PMID: 38520408 PMCID: PMC11162773 DOI: 10.1093/nar/gkae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024] Open
Abstract
Arginine and glutamate rich 1 (ARGLU1) is a poorly understood cellular protein with functions in RNA splicing and transcription. Computational prediction suggests that ARGLU1 contains intrinsically disordered regions and lacks any known structural or functional domains. We used adenovirus Early protein 1A (E1A) to probe for critical regulators of important cellular pathways and identified ARGLU1 as a significant player in transcription and the DNA damage response pathway. Transcriptional effects induced by ARGLU1 occur via enhancement of promoter-proximal RNA polymerase II pausing, likely by inhibiting the interaction between JMJD6 and BRD4. When overexpressed, ARGLU1 increases the growth rate of cancer cells, while its knockdown leads to growth arrest. Significantly, overexpression of ARGLU1 increased cancer cell resistance to genotoxic drugs and promoted DNA damage repair. These results identify new roles for ARGLU1 in cancer cell survival and the DNA damage repair pathway, with potential clinical implications for chemotherapy resistance.
Collapse
Affiliation(s)
- Scott Bachus
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB R3T 2N2, Canada
| | - Nikolas Akkerman
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB R3T 2N2, Canada
| | - Lauren Fulham
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB R3T 2N2, Canada
| | - Drayson Graves
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB R3T 2N2, Canada
| | - Rafe Helwer
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB R3T 2N2, Canada
| | - Jordan Rempel
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB R3T 2N2, Canada
| | - Peter Pelka
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB R3T 2N2, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
6
|
Shi J, Yu X, Li G, Zhao X, Chen J, Fang Y, Yang Y, Wang T, Xu T, Bian L, Lyu L, He Y. DTL promotes head and neck squamous cell carcinoma progression by mediating the degradation of ARGLU1 to regulate the Notch signaling pathway. Int J Biol Macromol 2024; 259:129184. [PMID: 38218284 DOI: 10.1016/j.ijbiomac.2023.129184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/15/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, with a high incidence in squamous epithelium. The E3 ubiquitin ligase DTL is a component of the CRL4A complex and is widely involved in tumor progression. We aimed to analyze the role of DTL in HNSCC and to explore its mechanism of action. Through clinical analysis, we found that DTL is upregulated in HNSCC tissues and is associated with the tumor microenvironment and poor survival in patients. Through gain-of-function and loss-of-function assays, we showed that DTL promotes cell proliferation and migration in vitro and tumor growth in vivo. Mass spectrometry analysis and immunoprecipitation assays showed that DTL interacts with ARGLU1 to promote K11-linked ubiquitination-mediated degradation of ARGLU1, thereby promoting the activation of the CSL-dependent Notch signaling pathway. Furthermore, siARGLU1 blocks the inhibitory effects of DTL knockdown on HNSCC cells. In this study, we showed that DTL promotes HNSCC progression through K11-linked ubiquitination of ARGLU1 to activate the CSL-dependent Notch pathway. These findings identify a promising therapeutic target for HNSCC.
Collapse
Affiliation(s)
- Jingpei Shi
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650106, Yunnan, China; Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Xiaonan Yu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650106, Yunnan, China
| | - Guoyu Li
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
| | - Xiaoyu Zhao
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032,Yunnan, China
| | - Jiwen Chen
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Ying Fang
- Department of Infection and Hepatology, The First Affiliated Hospital of Kunming Medical University, 650032, Yunnan, China
| | - Yan Yang
- Department of Hepatobiliary and Pancreatic Surgery and Liver Transplantion, the First People's Hospital of Kunming, Kunming 650011, Yunnan, China
| | - Ting Wang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Tianyong Xu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Li Bian
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China.
| | - Lechun Lyu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, Yunnan, China.
| | - Yongwen He
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650106, Yunnan, China; Qujing Medical College, Qujing 655099, Yunnan, China.
| |
Collapse
|
7
|
Zhou Q, Qi F, Zhou C, Ji J, Jiang J, Wang C, Zhao Q, Jin Y, Wu J, Cai Q, Tian H, Zhang J. VPS35 promotes gastric cancer progression through integrin/FAK/SRC signalling-mediated IL-6/STAT3 pathway activation in a YAP-dependent manner. Oncogene 2024; 43:106-122. [PMID: 37950040 PMCID: PMC10774127 DOI: 10.1038/s41388-023-02885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
VPS35 is a key subunit of the retromer complex responsible for recognising cytosolic retrieval signals in cargo and is involved in neurodegenerative disease and tumour progression. However, the function and molecular mechanism of VPS35 in gastric cancer (GC) remains largely unknown. Here, we demonstrated that VPS35 was significantly upregulated in GC, which was associated with poor survival. VPS35 promoted GC cell proliferation and metastasis both in vitro and in vivo. Mechanistically, VPS35 activated FAK-SRC kinases through integrin-mediated outside-in signalling, leading to the activation of YAP and subsequent IL-6 expression induction in tumour cells. What's more, combined mass spectrometry analysis of MGC-803 cell and bioinformatic analysis, we found that phosphorylation of VPS35 was enhanced in GC cells, and phosphorylated VPS35 has enhanced interaction with ITGB3. VPS35 interacted with ITGB3 and affected the recycling of ITGB3 in GC cells. Gain- and loss-of-function experiments revealed that VPS35 promoted tumour proliferation and metastasis via the IL-6/STAT3 pathway. Interestingly, we also found that STAT3 directly bound to the VPS35 promoter and increased VPS35 transcription, thereby establishing a positive regulatory feedback loop. In addition, we demonstrated that VPS35 knockdown sensitised GC cells to 5-FU and cisplatin. These findings provide evidence that VPS35 promotes tumour proliferation and metastasis, and highlight the potential of targeting VPS35- and IL-6/STAT3-mediated tumour interactions as promising therapeutic strategies for GC.
Collapse
Affiliation(s)
- Qingqing Zhou
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Feng Qi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chenfei Zhou
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Ji
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinling Jiang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chao Wang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qianfu Zhao
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yangbing Jin
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Junwei Wu
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qu Cai
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hua Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China.
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
8
|
Kan L, Huang Y, Liu Z. WITHDRAWN: JUN and ATF3 are deficient in prostate cancer patients and their delivery in vivo via lipid nanoparticles has therapeutic efficacy by enhancing immune surveillance. Pharmacol Res 2023; 194:106753. [PMID: 37011775 DOI: 10.1016/j.phrs.2023.106753] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.
Collapse
Affiliation(s)
- Liang Kan
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, PR China
| | - Yongye Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, 110169, Liaoning, PR China
| | - Zhongyuan Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, PR China.
| |
Collapse
|
9
|
Yu J, Feng H, Sang Q, Li F, Chen M, Yu B, Xu Z, Pan T, Wu X, Hou J, Zhu Z, Yan C, Su L, Li J, Liu B. VPS35 promotes cell proliferation via EGFR recycling and enhances EGFR inhibitors response in gastric cancer. EBioMedicine 2023; 89:104451. [PMID: 36738481 PMCID: PMC9931929 DOI: 10.1016/j.ebiom.2023.104451] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Vacuolar protein sorting-associated protein 35 (VPS35) is a core component of the retromer complex which mediates intracellular protein transport. It is well known that dysfunctional VPS35 functions in the accumulation of pathogenic proteins. In our previous study, VPS35 was found to be a potential gene related to poor prognosis in gastric cancer. However, the biological functions of VPS35 in gastric cancer remain unclear. METHODS Cell viability assays were performed to examine whether VPS35 affected cell proliferation. Immunoprecipitation and biotin assays showed that VPS35 bound to epidermal growth factor receptor (EGFR) in the cytoplasm and recycled it to the cell surface. Patient-derived xenografts and organoids were used to evaluate the effect of VPS35 on the response of gastric cancer to EGFR inhibitors. FINDINGS VPS35 expression levels were upregulated in tumour tissues and correlated with local tumour invasion and poor survival in patients with gastric cancer. VPS35 promoted cell proliferation and increased tumour growth. Mechanistically, VPS35 selectively bound to endocytosed EGFR in early endosomes and recycled it back to the cell surface, leading to the downstream activation of the ERK1/2 pathway. We also found that high VPS35 expression levels increased the sensitivity of the xenograft and organoid models to EGFR inhibitors. INTERPRETATION VPS35 promotes cell proliferation by recycling EGFR to the cell surface, amplifying the network of receptor trafficking. VPS35 expression levels are positively correlated with gastric cancer sensitivity to EGFR inhibitors, which offers a potential method to stratify patients for EGFR inhibitor utilisation. FUNDING National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Junxian Yu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Haoran Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Qingqing Sang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Fangyuan Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Mengdi Chen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Beiqin Yu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Zhuoqing Xu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Tao Pan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Xiongyan Wu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Junyi Hou
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Zhenggang Zhu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Chao Yan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Liping Su
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jianfang Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China.
| | - Bingya Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China.
| |
Collapse
|
10
|
Fu X, Liu H, Fan Y, Yuan J. Extracellular vesicle-mediated transfer of lncRNA CLDN10-AS1 aggravates low-density lipoprotein-induced vascular endothelial injury. Physiol Genomics 2022; 54:471-485. [PMID: 36250558 DOI: 10.1152/physiolgenomics.00094.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oxidized low-density lipoprotein (ox-LDL) stimulation impairs the oxidation-reduction equilibrium in vascular endothelial cells (VECs) and contributes to atherosclerosis (AS). This study probed the mechanisms of extracellular vesicle (EV)-mediated transfer of lncRNA CLDN10 antisense RNA 1 (CLDN10-AS1) in ox-LDL-induced VEC injury. Initially, VEC injury models were established by treating human umbilical vein endothelial cells (HUVECs) with ox-LDL. EVs were isolated from HUVECs (HUVECs-EVs) and identified. CLDN10-AS1, microRNA (miR)-186, and Yin Yang 1 (YY1) expressions in ox-LDL-treated HUVECs and EVs derived from these cells (ox-EVs) were measured. HUVECs were incubated with EVs, after which the cell viability, apoptosis, and concentrations of proinflammatory cytokines and oxidative stress markers were measured. We discovered that CLDN10-AS1 and YY1 were upregulated in ox-LDL-treated HUVECs, whereas miR-186 was downregulated. ox-EVs treatment elevated CLDN10-AS1 expression in HUVECs and ox-EVs overexpressing CLDN10-AS1 promoted VEC injury. Besides, CLDN10-AS1 is competitively bound to miR-186 and promoted YY1 expression. Rescue experiments revealed that miR-186 overexpression or YY1 suppression partially reversed the roles of ox-EVs overexpressing CLDN10-AS1 in ox-LDL-induced VEC injury. Lastly, clinical serum samples were collected for verification. Overall, CLDN10-AS1 carried by HUVECs-EVs into HUVECs competitively bound to miR-186 to elevate YY1 expression, thereby aggravating ox-LDL-induced VEC injury.
Collapse
Affiliation(s)
- Xiaoyang Fu
- Department of Vascular Surgery, Henan Provincial People's Hospital, Zhengzhou, China.,People's Hospital of Zhengzhou University, Zhengzhou, China.,Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China.,School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Heng Liu
- Department of Vascular Surgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yulong Fan
- Department of Vascular Surgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ji Yuan
- Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China.,School of Clinical Medicine, Henan University, Zhengzhou, China.,Department of Anaesthesia, Henan Provincial People's Hospital, Zhengzhou, China.,Department of Anaesthesia, Central China Fuwai Hospital, Zhengzhou, China
| |
Collapse
|
11
|
Thorel L, Florent R, Perréard M, Vincent A, Poulain L, Weiswald LB. Les tumoroïdes, modèles précliniques en plein essor pour l’oncologie. Med Sci (Paris) 2022; 38:880-887. [DOI: 10.1051/medsci/2022148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
La récente émergence des cultures d’organoïdes tumoraux, ou tumoroïdes, a permis d’enrichir le répertoire des modèles précliniques en oncologie. Très proches de la tumeur dont elles dérivent, ces microtumeurs offrent de nombreuses possibilités en termes de recherche fondamentale, telles que l’étude de la carcinogenèse ou de la chimioré-sistance, de validation préclinique de nouvelles molécules à visée anticancéreuse, ou encore de personnalisation des traitements. Divers développements techniques et l’enrichissement des tumoroïdes par l’addition d’autres types cellulaires sont actuellement en cours pour améliorer la pertinence de ces modèles et exploiter de façon optimale leur remarquable potentiel.
Collapse
|
12
|
Sang Q, Dai W, Yu J, Chen Y, Fan Z, Liu J, Li F, Li J, Wu X, Hou J, Yu B, Feng H, Zhu ZG, Su L, Li YY, Liu B. Identification of prognostic gene expression signatures based on the tumor microenvironment characterization of gastric cancer. Front Immunol 2022; 13:983632. [PMID: 36032070 PMCID: PMC9411533 DOI: 10.3389/fimmu.2022.983632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/20/2022] [Indexed: 12/02/2022] Open
Abstract
Increasing evidence has elucidated that the tumor microenvironment (TME) shows a strong association with tumor progression and therapeutic outcome. We comprehensively estimated the TME infiltration patterns of 111 gastric cancer (GC) and 21 normal stomach mucosa samples based on bulk transcriptomic profiles based on which GC could be clustered as three subtypes, TME-Stromal, TME-Mix, and TME-Immune. The expression data of TME-relevant genes were utilized to build a GC prognostic model—GC_Score. Among the three GC TME subtypes, TME-Stomal displayed the worst prognosis and the highest GC_Score, while TME-Immune had the best prognosis and the lowest GC_Score. Connective tissue growth factor (CTGF), the highest weighted gene in the GC_Score, was found to be overexpressed in GC. In addition, CTGF exhibited a significant correlation with the abundance of fibroblasts. CTGF has the potential to induce transdifferentiation of peritumoral fibroblasts (PTFs) to cancer-associated fibroblasts (CAFs). Beyond characterizing TME subtypes associated with clinical outcomes, we correlated TME infiltration to molecular features and explored their functional relevance, which helps to get a better understanding of carcinogenesis and therapeutic response and provide novel strategies for tumor treatments.
Collapse
Affiliation(s)
- Qingqing Sang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wentao Dai
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, China
| | - Junxian Yu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunqin Chen
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Zhiyuan Fan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jixiang Liu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Fangyuan Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfang Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiongyan Wu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junyi Hou
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Beiqin Yu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoran Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng-Gang Zhu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liping Su
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan-Yuan Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, China
- *Correspondence: Bingya Liu, ; Yuan-Yuan Li,
| | - Bingya Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Bingya Liu, ; Yuan-Yuan Li,
| |
Collapse
|
13
|
Huang L, Xu Z, Xie Y, Jiang S, Han W, Tang Z, Zhu Q. Comprehensive Characterization of Ageing-Relevant Subtypes Associated With Different Tumorigenesis and Tumor Microenvironment in Prostate Cancer. Front Mol Biosci 2022; 9:803474. [PMID: 35265669 PMCID: PMC8898838 DOI: 10.3389/fmolb.2022.803474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Accumulated evidence demonstrates that ageing is a robust risk factor of prostate cancer prognosis. Herein, we conducted a systematic analysis about ageing-relevant molecules and relevant tumor microenvironment features in prostate cancer. Methods: Transcriptome data, clinical information, and mutational data of prostate cancer patients were retrospectively collected from the Cancer Genome Atlas cohort. In accordance with the expression of specific ageing-relevant genes, prostate cancer patients were clustered with consensus clustering analyses. WGCNA was adopted for determination of subtype-associated co-expression modules and genes. Thereafter, characteristic genes were further screened with random forest algorithm and a prognostic model was conducted with multivariate cox regression analyses. Tumor microenvironment-infiltrating immune cells were estimated with ssGSEA and ESTIMATE. Activities of the cancer immunity cycle and expressions of HLA and immune checkpoint molecules were then quantified across prostate cancer cases. A serious experiment was conducted to investigate the roles of EIF2S2 in prostate tumorigenesis. Results: This study characterized three ageing-relevant subtypes (C1, C2, and C3) with diverse clinical prognosis. Subtype C1 presented the features of low mutational frequency and immune activation; C2 was characterized by stromal and immune activation; and C3 showed immune suppression. An ageing-derived gene signature was conducted, which independently and robustly predicted patients’ prognosis. Additionally, this signature was in relation to immune inactivation. Among the genes in the signature, EIF2S2 triggered proliferation, invasion, and migration of LNCaP and PC-3 cells. Conclusion: Collectively, ageing-relevant molecular subtypes and gene signature might be of great significance to determine clinical outcomes and tumor microenvironment features and immunotherapeutic responses in prostate cancer.
Collapse
Affiliation(s)
- Liang Huang
- Department of Urology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Zhenzhou Xu
- Department of Urology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Yu Xie
- Department of Urology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Shusuan Jiang
- Department of Urology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Weiqing Han
- Department of Urology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Zhengyan Tang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Quan Zhu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Quan Zhu,
| |
Collapse
|
14
|
Li X, Chen X, Gao J, Xian J, Li Z, Bi L, Yang M, Yang S, Jin H, Shan H. Loss-of-function Mutations K11E or E271K Lead to Novel Tumor Suppression, Implicate Nucleolar Helicase DDX24 Oncogenicity. Int J Med Sci 2022; 19:596-608. [PMID: 35370459 PMCID: PMC8964322 DOI: 10.7150/ijms.67840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose: Mutations (K11E or E271K) of DEAD-box RNA helicase 24 (DDX24) were related to multi-organ venous lymphatic malformation syndrome (MOVLD). However, the relationship between these mutations and DDX24-function still remains unknown. Understanding whether K11E and E271K cause "loss-of-function" or "gain-of-function" for DDX24 is significant for related diseases. DDX24 was reported to be related to tumors closely, thus this study aims to explore how K11E and E271K affect DDX24-function in tumor proliferation. Methods: Cell lines stably expressing wild-type DDX24, K11E-DDX24, E271K-DDX24, along with vector only based on Chinese hamster ovary cells (CHO) and Balb/c tumor-bearing mice models were constructed. Then immunofluorescence staining, proliferation assay and colony formation assay in vitro and 18F-FDG PET/CT-scan were performed. Finally, the tumor tissues were collected to perform transcriptome sequencing to predict the potential mechanism. Results: Contrasted with CHO-WT-DDX24, CHO-K11E-DDX24 or CHO-E271K-DDX24 showed a decreased number of nucleoli, a slower proliferation rate and a lower colony formation rate significantly. Moreover, mice, inoculated with CHO-K11E-DDX24 or CHO-E271K-DDX24 cells, showed lower tumor formation rate, slower tumor growth rate, better prognosis, reduced standard uptake value and Ki of glucose in subcutaneous tumors. Sequencing indicated CHO-K11E-DDX24 or CHO-E271K-DDX24 caused increasing expression of TNF or chemokines and alteration in immune-related signal pathways. Conclusion: K11E or E271K mutation could lead to "loss-of-function" of DDX24 in cell proliferation and tumor bearing mice, which may be acted by non-specific immune killing to inhibit tumor growth.
Collapse
Affiliation(s)
- Xinglin Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.,Department of Ultrasound, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen Second People's Hospital, Shenzhen, Guangdong Province 518000, China
| | - Xiaoyun Chen
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.,Department of Radiology, Zhongshan Affiliated Hospital, Guangzhou University of Chinese Medicine, Zhongshan, Guangdong Province 528400, China
| | - Jiebing Gao
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.,Department of Radiology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Jianzhong Xian
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.,Department of Ultrasound, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Zhijun Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Lei Bi
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Min Yang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Shuai Yang
- Center of Oncology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Hongjun Jin
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Hong Shan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.,Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| |
Collapse
|
15
|
Tan CP, Sinigaglia L, Gomez V, Nicholls J, Habib NA. RNA Activation-A Novel Approach to Therapeutically Upregulate Gene Transcription. Molecules 2021; 26:molecules26216530. [PMID: 34770939 PMCID: PMC8586927 DOI: 10.3390/molecules26216530] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
RNA activation (RNAa) is a mechanism whereby RNA oligos complementary to genomic sequences around the promoter region of genes increase the transcription output of their target gene. Small activating RNA (saRNA) mediate RNAa through interaction with protein co-factors to facilitate RNA polymerase II activity and nucleosome remodeling. As saRNA are small, versatile and safe, they represent a new class of therapeutics that can rescue the downregulation of critical genes in disease settings. This review highlights our current understanding of saRNA biology and describes various examples of how saRNA are successfully used to treat various oncological, neurological and monogenic diseases. MTL-CEBPA, a first-in-class compound that reverses CEBPA downregulation in oncogenic processes using CEBPA-51 saRNA has entered clinical trial for the treatment of hepatocellular carcinoma (HCC). Preclinical models demonstrate that MTL-CEBPA reverses the immunosuppressive effects of myeloid cells and allows for the synergistic enhancement of other anticancer drugs. Encouraging results led to the initiation of a clinical trial combining MTL-CEBPA with a PD-1 inhibitor for treatment of solid tumors.
Collapse
Affiliation(s)
- Choon Ping Tan
- MiNA Therapeutics Ltd., Translation & Innovation Hub, 84 Wood Lane, London W12 0BZ, UK; (C.P.T.); (L.S.); (V.G.); (J.N.)
| | - Laura Sinigaglia
- MiNA Therapeutics Ltd., Translation & Innovation Hub, 84 Wood Lane, London W12 0BZ, UK; (C.P.T.); (L.S.); (V.G.); (J.N.)
| | - Valentí Gomez
- MiNA Therapeutics Ltd., Translation & Innovation Hub, 84 Wood Lane, London W12 0BZ, UK; (C.P.T.); (L.S.); (V.G.); (J.N.)
| | - Joanna Nicholls
- MiNA Therapeutics Ltd., Translation & Innovation Hub, 84 Wood Lane, London W12 0BZ, UK; (C.P.T.); (L.S.); (V.G.); (J.N.)
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Nagy A. Habib
- MiNA Therapeutics Ltd., Translation & Innovation Hub, 84 Wood Lane, London W12 0BZ, UK; (C.P.T.); (L.S.); (V.G.); (J.N.)
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
- Correspondence: ; Tel.: +44-(0)20-3313-8574
| |
Collapse
|