1
|
Wolf I, Storz J, Schultze-Seemann S, Esser PR, Martin SF, Lauw S, Fischer P, Peschers M, Melchinger W, Zeiser R, Gorka O, Groß O, Gratzke C, Brückner R, Wolf P. A new silicon phthalocyanine dye induces pyroptosis in prostate cancer cells during photoimmunotherapy. Bioact Mater 2024; 41:537-552. [PMID: 39246837 PMCID: PMC11378935 DOI: 10.1016/j.bioactmat.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/30/2024] [Accepted: 07/17/2024] [Indexed: 09/10/2024] Open
Abstract
Photoimmunotherapy (PIT) combines the specificity of antibodies with the cytotoxicity of light activatable photosensitizers (PS) and is a promising new cancer therapy. We designed and synthesized, in a highly convergent manner, the silicon phthalocyanine dye WB692-CB2, which is novel for being the first light-activatable PS that can be directly conjugated via a maleimide linker to cysteines. In the present study we conjugated WB692-CB2 to a humanized antibody with engineered cysteines in the heavy chains that specifically targets the prostate-specific membrane antigen (PSMA). The resulting antibody dye conjugate revealed high affinity and specificity towards PSMA-expressing prostate cancer cells and induced cell death after irradiation with red light. Treated cells exhibited morphological characteristics associated with pyroptosis. Mechanistic studies revealed the generation of reactive oxygen species, triggering a cascade of intracellular events involving lipid peroxidation, caspase-1 activation, gasdermin D cleavage and membrane rupture followed by release of pro-inflammatory cellular contents. In first in vivo experiments, PIT with our antibody dye conjugate led to a significant reduction of tumor growth and enhanced overall survival in mice bearing subcutaneous prostate tumor xenografts. Our study highlights the future potential of the new phthalocyanine dye WB692-CB2 as PS for the fluorescence-based detection and PIT of cancer, including local prostate tumor lesions, and systemic activation of anti-tumor immune responses by the induction of pyroptosis.
Collapse
Affiliation(s)
- Isis Wolf
- Department of Urology, Medical Center - University of Freiburg, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Jonas Storz
- Institute for Organic Chemistry, University of Freiburg, 79104, Freiburg, Germany
| | - Susanne Schultze-Seemann
- Department of Urology, Medical Center - University of Freiburg, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Philipp R Esser
- Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Allergy Research Group, Department of Dermatology, Medical Center - University of Freiburg, 79104, Freiburg, Germany
| | - Stefan F Martin
- Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Allergy Research Group, Department of Dermatology, Medical Center - University of Freiburg, 79104, Freiburg, Germany
| | - Susan Lauw
- Core Facility Signalling Factory & Robotics, University of Freiburg, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Peer Fischer
- Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, 69120, Heidelberg, Germany
| | - Marie Peschers
- Department of Urology, Medical Center - University of Freiburg, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Wolfgang Melchinger
- Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Department of Internal Medicine I, Medical Center - University of Freiburg, 79106, Freiburg, Germany
| | - Robert Zeiser
- Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Department of Internal Medicine I, Medical Center - University of Freiburg, 79106, Freiburg, Germany
| | - Oliver Gorka
- Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Institute of Neuropathology, Medical Center - University of Freiburg, 79106, Freiburg, Germany
| | - Olaf Groß
- Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Institute of Neuropathology, Medical Center - University of Freiburg, 79106, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Christian Gratzke
- Department of Urology, Medical Center - University of Freiburg, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Reinhard Brückner
- Institute for Organic Chemistry, University of Freiburg, 79104, Freiburg, Germany
| | - Philipp Wolf
- Department of Urology, Medical Center - University of Freiburg, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| |
Collapse
|
2
|
Tian J, Chen C, Du X, Wang M. Near-infrared photoimmunotherapy in cancer treatment: a bibliometric and visual analysis. Front Pharmacol 2024; 15:1485242. [PMID: 39498336 PMCID: PMC11533137 DOI: 10.3389/fphar.2024.1485242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
Background Near-infrared photoimmunotherapy (NIR-PIT) is an emerging cancer treatment technology that combines the advantages of optical technology and immunotherapy to provide a highly effective, precise, and low side-effect treatment approach. The aim of this study is to visualize the scientific results and research trends of NIR-PIT based on bibliometric analysis methods. Methods The Web of Science Core Collection (WoSCC) database was searched in August 2024 for relevant publications in the field of NIR-PIT. Data were analyzed using mainly CiteSpace and R software for bibliometric and visual analysis of the country/region, authors, journals, references and keywords of the publications in the field. Results A total of 245 publications were retrieved, including articles (n = 173, 70.61%) and reviews (n = 72, 29.39%). The annual and cumulative number of publications increased every year. The highest number of publications was from the United States (149, 60.82%), followed by Japan (70, 28.57%) and China (33, 13.47%). The research institution with the highest number of publications was National Institutes of Health (NIH)-USA (114, 46.53%). Kobayashi H (109) was involved in the highest number of publications, Mitsunaga M (211) was the most frequently cited in total. CANCERS (17) was the most frequently published journal, and NAT MED (220) was the most frequently co-cited journal. The top 10 keywords include near-infrared photoimmunotherapy (166), photodynamic therapy (61), monoclonal antibody (58), in vivo (50), cancer (46), expression (31), breast cancer (27), enhanced permeability (24), antibody (23), growth factor receptor (16). Cluster analysis based on the co-occurrence of keywords resulted in 13 clusters, which identified the current research hotspots and future trends of NIR-PIT in cancer treatment. Conclusion This study systematically investigated the research hotspots and development trends of NIR-PIT in cancer treatment through bibliometric and visual analysis. As an emerging strategy, the research on the application of NIR-PIT in cancer treatment has significantly increased in recent years, mainly focusing on the targeting, immune activation mechanism, and treatment efficacy in solid tumors has received extensive attention. Future studies may focus on improving the efficacy and safety of NIR-PIT in cancer treatment, as well as developing novel photosensitizers and combination therapeutic regimens, and exploring the efficacy of its application in a wide range of solid tumors, which will provide an important reference and guidance for the application of NIR-PIT in clinical translation.
Collapse
Affiliation(s)
- Jinglin Tian
- Department of Pharmacy, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medcine, Suzhou, Jiangsu, China
| | - Chunbao Chen
- Department of Neurosurgery, The 3RD Affiliated Hospital of Chengdu Medical College, Pidu District People's Hospital, Chengdu, Sichuan, China
| | - Xue Du
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Miao Wang
- Department of Oncology, Siyang Hospital, Suqian, Jiangsu, China
| |
Collapse
|
3
|
Won SY, Singhmar R, Sahoo S, Kim H, Kim CM, Choi SM, Sood A, Han SS. Fabrication of albumin-Ti 3C 2 MXene quantum dots-based nanohybrids for breast cancer imaging and synergistic photo/chemotherapeutics. Colloids Surf B Biointerfaces 2024; 245:114207. [PMID: 39243706 DOI: 10.1016/j.colsurfb.2024.114207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Advancement in the development of new materials with theranostic and phototherapeutic potential along with receptiveness to external stimuli has been persistently inspiring oncology research. Herein, titanium carbide-based MXene quantum dots (FHMQDs) have been synthesized and modified to take advantage of stimuli-responsive behavior and target specificity for breast cancer cells. With a size of around 3 nm, the developed FHMQDs demonstrate high fluorescent emission at around 460 nm. With ∼90 % encapsulation efficiency of doxorubicin (DOX), the developed system also offers rapid DOX release behavior when encountering an acidic pH (5.4). Further, the in vitro assessment of the developed FHMQDs on MDA-MB 231 breast cancer cells presents excellent target specificity to cancer cells which was reflected by its high cytotoxicity against cancer cells. Additionally, the outstanding photodynamic efficiency of FHMQDs due to excessive Reactive Oxygen Species (ROS) generating ability along with apoptosis promoting capability of FHMQDs in cancer cells demonstrates a synergistic approach in cancer theranostics. Encouragingly, the fabricated FHMQDs also exhibited fluorescent labelling and bioimaging capacity which makes it an incredible platform that ensures theranostic excellence in breast cancer research.
Collapse
Affiliation(s)
- So Yeon Won
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Ritu Singhmar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Sumanta Sahoo
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Hongmi Kim
- Core Research Support Centre for Natural Products and Medical Materials, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Chul Min Kim
- Department of Mechatronics Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju, Gyeongsangnam-do, South Korea
| | - Soon Mo Choi
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea; Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Ankur Sood
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea; Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea; Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.
| |
Collapse
|
4
|
Ishikawa K, Suzuki H, Ohishi T, Li G, Tanaka T, Kawada M, Ohkoshi A, Kaneko MK, Katori Y, Kato Y. Anti-CD44 Variant 10 Monoclonal Antibody Exerts Antitumor Activity in Mouse Xenograft Models of Oral Squamous Cell Carcinomas. Int J Mol Sci 2024; 25:9190. [PMID: 39273139 PMCID: PMC11395228 DOI: 10.3390/ijms25179190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
CD44 regulates cell adhesion, proliferation, survival, and stemness and has been considered a tumor therapy target. CD44 possesses the shortest CD44 standard (CD44s) and a variety of CD44 variant (CD44v) isoforms. Since the expression of CD44v is restricted in epithelial cells and carcinomas compared to CD44s, CD44v has been considered a promising target for monoclonal antibody (mAb) therapy. We previously developed an anti-CD44v10 mAb, C44Mab-18 (IgM, kappa), to recognize the variant exon 10-encoded region. In the present study, a mouse IgG2a version of C44Mab-18 (C44Mab-18-mG2a) was generated to evaluate the antitumor activities against CD44-positive cells compared with the previously established anti-pan CD44 mAb, C44Mab-46-mG2a. C44Mab-18-mG2a exhibited higher reactivity compared with C44Mab-46-mG2a to CD44v3-10-overexpressed CHO-K1 (CHO/CD44v3-10) and oral squamous cell carcinoma cell lines (HSC-2 and SAS) in flow cytometry. C44Mab-18-mG2a exerted a superior antibody-dependent cellular cytotoxicity (ADCC) against CHO/CD44v3-10. In contrast, C44Mab-46-mG2a showed a superior complement-dependent cytotoxicity (CDC) against CHO/CD44v3-10. A similar tendency was observed in ADCC and CDC against HSC-2 and SAS. Furthermore, administering C44Mab-18-mG2a or C44Mab-46-mG2a significantly suppressed CHO/CD44v3-10, HSC-2, and SAS xenograft tumor growth compared with the control mouse IgG2a. These results indicate that C44Mab-18-mG2a could be a promising therapeutic regimen for CD44v10-positive tumors.
Collapse
Affiliation(s)
- Kenichiro Ishikawa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (K.I.); (G.L.); (T.T.); (M.K.K.)
- Department of Otolaryngology, Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (A.O.); (Y.K.)
| | - Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (K.I.); (G.L.); (T.T.); (M.K.K.)
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, 18-24 Miyamoto, Numazu-shi 410-0301, Shizuoka, Japan;
- Institute of Microbial Chemistry (BIKAKEN), Laboratory of Oncology, Microbial Chemistry Research Foundation, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan;
| | - Guanjie Li
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (K.I.); (G.L.); (T.T.); (M.K.K.)
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (K.I.); (G.L.); (T.T.); (M.K.K.)
| | - Manabu Kawada
- Institute of Microbial Chemistry (BIKAKEN), Laboratory of Oncology, Microbial Chemistry Research Foundation, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan;
| | - Akira Ohkoshi
- Department of Otolaryngology, Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (A.O.); (Y.K.)
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (K.I.); (G.L.); (T.T.); (M.K.K.)
| | - Yukio Katori
- Department of Otolaryngology, Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (A.O.); (Y.K.)
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (K.I.); (G.L.); (T.T.); (M.K.K.)
| |
Collapse
|
5
|
Faria GNF, Karch CG, Chakraborty S, Gu T, Woodward A, Aissanou A, Lageshetty S, Silvy RP, Resasco D, Ballon JA, Harrison RG. Immunogenic Treatment of Metastatic Breast Cancer Using Targeted Carbon Nanotube Mediated Photothermal Therapy in Combination with Anti-Programmed Cell Death Protein-1. J Pharmacol Exp Ther 2024; 390:65-77. [PMID: 38772718 DOI: 10.1124/jpet.123.001796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 03/01/2024] [Accepted: 03/22/2024] [Indexed: 05/23/2024] Open
Abstract
The high prevalence of breast cancer is a global health concern, compounded by the lack of safe or effective treatments for its advanced stages. These facts urge the development of novel treatment strategies. Annexin A5 (ANXA5) is a natural human protein that binds with high specificity to phosphatidylserine, a phospholipid tightly maintained in the inner leaflet of the cell membrane on most healthy cells but externalized in tumor cells and the tumor vasculature. Here, we have developed a targeted photosensitizer for photothermal therapy (PTT) of solid tumors through the functionalization of single-walled carbon nanotubes (SWCNTs) to ANXA5-the SWCNT-ANXA5 conjugate. The ablation of tumors through the SWCNT-ANXA5-mediated PTT synergizes with checkpoint inhibition, creating a systemic anticancer immune response. In vitro ablation of cells incubated with the conjugate promoted cell death in a dose-dependent and targeted manner. This treatment strategy was tested in vivo with the orthotopic EMT6 breast tumor model in female balb/cJ mice. Enhanced therapeutic effects were achieved by using intratumoral injection of the conjugate and treating tumors at a lower PTT temperature (45°C). Intratumoral injection prevented the accumulation of the SWCNTs in major clearance organs. When combined with checkpoint inhibition of anti-programmed cell death protein-1, SWCNT-ANXA5-mediated PTT increased survival and 80% of the mice survived for 100 days. Evidence of immune system activation by flow cytometry of splenic cells strengthens the hypothesis of an abscopal effect as a mechanism of prolonged survival. SIGNIFICANCE STATEMENT: This study demonstrated a relatively high survival rate (80% at 100 days) of mice with aggressive breast cancer when treated with photothermal therapy using the SWCNT-ANXA5 conjugate injected intratumorally and combined with immune stimulation using the anti-programmed cell death protein-1 checkpoint inhibitor. Photothermal therapy was accomplished by maintaining the tumor temperature at a relatively low level of 45°C and avoiding accumulation of the nanotubes in the clearance organs by using intratumoral administration.
Collapse
Affiliation(s)
- Gabriela N F Faria
- School of Sustainable Chemical, Biological, and Materials Engineering (G.N.F.F., R.P.S., D.R., R.G.H.), School of Biomedical Engineering (C.G.K., S.C., A.W., A.A.), and Samuel Roberts Noble Microscopy Laboratory and School of Biological Sciences (T.G.), University of Oklahoma, Norman, Oklahoma; CHASM Advanced Materials, Inc, Norman, Oklahoma (S.L., R.P.S.); Department of Microbiology and Immunology, Universidad Nacional de San Agustin, Arequipa, Peru (J.A.B.); and Stephenson Cancer Center, Oklahoma City, Oklahoma (R.G.H.)
| | - Clement G Karch
- School of Sustainable Chemical, Biological, and Materials Engineering (G.N.F.F., R.P.S., D.R., R.G.H.), School of Biomedical Engineering (C.G.K., S.C., A.W., A.A.), and Samuel Roberts Noble Microscopy Laboratory and School of Biological Sciences (T.G.), University of Oklahoma, Norman, Oklahoma; CHASM Advanced Materials, Inc, Norman, Oklahoma (S.L., R.P.S.); Department of Microbiology and Immunology, Universidad Nacional de San Agustin, Arequipa, Peru (J.A.B.); and Stephenson Cancer Center, Oklahoma City, Oklahoma (R.G.H.)
| | - Sampurna Chakraborty
- School of Sustainable Chemical, Biological, and Materials Engineering (G.N.F.F., R.P.S., D.R., R.G.H.), School of Biomedical Engineering (C.G.K., S.C., A.W., A.A.), and Samuel Roberts Noble Microscopy Laboratory and School of Biological Sciences (T.G.), University of Oklahoma, Norman, Oklahoma; CHASM Advanced Materials, Inc, Norman, Oklahoma (S.L., R.P.S.); Department of Microbiology and Immunology, Universidad Nacional de San Agustin, Arequipa, Peru (J.A.B.); and Stephenson Cancer Center, Oklahoma City, Oklahoma (R.G.H.)
| | - Tingting Gu
- School of Sustainable Chemical, Biological, and Materials Engineering (G.N.F.F., R.P.S., D.R., R.G.H.), School of Biomedical Engineering (C.G.K., S.C., A.W., A.A.), and Samuel Roberts Noble Microscopy Laboratory and School of Biological Sciences (T.G.), University of Oklahoma, Norman, Oklahoma; CHASM Advanced Materials, Inc, Norman, Oklahoma (S.L., R.P.S.); Department of Microbiology and Immunology, Universidad Nacional de San Agustin, Arequipa, Peru (J.A.B.); and Stephenson Cancer Center, Oklahoma City, Oklahoma (R.G.H.)
| | - Alexis Woodward
- School of Sustainable Chemical, Biological, and Materials Engineering (G.N.F.F., R.P.S., D.R., R.G.H.), School of Biomedical Engineering (C.G.K., S.C., A.W., A.A.), and Samuel Roberts Noble Microscopy Laboratory and School of Biological Sciences (T.G.), University of Oklahoma, Norman, Oklahoma; CHASM Advanced Materials, Inc, Norman, Oklahoma (S.L., R.P.S.); Department of Microbiology and Immunology, Universidad Nacional de San Agustin, Arequipa, Peru (J.A.B.); and Stephenson Cancer Center, Oklahoma City, Oklahoma (R.G.H.)
| | - Adam Aissanou
- School of Sustainable Chemical, Biological, and Materials Engineering (G.N.F.F., R.P.S., D.R., R.G.H.), School of Biomedical Engineering (C.G.K., S.C., A.W., A.A.), and Samuel Roberts Noble Microscopy Laboratory and School of Biological Sciences (T.G.), University of Oklahoma, Norman, Oklahoma; CHASM Advanced Materials, Inc, Norman, Oklahoma (S.L., R.P.S.); Department of Microbiology and Immunology, Universidad Nacional de San Agustin, Arequipa, Peru (J.A.B.); and Stephenson Cancer Center, Oklahoma City, Oklahoma (R.G.H.)
| | - Sathish Lageshetty
- School of Sustainable Chemical, Biological, and Materials Engineering (G.N.F.F., R.P.S., D.R., R.G.H.), School of Biomedical Engineering (C.G.K., S.C., A.W., A.A.), and Samuel Roberts Noble Microscopy Laboratory and School of Biological Sciences (T.G.), University of Oklahoma, Norman, Oklahoma; CHASM Advanced Materials, Inc, Norman, Oklahoma (S.L., R.P.S.); Department of Microbiology and Immunology, Universidad Nacional de San Agustin, Arequipa, Peru (J.A.B.); and Stephenson Cancer Center, Oklahoma City, Oklahoma (R.G.H.)
| | - Ricardo Prada Silvy
- School of Sustainable Chemical, Biological, and Materials Engineering (G.N.F.F., R.P.S., D.R., R.G.H.), School of Biomedical Engineering (C.G.K., S.C., A.W., A.A.), and Samuel Roberts Noble Microscopy Laboratory and School of Biological Sciences (T.G.), University of Oklahoma, Norman, Oklahoma; CHASM Advanced Materials, Inc, Norman, Oklahoma (S.L., R.P.S.); Department of Microbiology and Immunology, Universidad Nacional de San Agustin, Arequipa, Peru (J.A.B.); and Stephenson Cancer Center, Oklahoma City, Oklahoma (R.G.H.)
| | - Daniel Resasco
- School of Sustainable Chemical, Biological, and Materials Engineering (G.N.F.F., R.P.S., D.R., R.G.H.), School of Biomedical Engineering (C.G.K., S.C., A.W., A.A.), and Samuel Roberts Noble Microscopy Laboratory and School of Biological Sciences (T.G.), University of Oklahoma, Norman, Oklahoma; CHASM Advanced Materials, Inc, Norman, Oklahoma (S.L., R.P.S.); Department of Microbiology and Immunology, Universidad Nacional de San Agustin, Arequipa, Peru (J.A.B.); and Stephenson Cancer Center, Oklahoma City, Oklahoma (R.G.H.)
| | - Jorge Andres Ballon
- School of Sustainable Chemical, Biological, and Materials Engineering (G.N.F.F., R.P.S., D.R., R.G.H.), School of Biomedical Engineering (C.G.K., S.C., A.W., A.A.), and Samuel Roberts Noble Microscopy Laboratory and School of Biological Sciences (T.G.), University of Oklahoma, Norman, Oklahoma; CHASM Advanced Materials, Inc, Norman, Oklahoma (S.L., R.P.S.); Department of Microbiology and Immunology, Universidad Nacional de San Agustin, Arequipa, Peru (J.A.B.); and Stephenson Cancer Center, Oklahoma City, Oklahoma (R.G.H.)
| | - Roger G Harrison
- School of Sustainable Chemical, Biological, and Materials Engineering (G.N.F.F., R.P.S., D.R., R.G.H.), School of Biomedical Engineering (C.G.K., S.C., A.W., A.A.), and Samuel Roberts Noble Microscopy Laboratory and School of Biological Sciences (T.G.), University of Oklahoma, Norman, Oklahoma; CHASM Advanced Materials, Inc, Norman, Oklahoma (S.L., R.P.S.); Department of Microbiology and Immunology, Universidad Nacional de San Agustin, Arequipa, Peru (J.A.B.); and Stephenson Cancer Center, Oklahoma City, Oklahoma (R.G.H.)
| |
Collapse
|
6
|
Hayashi Y, Miyoshi S, Watanabe I, Yano N, Nagashio K, Kaneko M, Kaminota T, Sanada T, Hosokawa Y, Kitani T, Mitani S, Choudhury ME, Yano H, Tanaka J, Hato N. Simultaneous disturbance of NHE1 and LOXL2 decreases tumorigenicity of head and neck squamous cell carcinoma. Auris Nasus Larynx 2024; 51:472-480. [PMID: 38520980 DOI: 10.1016/j.anl.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 03/25/2024]
Abstract
OBJECTIVE Although there have been brilliant advancements in the practical application of therapies targeting immune checkpoints, achieving success in targeting the microenvironment remains elusive. In this study, we aimed to address this gap by focusing on Na+ / H+ exchanger 1 (NHE1) and Lysyl Oxidase Like 2 (LOXL2), which are upregulated in head and neck squamous cell carcinoma (HNSCC) cells. METHODS The malignancy of a metastatic human HNSCC cell line was assessed in a mouse tongue cancer xenograft model by knocking down (KD) NHE1, responsible for regulating intracellular pH, and LOXL2, responsible for extracellular matrix (ECM) reorganization via cross-linking of ECM proteins. In addition to assessing changes in PD-L1 levels and collagen accumulation following knockdown, the functional status of the PD-L1 / PD-1 immune checkpoint was examined through co-culture with NK92MI, a PD-1 positive phagocytic human Natural Killer (NK) cell line. RESULTS The tumorigenic potential of each single KD cell line was similar to that of the control cells, whereas the potential was attenuated in cells with simultaneous KD of both factors (double knockdown [dKD]). Additionally, we observed decreased PD-L1 levels in NHE1 KD cells and compromised collagen accumulation in LOXL2 KD and dKD cells. NK92MI cells exhibited phagocytic activity toward HNSCC cells in co-culture, and the number of remaining dKD cells after co-culture was the lowest in comparison to the control and single KD cells. CONCLUSION This study demonstrated the possibility of achieving efficient anti-tumor effects by simultaneously disturbing multiple factors involved in the modification of the tumor microenvironment.
Collapse
Affiliation(s)
- Yuji Hayashi
- Department of Otorhinolaryngology, Head and Neck Surgery, Ehime University Medical School, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Shoko Miyoshi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Itaru Watanabe
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Nagomi Yano
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Kodai Nagashio
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Mihiro Kaneko
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Teppei Kaminota
- Department of Otorhinolaryngology, Matsuyama Red Cross Hospital, Matsuyama, Ehime, Japan
| | - Tomoyoshi Sanada
- Department of Otorhinolaryngology, Head and Neck Surgery, Uwajima City Hospital, Uwajima, Ehime, Japan
| | - Yuki Hosokawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Ehime University Medical School, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Takashi Kitani
- Department of Otorhinolaryngology, Head and Neck Surgery, Ehime University Medical School, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Sohei Mitani
- Department of Otorhinolaryngology, Head and Neck Surgery, Ehime University Medical School, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Mohammed E Choudhury
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Hajime Yano
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan.
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Naohito Hato
- Department of Otorhinolaryngology, Head and Neck Surgery, Ehime University Medical School, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| |
Collapse
|
7
|
Otani T, Suzuki M, Takakura H, Hanaoka H. Synthesis and biological evaluation of EGFR binding peptides for near-infrared photoimmunotherapy. Bioorg Med Chem 2024; 105:117717. [PMID: 38614014 DOI: 10.1016/j.bmc.2024.117717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that involves photoimmunotherapy drug injection and NIR light exposure. In NIR-PIT, antibodies are commonly used as target-directed molecules carrying IRDye700DX (IR700). However, antibodies have disadvantages, such as high cost, complex development strategies, and poor tumor penetration. In contrast, peptides have lower production costs, can be easy to chemically synthesize and modify, and can also be used for tumor-targeting like antibodies. In this study, we developed a novel PIT drug using a peptide as the target-directed molecule. Epidermal growth factor receptor (EGFR) was selected as the target, and monovalent and bivalent EGFR-binding peptides were synthesized. The bivalent peptide showed sufficient binding to EGFR-positive cells, and a bivalent peptide-IR700 conjugate with a long linker induced morphological changes in EGFR-positive cells. Additionally, the drug significantly reduced cell viability in vitro in an NIR light-dose- and drug-concentration-dependent manner. These results indicate the feasibility of NIR-PIT in treating cancer using peptide-based drugs.
Collapse
Affiliation(s)
- Takuya Otani
- Near InfraRed Photo-ImmunoTherapy Research Institute, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Motofumi Suzuki
- Near InfraRed Photo-ImmunoTherapy Research Institute, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Hideo Takakura
- Near InfraRed Photo-ImmunoTherapy Research Institute, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Hirofumi Hanaoka
- Near InfraRed Photo-ImmunoTherapy Research Institute, Kansai Medical University, Hirakata, Osaka 573-1010, Japan.
| |
Collapse
|
8
|
Wijesinghe RE, Kahatapitiya NS, Lee C, Han S, Kim S, Saleah SA, Seong D, Silva BN, Wijenayake U, Ravichandran NK, Jeon M, Kim J. Growing Trend to Adopt Speckle Variance Optical Coherence Tomography for Biological Tissue Assessments in Pre-Clinical Applications. MICROMACHINES 2024; 15:564. [PMID: 38793137 PMCID: PMC11122893 DOI: 10.3390/mi15050564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
Speckle patterns are a generic feature in coherent imaging techniques like optical coherence tomography (OCT). Although speckles are granular like noise texture, which degrades the image, they carry information that can be benefited by processing and thereby furnishing crucial information of sample structures, which can serve to provide significant important structural details of samples in in vivo longitudinal pre-clinical monitoring and assessments. Since the motions of tissue molecules are indicated through speckle patterns, speckle variance OCT (SV-OCT) can be well-utilized for quantitative assessments of speckle variance (SV) in biological tissues. SV-OCT has been acknowledged as a promising method for mapping microvasculature in transverse-directional blood vessels with high resolution in micrometers in both the transverse and depth directions. The fundamental scope of this article reviews the state-of-the-art and clinical benefits of SV-OCT to assess biological tissues for pre-clinical applications. In particular, focus on precise quantifications of in vivo vascular response, therapy assessments, and real-time temporal vascular effects of SV-OCT are primarily emphasized. Finally, SV-OCT-incorporating pre-clinical techniques with high potential are presented for future biomedical applications.
Collapse
Affiliation(s)
- Ruchire Eranga Wijesinghe
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka;
- Center for Excellence in Intelligent Informatics, Electronics & Transmission (CIET), Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Nipun Shantha Kahatapitiya
- Department of Computer Engineering, Faculty of Engineering, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka; (N.S.K.); (U.W.)
| | - Changho Lee
- Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Nuclear Medicine, Chonnam National University Medical School & Hwasun Hospital, 264, Seoyang-ro, Hwasun 58128, Republic of Korea
| | - Sangyeob Han
- ICT Convergence Research Center, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Shinheon Kim
- ICT Convergence Research Center, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Sm Abu Saleah
- ICT Convergence Research Center, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Daewoon Seong
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Bhagya Nathali Silva
- Center for Excellence in Intelligent Informatics, Electronics & Transmission (CIET), Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
- Faculty of Computing, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Udaya Wijenayake
- Department of Computer Engineering, Faculty of Engineering, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka; (N.S.K.); (U.W.)
| | - Naresh Kumar Ravichandran
- Center for Scientific Instrumentation, Korea Basic Science Institute, 169-148, Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea
| | - Mansik Jeon
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Jeehyun Kim
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| |
Collapse
|
9
|
Takamatsu T, Tanaka H, Yano T. Near-Infrared Fluorescence Imaging Sensor with Laser Diffuser for Visualizing Photoimmunotherapy Effects under Endoscopy. SENSORS (BASEL, SWITZERLAND) 2024; 24:1487. [PMID: 38475023 DOI: 10.3390/s24051487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
The drug efficacy evaluation of tumor-selective photosensitive substances was expected to be enabled by imaging the fluorescence intensity in the tumor area. However, fluorescence observation is difficult during treatments that are performed during gastrointestinal endoscopy because of the challenges associated with including the fluorescence filter in the camera part. To address this issue, this study developed a device that integrates a narrow camera and a laser diffuser to enable fluorescence imaging through a forceps port. This device was employed to demonstrate that a laser diffuser with an NIR fluorescence imaging sensor could be delivered through a 3.2 mm diameter port. In addition, fluorescence images of Cetuximab-IR700 were successfully observed in two mice, and the fluorescence intensity confirmed that the fluorescence decayed within 330 s. This device is expected to have practical application as a tool to identify the optimal irradiation dose for tumor-selective photosensitive substances under endoscopy.
Collapse
Affiliation(s)
- Toshihiro Takamatsu
- Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa 277-8577, Chiba, Japan
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda 278-0022, Chiba, Japan
| | - Hideki Tanaka
- Department of Head and Neck Surgery, National Cancer Center Hospital East, Kashiwa 277-8577, Chiba, Japan
| | - Tomonori Yano
- Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa 277-8577, Chiba, Japan
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Kashiwa 277-8577, Chiba, Japan
| |
Collapse
|
10
|
Nakajima K, Ogawa M. Near-infrared photoimmunotherapy and anti-cancer immunity. Int Immunol 2024; 36:57-64. [PMID: 37843836 DOI: 10.1093/intimm/dxad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/14/2023] [Indexed: 10/17/2023] Open
Abstract
The activation of the anti-cancer immune system is an important strategy to control cancer. A new form of cancer phototherapy, near-infrared photoimmunotherapy (NIR-PIT), was approved for clinical use in 2020 and uses IRDye® 700DX (IR700)-conjugated antibodies and NIR light. After irradiation with NIR light, the antibody-IR700 conjugate forms water-insoluble aggregations on the plasma membrane of target cells. This aggregation causes lethal damage to the plasma membrane, and effectively leads to immunogenic cell death (ICD). Subsequently, ICD activates anti-cancer immune cells such as dendritic cells and cytotoxic T cells. Combination therapy with immune-checkpoint blockade has synergistically improved the anti-cancer effects of NIR-PIT. Additionally, NIR-PIT can eliminate immunosuppressive immune cells in light-irradiated tumors by using specific antibodies against regulatory T cells and myeloid-derived suppressor cells. In addition to cancer-cell-targeted NIR-PIT, such immune-cell-targeted NIR-PIT has shown promising results by activating the anti-cancer immune system. Furthermore, NIR-PIT can be used to manipulate the tumor microenvironment by eliminating only targeted cells in the tumor, and thus it also can be used to gain insight into immunity in basic research.
Collapse
Affiliation(s)
- Kohei Nakajima
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| | - Mikako Ogawa
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| |
Collapse
|
11
|
De Pauw T, De Mey L, Debacker JM, Raes G, Van Ginderachter JA, De Groof TWM, Devoogdt N. Current status and future expectations of nanobodies in oncology trials. Expert Opin Investig Drugs 2023; 32:705-721. [PMID: 37638538 DOI: 10.1080/13543784.2023.2249814] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
INTRODUCTION Monoclonal antibodies have revolutionized personalized medicine for cancer in recent decades. Despite their broad application in oncology, their large size and complexity may interfere with successful tumor targeting for certain applications of cancer diagnosis and therapy. Nanobodies have unique structural and pharmacological features compared to monoclonal antibodies and have successfully been used as complementary anti-cancer diagnostic and/or therapeutic tools. AREAS COVERED Here, an overview is given of the nanobody-based diagnostics and therapeutics that have been or are currently being tested in oncological clinical trials. Furthermore, preclinical developments, which are likely to be translated into the clinic in the near future, are highlighted. EXPERT OPINION Overall, the presented studies show the application potential of nanobodies in the field of oncology, making it likely that more nanobodies will be clinically approved in the upcoming future.
Collapse
Affiliation(s)
- Tessa De Pauw
- In vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lynn De Mey
- In vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
- Nuclear Medicine Department, UZ Brussel, Brussels, Belgium
| | - Jens M Debacker
- In vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
- Nuclear Medicine Department, UZ Brussel, Brussels, Belgium
| | - Geert Raes
- Cellular and Molecular Immunology Lab, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Jo A Van Ginderachter
- Cellular and Molecular Immunology Lab, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Timo W M De Groof
- In vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nick Devoogdt
- In vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
12
|
Mušković M, Pokrajac R, Malatesti N. Combination of Two Photosensitisers in Anticancer, Antimicrobial and Upconversion Photodynamic Therapy. Pharmaceuticals (Basel) 2023; 16:613. [PMID: 37111370 PMCID: PMC10143496 DOI: 10.3390/ph16040613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Photodynamic therapy (PDT) is a special form of phototherapy in which oxygen is needed, in addition to light and a drug called a photosensitiser (PS), to create cytotoxic species that can destroy cancer cells and various pathogens. PDT is often used in combination with other antitumor and antimicrobial therapies to sensitise cells to other agents, minimise the risk of resistance and improve overall outcomes. Furthermore, the aim of combining two photosensitising agents in PDT is to overcome the shortcomings of the monotherapeutic approach and the limitations of individual agents, as well as to achieve synergistic or additive effects, which allows the administration of PSs in lower concentrations, consequently reducing dark toxicity and preventing skin photosensitivity. The most common strategies in anticancer PDT use two PSs to combine the targeting of different organelles and cell-death mechanisms and, in addition to cancer cells, simultaneously target tumour vasculature and induce immune responses. The use of PDT with upconversion nanoparticles is a promising approach to the treatment of deep tissues and the goal of using two PSs is to improve drug loading and singlet oxygen production. In antimicrobial PDT, two PSs are often combined to generate various reactive oxygen species through both Type I and Type II processes.
Collapse
Affiliation(s)
| | | | - Nela Malatesti
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (M.M.); (R.P.)
| |
Collapse
|
13
|
Suzuki H, Ozawa K, Tanaka T, Kaneko MK, Kato Y. Development of a Novel Anti-CD44 Variant 7/8 Monoclonal Antibody, C44Mab-34, for Multiple Applications against Oral Carcinomas. Biomedicines 2023; 11:biomedicines11041099. [PMID: 37189717 DOI: 10.3390/biomedicines11041099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Cluster of differentiation 44 (CD44) has been investigated as a cancer stem cell (CSC) marker as it plays critical roles in tumor malignant progression. The splicing variants are overexpressed in many carcinomas, especially squamous cell carcinomas, and play critical roles in the promotion of tumor metastasis, the acquisition of CSC properties, and resistance to treatments. Therefore, each CD44 variant (CD44v) function and distribution in carcinomas should be clarified for the establishment of novel tumor diagnosis and therapy. In this study, we immunized mouse with a CD44 variant (CD44v3–10) ectodomain and established various anti-CD44 monoclonal antibodies (mAbs). One of the established clones (C44Mab-34; IgG1, kappa) recognized a peptide that covers both variant 7- and variant 8-encoded regions, indicating that C44Mab-34 is a specific mAb for CD44v7/8. Moreover, C44Mab-34 reacted with CD44v3–10-overexpressed Chinese hamster ovary-K1 (CHO) cells or the oral squamous cell carcinoma (OSCC) cell line (HSC-3) by flow cytometry. The apparent KD of C44Mab-34 for CHO/CD44v3–10 and HSC-3 was 1.4 × 10−9 and 3.2 × 10−9 M, respectively. C44Mab-34 could detect CD44v3–10 in Western blotting and stained the formalin-fixed paraffin-embedded OSCC in immunohistochemistry. These results indicate that C44Mab-34 is useful for detecting CD44v7/8 in various applications and is expected to be useful in the application of OSCC diagnosis and therapy.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Kazuki Ozawa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| |
Collapse
|
14
|
Rahman KMM, Giram P, Foster BA, You Y. Photodynamic Therapy for Bladder Cancers, A Focused Review †. Photochem Photobiol 2023; 99:420-436. [PMID: 36138552 PMCID: PMC10421568 DOI: 10.1111/php.13726] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/18/2022] [Indexed: 02/02/2023]
Abstract
Bladder cancer is the first cancer for which PDT was clinically approved in 1993. Unfortunately, it was unsuccessful due to side effects like bladder contraction. Here, we summarized the recent progress of PDT for bladder cancers, focusing on photosensitizers and formulations. General strategies to minimize side effects are intravesical administration of photosensitizers, use of targeting strategies for photosensitizers and better control of light. Non-muscle invasive bladder cancers are more suitable for PDT than muscle invasive and metastatic bladder cancers. In 2010, the FDA approved blue light cystoscopy, using PpIX fluorescence, for photodynamic diagnosis of non-muscle invasive bladder cancer. PpIX produced from HAL was also used in PDT but was not successful due to low therapeutic efficacy. To enhance the efficacy of PpIX-PDT, we have been working on combining it with singlet oxygen-activatable prodrugs. The use of these prodrugs increases the therapeutic efficacy of the PpIX-PDT. It also improves tumor selectivity of the prodrugs due to the preferential formation of PpIX in cancer cells resulting in decreased off-target toxicity. Future challenges include improving prodrugs and light delivery across the bladder barrier to deeper tumor tissue and generating an effective therapeutic response in an In vivo setting without causing collateral damage to bladder function.
Collapse
Affiliation(s)
- Kazi Md Mahabubur Rahman
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY
| | - Prabhanjan Giram
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY
| | - Barbara A. Foster
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Youngjae You
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY
| |
Collapse
|
15
|
Liu S, Matsuo T, Abe T. Revisiting Cryptocyanine Dye, NK-4, as an Old and New Drug: Review and Future Perspectives. Int J Mol Sci 2023; 24:4411. [PMID: 36901839 PMCID: PMC10002675 DOI: 10.3390/ijms24054411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
NK-4 plays a key role in the treatment of various diseases, such as in hay fever to expect anti-allergic effects, in bacterial infections and gum abscesses to expect anti-inflammatory effects, in scratches, cuts, and mouth sores from bites inside the mouth for enhanced wound healing, in herpes simplex virus (HSV)-1 infections for antiviral effects, and in peripheral nerve disease that causes tingling pain and numbness in hands and feet, while NK-4 is used also to expect antioxidative and neuroprotective effects. We review all therapeutic directions for the cyanine dye NK-4, as well as the pharmacological mechanism of NK-4 in animal models of related diseases. Currently, NK-4, which is sold as an over-the-counter drug in drugstores, is approved for treating allergic diseases, loss of appetite, sleepiness, anemia, peripheral neuropathy, acute suppurative diseases, wounds, heat injuries, frostbite, and tinea pedis in Japan. The therapeutic effects of NK-4's antioxidative and neuroprotective properties in animal models are now under development, and we hope to apply these pharmacological effects of NK-4 to the treatment of more diseases. All experimental data suggest that different kinds of utility of NK-4 in the treatment of diseases can be developed based on the various pharmacological properties of NK-4. It is expected that NK-4 could be developed in more therapeutic strategies to treat many types of diseases, such as neurodegenerative and retinal degenerative diseases.
Collapse
Affiliation(s)
- Shihui Liu
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8558, Japan
| | - Toshihiko Matsuo
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8558, Japan
- Department of Ophthalmology, Okayama University Hospital, Okayama 700-8558, Japan
| | - Takumi Abe
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
16
|
Kishikawa T, Terada H, Sawabe M, Beppu S, Nishikawa D, Suzuki H, Hanai N. Utilization of ultrasound in photoimmunotherapy for head and neck cancer: a case report. J Ultrasound 2023:10.1007/s40477-023-00774-8. [PMID: 36807267 DOI: 10.1007/s40477-023-00774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/11/2023] [Indexed: 02/21/2023] Open
Abstract
BACKGROUND Photoimmunotherapy (PIT) is a new cancer treatment based on a different mechanism from conventional treatments that combines the administration of a photoabsorber and laser illumination. PIT has two characteristics: a high selectivity of target cells and the possibility of effects beyond the illuminated area. It is thus a potentially effective treatment for a wide variety of cancers. CASE PRESENTATION We herein report a patient with oropharyngeal squamous cell carcinoma with superficial cervical lymph node recurrence. Intraoperative ultrasound confirmed the localization of the lesion and major vessels near the tumor. We punctured the tumor with catheters of laser illumination under ultrasound guidance. Laser illumination was able to be performed safely without causing serious adverse events, and the effect on the illuminated site was fully exhibited. CONCLUSIONS Ultrasound allows for the intraoperative monitoring of each localized area and the puncture status easily in real-time. Accurate utilization of ultrasound is extremely important in PIT.
Collapse
Affiliation(s)
- Toshihiro Kishikawa
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, 464-8681, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Hoshino Terada
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, 464-8681, Japan
| | - Michi Sawabe
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, 464-8681, Japan
| | - Shintaro Beppu
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, 464-8681, Japan
| | - Daisuke Nishikawa
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, 464-8681, Japan
| | - Hidenori Suzuki
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, 464-8681, Japan
| | - Nobuhiro Hanai
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, 464-8681, Japan.
| |
Collapse
|
17
|
Mohiuddin TM, Zhang C, Sheng W, Al-Rawe M, Zeppernick F, Meinhold-Heerlein I, Hussain AF. Near Infrared Photoimmunotherapy: A Review of Recent Progress and Their Target Molecules for Cancer Therapy. Int J Mol Sci 2023; 24:2655. [PMID: 36768976 PMCID: PMC9916513 DOI: 10.3390/ijms24032655] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
Near infrared photoimmunotherapy (NIR-PIT) is a newly developed molecular targeted cancer treatment, which selectively kills cancer cells or immune-regulatory cells and induces therapeutic host immune responses by administrating a cancer targeting moiety conjugated with IRdye700. The local exposure to near-infrared (NIR) light causes a photo-induced ligand release reaction, which causes damage to the target cell, resulting in immunogenic cell death (ICD) with little or no side effect to the surrounding normal cells. Moreover, NIR-PIT can generate an immune response in distant metastases and inhibit further cancer attack by combing cancer cells targeting NIR-PIT and immune regulatory cells targeting NIR-PIT or other cancer treatment modalities. Several recent improvements in NIR-PIT have been explored such as catheter-driven NIR light delivery, real-time monitoring of cancer, and the development of new target molecule, leading to NIR-PIT being considered as a promising cancer therapy. In this review, we discuss the progress of NIR-PIT, their mechanism and design strategies for cancer treatment. Furthermore, the overall possible targeting molecules for NIR-PIT with their application for cancer treatment are briefly summarised.
Collapse
|
18
|
Zhang X, Yu F, Wang Z, Jiang T, Song X, Yu F. Fluorescence probes for lung carcinoma diagnosis and clinical application. SENSORS & DIAGNOSTICS 2023; 2:1077-1096. [DOI: 10.1039/d3sd00029j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
This review provides an overview of the most recent developments in fluorescence probe technology for the accurate detection and clinical therapy of lung carcinoma.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Department of Pulmonary and Critical Care Medicine, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China
| | - Feifei Yu
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Zhenkai Wang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Tongmeng Jiang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Xinyu Song
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medicine University, Guangzhou 510120, China
| | - Fabiao Yu
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
19
|
Kaneko Y, Yamatsugu K, Yamashita T, Takahashi K, Tanaka T, Aki S, Tatsumi T, Kawamura T, Miura M, Ishii M, Ohkubo K, Osawa T, Kodama T, Ishikawa S, Tsukagoshi M, Chansler M, Sugiyama A, Kanai M, Katoh H. Pathological complete remission of relapsed tumor by photo-activating antibody-mimetic drug conjugate treatment. Cancer Sci 2022; 113:4350-4362. [PMID: 36121618 DOI: 10.1111/cas.15565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 02/03/2023] Open
Abstract
Antibody-mimetic drug conjugate is a novel noncovalent conjugate consisting of an antibody-mimetic recognizing a target molecule on the cancer cell surface and low-molecular-weight payloads that kill the cancer cells. In this study, the efficacy of a photo-activating antibody-mimetic drug conjugate targeting HER2-expressing tumors was evaluated in mice, by using the affibody that recognize HER2 (ZHER2:342 ) as a target molecule and an axially substituted silicon phthalocyanine (a novel potent photo-activating compound) as a payload. The first treatment with the photo-activating antibody-mimetic drug conjugates reduced the size of all HER2-expressing KPL-4 xenograft tumors macroscopically. However, during the observation period, relapsed tumors gradually appeared in approximately 50% of the animals. To evaluate the efficacy of repeated antibody-mimetic drug conjugate treatment, animals with relapsed tumors were treated again with the same regimen. After the second observation period, the mouse tissues were examined histopathologically. Unexpectedly, all relapsed tumors were eradicated, and all animals were diagnosed with pathological complete remission. After the second treatment, skin wounds healed rapidly, and no significant side effects were observed in other organs, except for occasional microscopic granulomatous tissues beneath the serosa of the liver in a few mice. Repeated treatments seemed to be well tolerated. These results indicate the promising efficacy of the repeated photo-activating antibody-mimetic drug conjugate treatment against HER2-expressing tumors.
Collapse
Affiliation(s)
- Yudai Kaneko
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.,Medical & Biological Laboratories Co., Ltd, Tokyo, Japan
| | - Kenzo Yamatsugu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takefumi Yamashita
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kazuki Takahashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshiya Tanaka
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Sho Aki
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Toshifumi Tatsumi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takeshi Kawamura
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.,Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Mai Miura
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Masazumi Ishii
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kei Ohkubo
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan.,Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
| | - Tsuyoshi Osawa
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiko Kodama
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | - Akira Sugiyama
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.,Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroto Katoh
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Shu Y, Huang C, Liu H, Hu F, Wen H, Liu J, Wang X, Shan C, Li W. A hemicyanine-based fluorescent probe for simultaneous imaging of Carboxylesterases and Histone deacetylases in hepatocellular carcinoma. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121529. [PMID: 35797949 DOI: 10.1016/j.saa.2022.121529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Carboxylesterases (CESs) and Histone deacetylases (HDACs) are regarded as important signaling enzymes highly associated with the development and progression of multiple cancers, including hepatocellular carcinoma (HCC). In this work, a near-infrared (NIR) fluorescent probe named Lys-HXPI was designed and synthesized, which linked a hemicyanine dye and 6-acetamidohexanoic acid via an ester bond. Lys-HXPI displayed a remarkable increase with a NIR emission at 720 nm, a low detection limit (<10 nM) for HDAC1, HDAC 6, CES1 and CES2, as well as a high selectivity for the target enzymes over other relevant analytes. Furthermore, Lys-HXPI was used to image endogenous target enzymes in living cells, tumor-bearing nude mice and tissue slices. The ability of Lys-HXPI to simultaneous image CESs and HDACs was demonstrated with RT-qPCR and the confocal imaging in Hep G2 and MDA-MB-231. Taking advantage of NIR emission, the probe was also successfully applied to imaging Hep G2 tumor mice and tissue slices. Lys-HXPI is expected to be useful for the effective detecting of CESs and HDACs in complex biosystems.
Collapse
Affiliation(s)
- Yi Shu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chaoqun Huang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongjing Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Feiyang Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongmei Wen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jian Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xinzhi Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chenxiao Shan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
21
|
Wei D, Qi J, Hamblin MR, Wen X, Jiang X, Yang H. Near-infrared photoimmunotherapy: design and potential applications for cancer treatment and beyond. Am J Cancer Res 2022; 12:7108-7131. [PMID: 36276636 PMCID: PMC9576624 DOI: 10.7150/thno.74820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed cancer treatment modality based on a target-specific photosensitizer conjugate (TSPC) composed of an NIR phthalocyanine photosensitizer and an antigen-specific recognition system. NIR-PIT has predominantly been used for targeted therapy of tumors via local irradiation with NIR light, following binding of TSPC to antigen-expressing cells. Physical stress-induced membrane damage is thought to be a major mechanism underlying NIR-PIT-triggered photokilling. Notably, NIR-PIT can rapidly induce immunogenic cell death and activate the adaptive immune response, thereby enabling its combination with immune checkpoint inhibitors. Furthermore, NIR-PIT-triggered “super-enhanced permeability and retention” effects can enhance drug delivery into tumors. Supported by its potential efficacy and safety, NIR-PIT is a rapidly developing therapeutic option for various cancers. Hence, this review seeks to provide an update on the (i) broad range of target molecules suitable for NIR-PIT, (ii) various types of receptor-selective ligands for designing the TSPC “magic bullet,” (iii) NIR light parameters, and (iv) strategies for enhancing the efficacy of NIR-PIT. Moreover, we review the potential application of NIR-PIT, including the specific design and efficacy in 19 different cancer types, and its clinical studies. Finally, we summarize possible NIR-PIT applications in noncancerous conditions, including infection, pain, itching, metabolic disease, autoimmune disease, and tissue engineering.
Collapse
Affiliation(s)
- Danfeng Wei
- Department of Dermatology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China.,NHC Key Lab of Transplant Engineering and Immunology, Organ Transplant Center, West China Hospital, Sichuan University, Chengdu, Chengdu 610041, China
| | - Jinxin Qi
- Department of Dermatology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Xiang Wen
- Department of Dermatology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xian Jiang
- Department of Dermatology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Yang
- NHC Key Lab of Transplant Engineering and Immunology, Organ Transplant Center, West China Hospital, Sichuan University, Chengdu, Chengdu 610041, China.,Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University
| |
Collapse
|
22
|
Sarvari P, Sarvari P, Ramírez-Díaz I, Mahjoubi F, Rubio K. Advances of Epigenetic Biomarkers and Epigenome Editing for Early Diagnosis in Breast Cancer. Int J Mol Sci 2022; 23:ijms23179521. [PMID: 36076918 PMCID: PMC9455804 DOI: 10.3390/ijms23179521] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/02/2022] Open
Abstract
Epigenetic modifications are known to regulate cell phenotype during cancer progression, including breast cancer. Unlike genetic alterations, changes in the epigenome are reversible, thus potentially reversed by epi-drugs. Breast cancer, the most common cause of cancer death worldwide in women, encompasses multiple histopathological and molecular subtypes. Several lines of evidence demonstrated distortion of the epigenetic landscape in breast cancer. Interestingly, mammary cells isolated from breast cancer patients and cultured ex vivo maintained the tumorigenic phenotype and exhibited aberrant epigenetic modifications. Recent studies indicated that the therapeutic efficiency for breast cancer regimens has increased over time, resulting in reduced mortality. Future medical treatment for breast cancer patients, however, will likely depend upon a better understanding of epigenetic modifications. The present review aims to outline different epigenetic mechanisms including DNA methylation, histone modifications, and ncRNAs with their impact on breast cancer, as well as to discuss studies highlighting the central role of epigenetic mechanisms in breast cancer pathogenesis. We propose new research areas that may facilitate locus-specific epigenome editing as breast cancer therapeutics.
Collapse
Affiliation(s)
- Pourya Sarvari
- Department of Clinical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran P.O. Box 14965/161, Iran
| | - Pouya Sarvari
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico
| | - Ivonne Ramírez-Díaz
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico
- Facultad de Biotecnología, Campus Puebla, Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla 72410, Mexico
| | - Frouzandeh Mahjoubi
- Department of Clinical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran P.O. Box 14965/161, Iran
| | - Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
- Correspondence:
| |
Collapse
|
23
|
Barnett JD, Jin J, Penet MF, Kobayashi H, Bhujwalla ZM. Phototheranostics of Splenic Myeloid-Derived Suppressor Cells and Its Impact on Spleen Metabolism in Tumor-Bearing Mice. Cancers (Basel) 2022; 14:cancers14153578. [PMID: 35892836 PMCID: PMC9332589 DOI: 10.3390/cancers14153578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: MDSCs play an active role in the immune surveillance escape of cancer cells. Because MDSCs in mice are CD11b+Gr1+, near-infrared photoimmunotherapy (NIR-PIT) using the NIR dye IR700 conjugated to an MDSC-binding antibody provides an opportunity for targeted elimination of MDSCs. (2) Methods: The efficacy of Gr1-IR700-mediated NIR-PIT was evaluated in vitro using magnetically separated CD11b+Gr1+ MDSCs from spleens of 4T1-luc tumor-bearing (TB) mice. For in vivo evaluation, spleens of Gr1-IR700-injected 4T1-luc TB mice were irradiated with NIR light, and splenocyte viability was determined using CCK-8 assays. Metabolic profiling of NIR-PIT-irradiated spleens was performed using 1H MRS. (3) Results: Flow cytometric analysis confirmed a ten-fold increase in splenic MDSCs in 4T1-luc TB mice. Gr1-IR700-mediated NIR-PIT eliminated tumor-induced splenic MDSCs in culture. Ex vivo fluorescence imaging revealed an 8- and 9-fold increase in mean fluorescence intensity (MFI) in the spleen and lungs of Gr1-IR700-injected compared to IgG-IR700-injected TB mice. Splenocytes from Gr1-IR700-injected TB mice exposed in vivo to NIR-PIT demonstrated significantly lower viability compared to no light exposure or untreated control groups. Significant metabolic changes were observed in spleens following NIR-PIT. (4) Conclusions: Our data confirm the ability of NIR-PIT to eliminate splenic MDSCs, identifying its potential to eliminate MDSCs in tumors to reduce immune suppression. The metabolic changes observed may identify potential biomarkers of splenic MDSC depletion as well as potential metabolic targets of MDSCs.
Collapse
Affiliation(s)
- James D. Barnett
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (J.D.B.); (J.J.); (M.-F.P.)
| | - Jiefu Jin
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (J.D.B.); (J.J.); (M.-F.P.)
| | - Marie-France Penet
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (J.D.B.); (J.J.); (M.-F.P.)
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, US National Institutes of Health, Bethesda, MD 20814, USA;
| | - Zaver M. Bhujwalla
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (J.D.B.); (J.J.); (M.-F.P.)
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Correspondence:
| |
Collapse
|
24
|
Saad MA, Zhung W, Stanley ME, Formica S, Grimaldo-Garcia S, Obaid G, Hasan T. Photoimmunotherapy Retains Its Anti-Tumor Efficacy with Increasing Stromal Content in Heterotypic Pancreatic Cancer Spheroids. Mol Pharm 2022; 19:2549-2563. [PMID: 35583476 PMCID: PMC10443673 DOI: 10.1021/acs.molpharmaceut.2c00260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease characterized by increased levels of desmoplasia that contribute to reduced drug delivery and poor treatment outcomes. In PDAC, the stromal content can account for up to 90% of the total tumor volume. The complex interplay between stromal components, including pancreatic cancer-associated fibroblasts (PCAFs), and PDAC cells in the tumor microenvironment has a significant impact on the prognoses and thus needs to be recapitulated in vitro when evaluating various treatment strategies. This study is a systematic evaluation of photodynamic therapy (PDT) in 3D heterotypic coculture models of PDAC with varying ratios of patient-derived PCAFs that simulate heterogeneous PDAC tumors with increasing stromal content. The efficacy of antibody-targeted PDT (photoimmunotherapy; PIT) using cetuximab (a clinically approved anti-EGFR antibody) photoimmunoconjugates (PICs) of a benzoporphyrin derivative (BPD) is contrasted with that of liposomal BPD (Visudyne), which is currently in clinical trials for PDT of PDAC. We demonstrate that both Visudyne-PDT and PIT were effective in heterotypic PDAC 3D spheroids with a low stromal content. However, as the stromal content increases above 50% in the 3D spheroids, the efficacy of Visudyne-PDT is reduced by up to 10-fold, while PIT retains its efficacy. PIT was found to be 10-, 19-, and 14-fold more phototoxic in spheroids with 50, 75, and 90% PCAFs, respectively, as compared to Visudyne-PDT. This marked difference in efficacy is attributed to the ability of PICs to penetrate and distribute homogeneously within spheroids with a higher stromal content and the mechanistically different modes of action of the two formulations. This study thus demonstrates how the stromal content in PDAC spheroids directly impacts their responsiveness to PDT and proposes PIT to be a highly suited treatment option for desmoplastic tumors with particularly high degrees of stromal content.
Collapse
Affiliation(s)
- Mohammad A. Saad
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Wonho Zhung
- Department of Chemistry, KAIST, Daejeon, 34141, Republic of Korea
| | - Margaret Elizabeth Stanley
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, North Carolina State University, Raleigh, NC 27695, USA
| | - Sydney Formica
- Bouvè college of Health Science, Northeastern University, Boston, MA 02115, USA
| | | | - Girgis Obaid
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Current address: Department of Bioengineering, University of Texas at Dallas, Richardson 75080, Texas, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
25
|
Johan AN, Li Y. Development of Photoremovable Linkers as a Novel Strategy to Improve the Pharmacokinetics of Drug Conjugates and Their Potential Application in Antibody-Drug Conjugates for Cancer Therapy. Pharmaceuticals (Basel) 2022; 15:655. [PMID: 35745573 PMCID: PMC9230074 DOI: 10.3390/ph15060655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 02/04/2023] Open
Abstract
Although there have been extensive research and progress on the discovery of anticancer drug over the years, the application of these drugs as stand-alone therapy has been limited by their off-target toxicities, poor pharmacokinetic properties, and low therapeutic index. Targeted drug delivery, especially drug conjugate, has been recognized as a technology that can bring forth a new generation of therapeutics with improved efficacy and reduced side effects for cancer treatment. The linker in a drug conjugate is of essential importance because it impacts the circulation time of the conjugate and the release of the drug for full activity at the target site. Recently, the light-triggered linker has attracted a lot of attention due to its spatiotemporal controllability and attractive prospects of improving the overall pharmacokinetics of the conjugate. In this paper, the latest developments of UV- and IR-triggered linkers and their application and potential in drug conjugate development are reviewed. Some of the most-well-researched photoresponsive structural moieties, such as UV-triggered coumarin, ortho-nitrobenzyl group (ONB), thioacetal ortho-nitrobenzaldehyde (TNB), photocaged C40-oxidized abasic site (PC4AP), and IR-triggered cyanine and BODIPY, are included for discussion. These photoremovable linkers show better physical and chemical stabilities and can undergo rapid cleavage upon irradiation. Very importantly, the drug conjugates containing these linkers exhibit reduced off-target toxicity and overall better pharmacokinetic properties. The progress on photoactive antibody-drug conjugates, such as antibody-drug conjugates (ADC) and antibody-photoabsorber conjugate (APC), as precision medicine in clinical cancer treatment is highlighted.
Collapse
Affiliation(s)
| | - Yi Li
- Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| |
Collapse
|
26
|
Peng Z, Lv X, Huang S. Photoimmunotherapy: A New Paradigm in Solid Tumor Immunotherapy. Cancer Control 2022. [PMCID: PMC9016614 DOI: 10.1177/10732748221088825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In recent years, the incidence of cancer has been increasing worldwide. Conventional cancer treatments include surgery, chemotherapy, and radiation, which mostly kill tumor cells at the expense of normal and immune cells. Although immunotherapy is an accurate, rapid, efficient tumor immune treatment, it causes serious adverse reactions, such as cytokine release syndrome (CRS) and neurotoxicity. Therefore, there is an urgent need to develop an effective and nontoxic procedure for immunotherapy. The clinical combination of phototherapy and immunoadjuvant therapy can induce immunogenic cell death and enhance antigen presentation synergy. It also causes a systemic antitumor immune response to manage residual tumors and distant metastases. Photoimmunotherapy (PIT) is a tumor treatment combining phototherapy with immunotherapy based on injecting a conjugate photosensitizer (IR700) and a monoclonal antibody (mAb) to target an expressed antigen on the tumor surface. This combination can enhance the immune response ability, thus having a good effect on the treatment of residual tumor and metastatic cancer. In this review, we summarize the recent progress in photoimmunotherapy, including photoimmunoconjugate (PIC), the activation mechanism of immunogenic cell death (ICD), the combination therapy model, opportunities and prospects. Specifically, we aim to provide a promising clinical therapy for solid tumor clinical transformation.
Collapse
Affiliation(s)
- Zheng Peng
- Faculty of Health Sciences, University of Macau, Taipa, China
| | - Xiaolan Lv
- Department of Laboratory Medicine, Liuzhou Maternity and Child Healthcare Hospital, Liu Zhou, China
| | - Shigao Huang
- Department of Radiation Oncology, Xijing Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
27
|
Liu Y, Zhang L, Chang R, Yan X. Supramolecular cancer photoimmunotherapy based on precise peptide self-assembly design. Chem Commun (Camb) 2022; 58:2247-2258. [PMID: 35083992 DOI: 10.1039/d1cc06355c] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Combinational photoimmunotherapy (PIT) is considered to be an ideal strategy for the treatment of highly recurrent and metastatic cancer, because it can ablate the primary tumor and provide in situ an autologous tumor vaccine to induce the host immune response, ultimately achieving the goal of controlling tumor growth and distal metastasis. Significant efforts have been devoted to enhancing the immune response caused by phototherapy-eliminated tumors. Recently, supramolecular PIT nanoagents based on precise peptide self-assembly design have been employed to improve the efficacy of photoimmunotherapy by utilizing the stability, targeting capability and flexibility of drugs, increasing tumor immunogenicity and realizing the synergistic amplification of immune effects through multiple pathways and collaborative strategy. This review summarizes peptide-based supramolecular PIT nanoagents for phototherapy-synergized cancer immunotherapy and its progress in enhancing the effect of photoimmunotherapy, especially focusing on the design of peptide-based PIT nanoagents, the progress of bioactive peptides combined photoimmunotherapy, and the synergistic immune-response mechanism.
Collapse
Affiliation(s)
- Yamei Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China
| | - Lu Zhang
- State Key Laboratory of Polymer Physics & Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
| | - Rui Chang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China.,School of Chemical Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China.,Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China.
| |
Collapse
|
28
|
Ulfo L, Costantini PE, Di Giosia M, Danielli A, Calvaresi M. EGFR-Targeted Photodynamic Therapy. Pharmaceutics 2022; 14:241. [PMID: 35213974 PMCID: PMC8879084 DOI: 10.3390/pharmaceutics14020241] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/04/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) plays a pivotal role in the proliferation and metastatization of cancer cells. Aberrancies in the expression and activation of EGFR are hallmarks of many human malignancies. As such, EGFR-targeted therapies hold significant potential for the cure of cancers. In recent years, photodynamic therapy (PDT) has gained increased interest as a non-invasive cancer treatment. In PDT, a photosensitizer is excited by light to produce reactive oxygen species, resulting in local cytotoxicity. One of the critical aspects of PDT is to selectively transport enough photosensitizers to the tumors environment. Accordingly, an increasing number of strategies have been devised to foster EGFR-targeted PDT. Herein, we review the recent nanobiotechnological advancements that combine the promise of PDT with EGFR-targeted molecular cancer therapy. We recapitulate the chemistry of the sensitizers and their modes of action in PDT, and summarize the advantages and pitfalls of different targeting moieties, highlighting future perspectives for EGFR-targeted photodynamic treatment of cancer.
Collapse
Affiliation(s)
- Luca Ulfo
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy; (L.U.); (P.E.C.)
| | - Paolo Emidio Costantini
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy; (L.U.); (P.E.C.)
| | - Matteo Di Giosia
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy;
| | - Alberto Danielli
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy; (L.U.); (P.E.C.)
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy;
| |
Collapse
|
29
|
Russo I, Fagotto L, Colombo A, Sartor E, Luisetto R, Alaibac M. Near-infrared photoimmunotherapy for the treatment of skin disorders. Expert Opin Biol Ther 2021; 22:509-517. [PMID: 34860146 DOI: 10.1080/14712598.2022.2012147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Near-Infrared Photoimmunotherapy (NIR-PIT) is a novel molecularly targeted phototherapy. This technique is based on a conjugate of a near-infrared photo-inducible molecule (antibody-photon absorber conjugate, APC) and a monoclonal antibody that targets a tumor-specific antigen. To date, this novel approach has been successfully applied to several types of cancer. AREAS COVERED The authors discuss the possible use of NIR-PIT for the management of skin diseases, with special attention given to squamous cell carcinomas, advanced melanomas, and primary cutaneous lymphomas. EXPERT OPINION NIR-PIT may be an attractive strategy for the treatment of skin disorders. The main advantage of NIR-PIT therapy is its low toxicity to healthy tissues. Cutaneous lymphocyte antigen is a potential molecular target for NIR-PIT for both cutaneous T-cell lymphomas and inflammatory skin disorders.
Collapse
Affiliation(s)
- Irene Russo
- Unit of Dermatology, University of Padua, Padova, Italy
| | - Laura Fagotto
- Unit of Dermatology, University of Padua, Padova, Italy
| | - Anna Colombo
- Unit of Dermatology, University of Padua, Padova, Italy
| | - Emma Sartor
- Unit of Dermatology, University of Padua, Padova, Italy
| | - Roberto Luisetto
- DISCOG-Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Mauro Alaibac
- Unit of Dermatology, University of Padua, Padova, Italy
| |
Collapse
|
30
|
Yamaguchi H, On J, Morita T, Suzuki T, Okada Y, Ono J, Evdokiou A. Combination of Near-Infrared Photoimmunotherapy Using Trastuzumab and Small Protein Mimetic for HER2-Positive Breast Cancer. Int J Mol Sci 2021; 22:ijms222212213. [PMID: 34830099 PMCID: PMC8618566 DOI: 10.3390/ijms222212213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a promising cancer therapy based on a monoclonal antibody conjugated to a photosensitizer (IR700Dye) that is activated by near-infrared light irradiation. We previously reported on the use of NIR-PIT with a small protein mimetic, the Affibody molecule (6–7 kDa), instead of a monoclonal antibody. In this study, we investigated a combination of NIR-PIT for HER2-positive breast cancer cells (SK-BR3, MDA-MB361, and JIMT1) with HER2 Affibody-IR700Dye conjugate and trastuzumab-IR700Dye conjugate. HER2 Affibody and trastuzumab target different epitopes of the HER2 protein and do not compete. In vitro, the combination of NIR-PIT using both HER2 Affibody-IR700Dye conjugate and trastuzumab-IR700Dye conjugate induced necrotic cell death of HER2-positive breast cancer cells without damage to HER2-negative breast cancer cells (MCF7). It was more efficient than NIR-PIT using either the HER2 Affibody-IR700Dye conjugate alone or the trastuzumab-IR700Dye conjugate alone. Additionally, this combination of NIR-PIT was significantly effective against HER2 low-expressing cancer cells, trastuzumab-resistant cells (JIMT1), and brain metastatic cells of breast cancer (MDA-MB361). Furthermore, in vivo imaging exhibited the strong fluorescence intensity of both HER2 Affibody-IR700Dye conjugates and trastuzumab-Alexa488 conjugates in HER2-positive tumor, indicating that both HER2 Affibody and trastuzumab specifically bind to HER2-positive tumors without competing with each other. In conclusion, the combination of NIR-PIT using both HER2 Affibody and trastuzumab expands the targeting scope of NIR-PIT for HER2-positive breast cancer.
Collapse
Affiliation(s)
- Haruka Yamaguchi
- Department of Biochemistry, School of Life Dentistry at Niigata, The Nippon Dental University, Niigata 951-8580, Japan; (H.Y.); (T.M.)
- Discipline of Surgery, Breast Cancer Research Unit, Basil Hetzel Institute, University of Adelaide, Adelaide, SA 5011, Australia
| | - Jotaro On
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata 951-8122, Japan;
| | - Takao Morita
- Department of Biochemistry, School of Life Dentistry at Niigata, The Nippon Dental University, Niigata 951-8580, Japan; (H.Y.); (T.M.)
| | - Takamasa Suzuki
- Faculty of Engineering, Niigata University, Niigata 950-2181, Japan;
| | - Yasuo Okada
- Department of Pathology, School of Life Dentistry at Niigata, The Nippon Dental University, Niigata 951-8580, Japan; (Y.O.); (J.O.)
| | - Junya Ono
- Department of Pathology, School of Life Dentistry at Niigata, The Nippon Dental University, Niigata 951-8580, Japan; (Y.O.); (J.O.)
| | - Andreas Evdokiou
- Discipline of Surgery, Breast Cancer Research Unit, Basil Hetzel Institute, University of Adelaide, Adelaide, SA 5011, Australia
- Correspondence: ; Tel.: +61-8-8222-7451
| |
Collapse
|