1
|
Zou P, Tao Z, Yang Z, Xiong T, Deng Z, Chen Q. The contribution of the novel CLTC-VMP1 fusion gene to autophagy regulation and energy metabolism in cisplatin-resistant osteosarcoma. Am J Physiol Cell Physiol 2025; 328:C148-C167. [PMID: 39466176 DOI: 10.1152/ajpcell.00302.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 10/29/2024]
Abstract
Osteosarcoma (OS) is a highly malignant tumor, and chemotherapy resistance is a major challenge in the treatment of this disease. This study aims to explore the role of the CLTC-VMP1 gene fusion in the mechanism of chemotherapy resistance in OS and investigate its molecular mechanisms in mediating energy metabolism reprogramming by regulating autophagy and apoptosis balance. Using single-cell transcriptome analysis, the heterogeneity of OS cells and their correlation with resistance to platinum drugs were revealed. Cisplatin-resistant cell lines were established in human OS cell lines for subsequent experiments. Based on transcriptomic analysis, the importance of VMP1 in chemotherapy resistance was confirmed. Lentiviral vectors overexpressing or interfering with VMP1 were used, and it was observed that inhibiting VMP1 could reverse cisplatin resistance, promote cell apoptosis, and inhibit autophagy, and mitochondrial respiration and glycolysis. Furthermore, the presence of CLTC-VMP1 gene fusion was validated, and its ability to regulate autophagy and apoptosis balance, promote mitochondrial respiration, and glycolysis was demonstrated. Mouse model experiments further confirmed the promoting effect of CLTC-VMP1 on tumor growth and chemotherapy resistance. In summary, the CLTC-VMP1 gene fusion mediates energy metabolism reprogramming by regulating autophagy and apoptosis balance, which promotes chemotherapy resistance in OS.NEW & NOTEWORTHY This study identifies the CLTC-VMP1 gene fusion as a key driver of chemotherapy resistance in osteosarcoma by regulating autophagy and reprogramming cellular energy metabolism. Through single-cell transcriptomics, the research reveals the heterogeneity of tumor cells and the role of VMP1 in promoting resistance to cisplatin. The findings suggest that targeting the CLTC-VMP1 fusion gene may offer new therapeutic strategies to overcome chemotherapy resistance in osteosarcoma.
Collapse
Affiliation(s)
- Pingan Zou
- Bone and Soft Tissue Sarcoma Department, Jiangxi Cancer Hospital, Nanchang, People's Republic of China
| | - Zhiwei Tao
- Bone and Soft Tissue Sarcoma Department, Jiangxi Cancer Hospital, Nanchang, People's Republic of China
| | - Zhengxu Yang
- Bone and Soft Tissue Sarcoma Department, Jiangxi Cancer Hospital, Nanchang, People's Republic of China
| | - Tao Xiong
- Bone and Soft Tissue Sarcoma Department, Jiangxi Cancer Hospital, Nanchang, People's Republic of China
| | - Zhi Deng
- Bone and Soft Tissue Sarcoma Department, Jiangxi Cancer Hospital, Nanchang, People's Republic of China
| | - Qincan Chen
- Bone and Soft Tissue Sarcoma Department, Jiangxi Cancer Hospital, Nanchang, People's Republic of China
| |
Collapse
|
2
|
Huang R, Chu D, Shi J, Xu R, Wang K. Shikonin suppresses proliferation of osteosarcoma cells by inducing ferroptosis through promoting Nrf2 ubiquitination and inhibiting the xCT/GPX4 regulatory axis. Front Pharmacol 2024; 15:1490759. [PMID: 39703392 PMCID: PMC11656048 DOI: 10.3389/fphar.2024.1490759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024] Open
Abstract
Osteosarcoma (OS) is a prevalent primary malignant bone tumor which lacks effective therapeutic interventions. Ferroptosis is a new form of programmed cell death characterized by iron-dependent accumulation of lethal lipid oxidation, which provides a potential alternative intervene for the OS treatment. Shikonin is the major bioactive component extracted from the roots of lithospermum erythrorhizon which is also known as "Zicao" in traditional Chinese medicine, has been proved to have exhibits remarkable anti-tumor properties in several cancers. However, whether ferroptosis participated in the shikonin mediated anti-OS activity still remains to be clarified. Herein, we provide evidence that shikonin possesses the capability to induce the ferroptosis, and elucidate the underlying mechanisms in the treatment of OS. In the present study, it was found that shikonin significantly suppressed OS cells proliferation and blocked the cell cycle progression in vitro. Subsequent results revealed that shikonin could trigger ferroptosis in OS cells by promoting the Fe2+ accumulation, reactive oxygen species and lipid peroxidation formation, malondialdehyde production and mitochondrial damage. Further study showed that the effects of OS cell proliferation and death caused by shikonin could be successfully reversed by ferroptosis inhibitor ferrostatin-1, indicating that ferroptosis participated in the shikonin mediated anti-OS activity. Mechanistically, shikonin physically interacted with Nrf2, a critical regulator of ferroptosis, and influenced Nrf2 stability via inducing ubiquitin degradation, which suppressed the expression of Nrf2 downstream targets xCT and GPX4, and led to stimulating ferroptosis. Collectively, our findings indicated that shikonin induced OS cells ferroptosis through Nrf2/xCT/GPX4 regulatory axis, which might shed light on exploiting shikonin as a promising candidate for the future OS therapy.
Collapse
Affiliation(s)
- Rui Huang
- General Hospital of Ningxia Medical University, The First School of Clinical Medicine, Yinchuan, Ningxia, China
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Dawei Chu
- General Hospital of Ningxia Medical University, The First School of Clinical Medicine, Yinchuan, Ningxia, China
| | - Jiandang Shi
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ruiqing Xu
- Department of Orthopedic Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Kun Wang
- General Hospital of Ningxia Medical University, The First School of Clinical Medicine, Yinchuan, Ningxia, China
| |
Collapse
|
3
|
Shi C, Chen L, Huang K, Yang G, Shi T, Li J, Zheng H. m6A methylation regulators and ncRNAs in osteosarcoma: Potential therapeutic strategies. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 194:34-42. [PMID: 39461672 DOI: 10.1016/j.pbiomolbio.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 10/29/2024]
Abstract
Osteosarcoma (OS) represents the primary form of bone cancer observed in paediatric and adolescent populations. Nearly 10%-15% of patients have metastases at diagnosis, and the 5-year survival rate was less than 20%. Although numerous investigators have offered significant efforts, the survival rates for patients with OS have remained almost unchanged over the past three decades. The most pervasive and abundant modification of internal transcripts in eukaryotic messenger RNAs (mRNAs) is N6-methyladenosine (m6A), and it is regulated by m6A methylation regulators. A number of recent studies have demonstrated that m6A modifications can regulate the biological activities of tumour cells and are intimately linked with cancer development, prognosis, drug resistance, and therapy. N6-methyladenosine modification of Non-coding RNA (ncRNA) has likewise shown a broad potential in gene regulation and tumor biology. Epigenetic changes induced by mRNAs and ncRNAs methylation are important for a better understanding of OS development and targeted drug development. Therefore, this paper summarises the biological functions of m6A-modified regulators in osteosarcoma and the role of mutual regulation between m6A and ncRNAs in osteosarcoma. Furthermore, the potential clinical applications of m6A modifications in OS are presented for consideration. It provides new directions for the future research and clinical treatment strategies of osteosarcoma.
Collapse
Affiliation(s)
- Ce Shi
- Department of Orthopedics, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, 223800, China
| | - Lei Chen
- Department of Oncology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, 223800, China
| | - Kui Huang
- Department of Orthopedics, Feng Xian People's Hospital, Xuzhou, 221700, China
| | - Guanghui Yang
- Department of Orthopedics, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, 223800, China
| | - Tingting Shi
- Department of Orthopedics, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, 223800, China
| | - Jinshuang Li
- Department of Cardiology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, 223800, China.
| | - Hongbing Zheng
- Department of Orthopedics, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, 223800, China.
| |
Collapse
|
4
|
Zhou M, Zhang Y, Zhang Q, Tong Y. METTL14-mediated m6A modification upregulated SOCS3 expression alleviates thyroid cancer progression by regulating the JAK2/STAT3 pathway. Mol Cell Probes 2024; 78:101987. [PMID: 39413935 DOI: 10.1016/j.mcp.2024.101987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/14/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Thyroid cancer (TC) is the most common malignant tumor of the head and neck. As a common epigenetic modification in mRNAs, N6-methyladenosine (m6A) modification plays critical roles in biological process of cancers. However, m6A methyltransferase methyltransferase-like 14 (METTL14)-mediated m6A modification and its potential regulatory mechanisms in TC are not fully elucidated. In our study, we observed that METTL14 was decreased in TC tissues and cells. And upregulation of METTL14 induced apoptotic cell death and hampered cell proliferation, epithelial mesenchymal transition (EMT) and tumor growth in vitro and in vivo. Mechanistically, METTL14 increased the expression of suppressor of cytokine signaling 3 (SOCS3) through m6A methylation modification, and knockdown of SOCS3 reversed the inhibitory effect of overexpressing METTL14 on TC tumorigenesis. In addition, METTL14-mediated m6A modification of SOCS3 inactivated the janus kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3) pathway, and in the METTL14-overexpressing TC cells, silencing SOCS3-induced upregulation of cell proliferation, EMT and suppression of apoptosis was reversed by JAK2/STAT3 inhibitor AG490 and WP1066. Together, we indicated that METTL14/m6A/SOCS3/JAK2/STAT3 axis play an important role in the progression of TC.
Collapse
Affiliation(s)
- Ming Zhou
- Department of Thyroid Vascular Surgery, Jingzhou Central Hospital, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434000, China.
| | - Yaqi Zhang
- Department of Oncology, Huanggang Central Hospital, Huanggang, 438000, China.
| | - Qiong Zhang
- Department of Dermatology, Jingzhou Central Hospital, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434000, China.
| | - Yanchu Tong
- Department of Thyroid Vascular Surgery, Jingzhou Central Hospital, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434000, China.
| |
Collapse
|
5
|
Bai X, Liu J, Zhou S, Wu L, Feng X, Zhang P. METTL14 suppresses the expression of YAP1 and the stemness of triple-negative breast cancer. J Exp Clin Cancer Res 2024; 43:307. [PMID: 39563370 DOI: 10.1186/s13046-024-03225-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) has pronounced stemness that is associated with relapse. N6-methyladenosine (m6A) plays a crucial role in shaping cellular behavior by modulating transcript expression. However, the role of m6A in TNBC stemness, as well as the mechanisms governing its abundance, has yet to be elucidated. METHODS We analyzed proteomic and transcriptomic data derived from breast cancer cohorts, with an emphasis on m6A regulators. To unravel the role of m6A in TNBC, we employed RNA sequencing, methylated RNA immunoprecipitation sequencing, RNA immunoprecipitation, chromatin immunoprecipitation, and luciferase reporter assays with mesenchymal stem-like (MSL) TNBC models. The clinical relevance was validated using human tissue microarrays and publicly accessible databases. RESULTS Our findings indicate that the global level of m6A modification in MSL TNBC is downregulated primarily due to the loss of methyltransferase-like 14 (METTL14). The diminished m6A modification is crucial for the maintenance of TNBC stemness, as it increases the expression of yes-associated protein 1 (YAP1) by blocking YTH domain-containing family protein 2 (YTHDF2)-mediated transcript decay, thereby promoting the activation of Hippo-independent YAP1 signaling. YAP1 is essential for sustaining the stemness regulated by METTL14. Furthermore, we demonstrated that the loss of METTL14 expression results from lysine-specific demethylase 1 (LSD1)-mediated removal of histone H3 lysine 4 methylation at the promoter region, which is critical for LSD1-driven stemness in TNBC. CONCLUSION These findings present an epi-transcriptional mechanism that maintains Hippo-independent YAP1 signaling and plays a role in preserving the undifferentiated state of TNBC, which indicates the potential for targeting the LSD1-METTL14 axis to address TNBC stemness.
Collapse
Affiliation(s)
- Xupeng Bai
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital of Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| | - Jiarui Liu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Shujie Zhou
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Lingzhi Wu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital of Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Xiaojie Feng
- Department of Gynecologic Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Pumin Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital of Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.
- Cancer Center, Zhejiang University School of Medicine, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
6
|
Li D, Hu S, Ye J, Zhai C, Liu J, Wang Z, Zhou X, Chen L, Zhou F. The Emerging Role of IGF2BP2 in Cancer Therapy Resistance: From Molecular Mechanism to Future Potential. Int J Mol Sci 2024; 25:12150. [PMID: 39596216 PMCID: PMC11595103 DOI: 10.3390/ijms252212150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Tumor resistance is one of the primary reasons for cancer treatment failure, significantly limiting the options and efficacy of cancer therapies. Therefore, overcoming resistance has become a critical factor in improving cancer treatment outcomes. IGF2BP2, as a reader of m6A methylation, plays a pivotal role in the post-transcriptional regulation of RNA through the methylation of m6A sites. It not only contributes to cancer initiation and progression but also plays a key role in tumor drug resistance. This review provides a comprehensive summary of the mechanisms by which IGF2BP2 contributes to therapy resistance, with the aim of improving the efficacy of chemotherapy in cancer treatment. Advancing research in this area is crucial for developing more effective therapies that could significantly improve the quality of life for cancer patients.
Collapse
Affiliation(s)
- Die Li
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; (D.L.); (S.H.); (J.Y.); (C.Z.); (J.L.); (Z.W.); (X.Z.)
| | - Shiqi Hu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; (D.L.); (S.H.); (J.Y.); (C.Z.); (J.L.); (Z.W.); (X.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200433, China
| | - Jiarong Ye
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; (D.L.); (S.H.); (J.Y.); (C.Z.); (J.L.); (Z.W.); (X.Z.)
| | - Chaojie Zhai
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; (D.L.); (S.H.); (J.Y.); (C.Z.); (J.L.); (Z.W.); (X.Z.)
| | - Jipeng Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; (D.L.); (S.H.); (J.Y.); (C.Z.); (J.L.); (Z.W.); (X.Z.)
| | - Zuao Wang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; (D.L.); (S.H.); (J.Y.); (C.Z.); (J.L.); (Z.W.); (X.Z.)
| | - Xinchi Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; (D.L.); (S.H.); (J.Y.); (C.Z.); (J.L.); (Z.W.); (X.Z.)
| | - Leifeng Chen
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Medical Center for Cardiovascular Diseases, Neurological Diseases and Tumors of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Fan Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; (D.L.); (S.H.); (J.Y.); (C.Z.); (J.L.); (Z.W.); (X.Z.)
| |
Collapse
|
7
|
Li Q, Zhao N, Ding X, Zhao J. METTL14-mediated m6A modification upregulates HOXB13 expression to activate NF-κB and exacerbate cervical cancer progression. Mol Cell Oncol 2024; 11:2423986. [PMID: 39534063 PMCID: PMC11556271 DOI: 10.1080/23723556.2024.2423986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/13/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Cervical cancer (CC) is one of the common malignant tumors in women, and the incidence rate is located in the second place of female tumors. As a major RNA N6-methyladenosine (m6A) methyltransferase, methyltransferase-like 14 (METTL14) is involved in tumor progression by catalyzing methylation modifications in mRNAs. However, the molecular mechanism of METTL14-mediated m6A modification in CC remains not fully revealed. The expression of METTL14 was detected by RT-qPCR and western blot. Cell function was assayed by cell counting kit-8 (CCK-8) assay and flow cytometry analysis. Methylated RNA immunoprecipitation (MeRIP) was used to confirm the relationship between METTL14 and homeobox B13 (HOXB13). In our study, we found that the level of METTL14 was elevated in CC tissues and cells compared with their controls. The inhibition of METTL14 significantly impaired cell proliferation and the epithelial-mesenchymal transition (EMT) process, while also induced apoptosis in HeLa and C33A cells. Furthermore, our findings indicated that homeobox B13 (HOXB13) was a target of METTL14, which positively regulated the expression of HOXB13 in an m6A-dependent manner. Rescue experiments indicated that overexpression of HOXB13 effectively reversed the tumor suppression induced by METTL14 knockdown. Finally, we confirmed that METTL14-modified HOXB13 exerted an oncogenic effect through activation of the nuclear factor kappa B (NF-κB) pathway. In conclusion, our data demonstrated that the m6A modification of HOXB13, mediated by METTL14, facilitated the advancement of CC through targeting the NF-κB pathway, which may be a potential molecular target for the treatment of CC.
Collapse
Affiliation(s)
- Qian Li
- Department of Obstetrics and Gynecology, 926th Hospital of the Joint Logistics Support Force of the Chinese People’s Liberation Army, Kaiyuan, China
| | - Na Zhao
- Department of Obstetrics and Gynecology, 926th Hospital of the Joint Logistics Support Force of the Chinese People’s Liberation Army, Kaiyuan, China
| | - Xuejing Ding
- Department of Obstetrics and Gynecology, 926th Hospital of the Joint Logistics Support Force of the Chinese People’s Liberation Army, Kaiyuan, China
| | - Jufen Zhao
- Department of Obstetrics and Gynecology, 926th Hospital of the Joint Logistics Support Force of the Chinese People’s Liberation Army, Kaiyuan, China
| |
Collapse
|
8
|
Zhang W, Li M, Zhao Z, Xu J, Liu J, Feng P, Zhang B, Huang Z, Kong QQ, Lin Y. Tetrahedral Framework Nucleic Acid-Loaded Retinoic Acid Promotes Osteosarcoma Stem Cell Clearance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58452-58463. [PMID: 39425646 DOI: 10.1021/acsami.4c14440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Metastatic osteosarcoma is a commonly seen malignant tumor in adolescents, with a five year survival rate of approximately 20% and a lack of treatment options. Osteosarcoma cancer stem cells are considered to be important drivers of the metastasis of osteosarcoma, and therefore their clearance is considered a promising strategy for treating metastatic osteosarcoma. In the relevant literature, retinoic acid (ATRA) is considered effective for eliminating osteosarcoma stem cells, but it has some inherent disadvantages, including poor solubility, difficulty in entering cells, and structural instability. Tetrahedral framework nucleic acids (tFNAs) are a type of nanoparticles that can carry small-molecule drugs into cells to exert therapeutic effects. Therefore, we designed and synthesized a nanoparticle named T-ATRA by using tFNAs to load ATRA and studied its effect in a nude mouse model. T-ATRA is more effective than ATRA in the clearance of osteosarcoma stem cells and in inhibiting osteosarcoma cell metastasis via the Wnt signaling pathway, thus prolonging the survival time of nude mice with osteosarcoma.
Collapse
Affiliation(s)
- Weifei Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mengqing Li
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Zhen Zhao
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiangshan Xu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junlin Liu
- Department of Orthopedics Surgery, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, Sichuan 610041, China
| | - Pin Feng
- Department of Orthopedics Surgery, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, Sichuan 610041, China
| | - Bin Zhang
- Department of Orthopedics Surgery, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, Sichuan 610041, China
| | - Zhangheng Huang
- Department of Orthopaedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Qing-Quan Kong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Orthopedics Surgery, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, Sichuan 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| |
Collapse
|
9
|
Tang L, Tian H, Min Q, You H, Yin M, Yang L, Zhao Y, Wu X, Li M, Du F, Chen Y, Deng S, Li X, Chen M, Gu L, Sun Y, Xiao Z, Li W, Shen J. Decoding the epitranscriptome: a new frontier for cancer therapy and drug resistance. Cell Commun Signal 2024; 22:513. [PMID: 39434167 PMCID: PMC11492518 DOI: 10.1186/s12964-024-01854-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
As the role of RNA modification in gene expression regulation and human diseases, the "epitranscriptome" has been shown to be an important player in regulating many physiological and pathological processes. Meanwhile, the phenomenon of cancer drug resistance is becoming more and more frequent, especially in the case of cancer chemotherapy resistance. In recent years, research on relationship between post-transcriptional modification and cancer including drug resistance has become a hot topic, especially the methylation of the sixth nitrogen site of RNA adenosine-m6A (N6-methyladenosine). m6A modification is the most common post-transcriptional modification of eukaryotic mRNA, accounting for 80% of RNA methylation modifications. At the same time, several other modifications of RNA, such as N1-methyladenosine (m1A), 5-methylcytosine (m5C), 3-methylcytosine (m3C), pseudouridine (Ψ) and N7-methylguanosine (m7G) have also been demonstrated to be involved in cancer and drug resistance. This review mainly discusses the research progress of RNA modifications in the field of cancer and drug resistance and targeting of m6A regulators by small molecule modulators, providing reference for future study and development of combination therapy to reverse cancer drug resistance.
Collapse
Affiliation(s)
- Lu Tang
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Scientific Research and Experimental Training Center, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| | - Hua Tian
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- School of Nursing, Chongqing College of Humanities, Science & Technology, Chongqing, 401520, China
| | - Qi Min
- Department of Pharmacy, Mianyang Hospital of TCM, Sichuan Mianyang, 621000, China
| | - Huili You
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Mengshuang Yin
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Liqiong Yang
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yueshui Zhao
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Xu Wu
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Mingxing Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Fukuan Du
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yu Chen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Shuai Deng
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Xiaobing Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Meijuan Chen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Li Gu
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yuhong Sun
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zhangang Xiao
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| | - Wanping Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| | - Jing Shen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| |
Collapse
|
10
|
XU LICHEN, ZHANG PAN, ZHANG GUIQI, SHEN ZHAOLIANG, BAI XIZHUANG. MiR-150-5p inhibits cell proliferation and metastasis by targeting FTO in osteosarcoma. Oncol Res 2024; 32:1777-1789. [PMID: 39449798 PMCID: PMC11497191 DOI: 10.32604/or.2024.047704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/07/2024] [Indexed: 10/26/2024] Open
Abstract
Background Osteosarcoma (OS), recognized as the predominant malignant tumor originating from bones, necessitates an in-depth comprehension of its intrinsic mechanisms to pinpoint novel therapeutic targets and enhance treatment methodologies. The role of fat mass and obesity-associated (FTO) in OS, particularly its correlation with malignant traits, and the fundamental mechanism, remains to be elucidated. Materials and Methods 1. The FTO expression and survival rate in tumors were analyzed. 2. FTO in OS cell lines was quantified utilizing western blot and PCR. 3. FTO was upregulated and downregulated separately in MG63. 4. The impact of FTO on the proliferation and migration of OS cells was evaluated using CCK-8, colony formation, wound healing, and Transwell assays. 5. The expression of miR-150-5p in OS cells-derived exosomes was identified. 6. The binding of miR-150-5p to FTO was predicted by TargetScan and confirmed by luciferase reporter assay. 7. The impact of exosome miR-150-5p on the proliferation and migration of OS cells was investigated. Results The expression of FTO was higher in OS tissues compared to normal tissues correlating with a worse survival rate. Furthermore, the downregulation of FTO significantly impeded the growth and metastasis of OS cells. Additionally, miR-150-5p, which was downregulated in both OS cells and their derived exosomes, was found to bind to the 3'-UTR of FTO through dual luciferase experiments. Exosomal miR-150-5p was found to decrease the expression of FTO and inhibit cell viability. Conclusions We identified elevated levels of FTO in OS, which may be attributed to insufficient miR-150-5p levels in both the cells and exosomes. It suggests that the dysregulation of miR-150-5p and its interaction with FTO could potentially promote the development of OS.
Collapse
Affiliation(s)
- LICHEN XU
- Dalian Medical University, Dalian, 116044, China
- Department of Spinal Surgery, Dalian Municipal Central Hospital, Dalian, 116033, China
| | - PAN ZHANG
- Department of Orthopaedics, The People’s Hospital of China Medical University, People’s Hospital of Liaoning Province, Shenyang, 110016, China
| | - GUIQI ZHANG
- Department of Spinal Surgery, Dalian Municipal Central Hospital, Dalian, 116033, China
| | - ZHAOLIANG SHEN
- Department of Orthopedic, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - XIZHUANG BAI
- Dalian Medical University, Dalian, 116044, China
- Department of Orthopaedics, The People’s Hospital of China Medical University, People’s Hospital of Liaoning Province, Shenyang, 110016, China
| |
Collapse
|
11
|
Jiang L, Zhang Y, Qian J, Zhou X, Ma L, Zhu S, Wang L, Wang W, Yang W, Luo Y, Lang W, Xu G, Ren Y, Mei C, Ye L, Zhang Q, Liu X, Jin J, Sun J, Tong H. The m 6A methyltransferase METTL14 promotes cell proliferation via SETBP1-mediated activation of PI3K-AKT signaling pathway in myelodysplastic neoplasms. Leukemia 2024; 38:2246-2258. [PMID: 39054337 PMCID: PMC11436359 DOI: 10.1038/s41375-024-02350-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
N6-methyladenosine (m6A) is the most prevalent epitranscriptomic modification in mammalian mRNA. Recent studies have revealed m6A is involved in the pathogenesis of various malignant tumors including hematologic neoplasms. Nevertheless, the specific roles of m6A modification and m6A regulators in myelodysplastic neoplasms (MDS) remain poorly understood. Herein, we demonstrated that m6A level and the expression of m6A methyltransferase METTL14 were elevated in MDS patients with bone marrow blasts ≥5%. Additionally, m6A level and METTL14 expression were upregulated as the disease risk increased and significantly associated with adverse clinical outcomes. Knockdown of METTL14 inhibited cell proliferation and colony formation ability of MDS cells. Moreover, in vivo experiments showed METTL14 knockdown remarkably reduced tumor burden and prolonged the survival of mice. Mechanistically, METTL14 facilitated the m6A modification of SETBP1 mRNA by formation of METTL3-METTL14 complex, leading to increased stabilization of SETBP1 mRNA and subsequent activation of the PI3K-AKT signaling pathway. Overall, this study elucidated the involvement of the METTL14/m6A/SETBP1/PI3K-AKT signaling axis in MDS, highlighting the therapeutic potential of targeting METTL3-METTL14 complex-mediated m6A modification for MDS therapy.
Collapse
Affiliation(s)
- Lingxu Jiang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yudi Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiejing Qian
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinping Zhou
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liya Ma
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuanghong Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lu Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenli Yang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yingwan Luo
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Lang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Gaixiang Xu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanling Ren
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chen Mei
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qi Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaozhen Liu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Sun
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
12
|
Zou Y, Guo S, Wen L, Lv D, Tu J, Liao Y, Chen W, Chen Z, Li H, Chen J, Shen J, Xie X. Targeting NAT10 inhibits osteosarcoma progression via ATF4/ASNS-mediated asparagine biosynthesis. Cell Rep Med 2024; 5:101728. [PMID: 39293390 PMCID: PMC11525028 DOI: 10.1016/j.xcrm.2024.101728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/17/2024] [Accepted: 08/15/2024] [Indexed: 09/20/2024]
Abstract
Despite advances in treatment, the prognosis of patients with osteosarcoma remains unsatisfactory, and searching for potential targets is imperative. Here, we identify N4-acetylcytidine (ac4C) acetyltransferase 10 (NAT10) as a candidate therapeutic target in osteosarcoma through functional screening. NAT10 overexpression is correlated with a poor prognosis, and NAT10 knockout inhibits osteosarcoma progression. Mechanistically, NAT10 enhances mRNA stability of activating transcription factor 4 (ATF4) through ac4C modification. ATF4 induces the transcription of asparagine synthetase (ASNS), which catalyzes asparagine (Asn) biosynthesis, facilitating osteosarcoma progression. Utilizing virtual screening, we identify paliperidone and AG-401 as potential NAT10 inhibitors, and both inhibitors are found to bind to NAT10 proteins. Inhibiting NAT10 suppresses osteosarcoma progression in vivo. Combined treatment using paliperidone and AG-401 produces synergistic inhibition for osteosarcoma in patient-derived xenograft (PDX) models. Our findings demonstrate that NAT10 facilitates osteosarcoma progression through the ATF4/ASNS/Asn axis, and pharmacological inhibition of NAT10 may be a feasible therapeutic approach for osteosarcoma.
Collapse
Affiliation(s)
- Yutong Zou
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Siyao Guo
- Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lili Wen
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Dongming Lv
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jian Tu
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Yan Liao
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Weidong Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Ziyun Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Hongbo Li
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Junkai Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Jingnan Shen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China.
| | - Xianbiao Xie
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China.
| |
Collapse
|
13
|
Yan P, Wang J, Yue B, Wang X. Unraveling molecular aberrations and pioneering therapeutic strategies in osteosarcoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189171. [PMID: 39127243 DOI: 10.1016/j.bbcan.2024.189171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Osteosarcoma, a rare primary bone cancer, presents diverse molecular aberrations that underscore its complexity. Despite the persistent endeavors by researchers, the limited amelioration in the five-year survival rate indicates that current therapeutic strategies prove inadequate in addressing the clinical necessities. Advancements in molecular profiling have facilitated an enhanced comprehension of the biology of osteosarcoma, offering a promising outlook for treatment. There is an urgent need to develop innovative approaches to address the complex challenges of osteosarcoma, ultimately contributing to enhanced patient outcomes. This review explores the nexus between osteosarcoma and cancer predisposition syndromes, intricacies in its somatic genome, and clinically actionable alterations. This review covers treatment strategies, including surgery, chemotherapy, immune checkpoint inhibitors (ICIs), and tyrosine kinase inhibitors (TKIs). Innovative treatment modalities targeting diverse pathways, including multi-target tyrosine kinases, cell cycle, PI3K/mTOR pathway, and DNA damage repair (DDR), offer promising interventions. This review also covers promising avenues, including antibody-drug conjugates (ADCs) and immunotherapy strategies, such as cytokines, adoptive cellular therapy (ACT), ICIs, and cancer vaccines. This comprehensive exploration contributes to a holistic understanding, offering guidance for clinical applications to advance the management of osteosarcoma.
Collapse
Affiliation(s)
- Peng Yan
- Department of Orthopedic Oncology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, China
| | - Jie Wang
- Department of Orthopedic Oncology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, China
| | - Bin Yue
- Department of Orthopedic Oncology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, China.
| | - Xinyi Wang
- Department of Pharmacy, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, China.
| |
Collapse
|
14
|
Zhang Y, Ji P, Xiao X, Wang J, Wan Z, Cao H, Kong L, Jin Y. Network pharmacology, molecular docking, and molecular dynamics simulations shed light on the mechanism behind Gynostemma pentaphyllum's efficacy against osteosarcoma. Medicine (Baltimore) 2024; 103:e39454. [PMID: 39213234 PMCID: PMC11365665 DOI: 10.1097/md.0000000000039454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/24/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Osteosarcoma (OS) is the most common type of malignant bone tumor, that poses a serious threat to the lives and health of children and adolescents. Traditional Chinese medicines (TCM) have gained attention for treating OS because of their potent anti-cancer effects and fewer side effects. It is commonly understood that Gynostemma pentaphyllum (Thunb.) Makino (GP) exhibits inhibitory effects on most tumors. However, the knowledge of the systematic mechanisms involved is limited. In this study, the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) was searched to screen the effective ingredients and corresponding target genes of GP, and disease target databases were searched to identify relevant targets for OS. Venn analysis was used to visualize overlapping genes, which were further extracted using the protein-protein interaction network. R software was used to conduct gene ontology and Kyoto encyclopedia of genes and genomes pathway enrichment analysis, molecular docking and molecular dynamics simulation further validate the binding efficacy of potential therapeutic targets to compound molecules. In total, 161 and 1981 proteins were identified as target genes of GP and OS, respectively, and 104 overlapping genes were identified. Through analysis of the core subnetwork, 12 hub genes were identified, and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses revealed that the PI3K/Akt signaling pathway was the most significant. Molecular docking and molecular dynamics simulations show that a high affinity between quercetin and these targets, especially with the combination of TNF free energy (Δ Gbind) minimum, MM/PBSA and MM/GBSA is 42.85 kcal/mol, respectively, and 45.29 kcal/mol. The active ingredients Rhamnazin and Quercetin in Gypenoylum play a therapeutic role in OS through several key targets and pathways. This study provides ideas and references for further research on drug development.
Collapse
Affiliation(s)
- Yange Zhang
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Peiyun Ji
- Department of Obstetrics and Gynecology, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Xiangyu Xiao
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Jingshuai Wang
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Zedong Wan
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Haiying Cao
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Lingwei Kong
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Yu Jin
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical College, Chengde, China
| |
Collapse
|
15
|
Zheng X, Wu W, Zhao Z, Zhang X, Yu S. Single-cell transcriptomic insights into chemotherapy-induced remodeling of the osteosarcoma tumor microenvironment. J Cancer Res Clin Oncol 2024; 150:356. [PMID: 39033089 PMCID: PMC11271355 DOI: 10.1007/s00432-024-05787-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/07/2024] [Indexed: 07/23/2024]
Abstract
PURPOSE Neoadjuvant chemotherapy serves as an effective strategy for treating osteosarcoma (OS) not only by targeting cancerous cells but also by influencing the tumor's immune and stromal elements. Gaining insights into how chemotherapy reshapes the tumor's local environment is crucial for advancing OS treatment protocols. METHODS Using single-cell RNA sequencing, this study analyzed tumor samples from patients with advanced osteosarcoma collected both before and after chemotherapy. RESULTS The results revealed that chemotherapy caused the remaining OS cells to express higher levels of genes associated with stemness. Additionally, this process enhances the presence of cancer-associated fibroblasts, increasing their ability to modify the extracellular matrix (ECM). Chemotherapy also increases the number of endothelial cells, albeit with compromised differentiation capabilities. Importantly, the treatment reduced the immune cell population, including myeloid and T/NK cells, particularly impacting the subpopulations with tumor-fighting capabilities. CONCLUSION These findings highlight the complex reaction of the tumor environment to chemotherapy, providing valuable insights into how chemotherapy influences OS cells and the tumor microenvironment (TME). This knowledge is essential for understanding OS resistance mechanisms to treatments, potentially guiding the development of novel therapies for managing advanced OS.
Collapse
Affiliation(s)
- Xuejing Zheng
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, 100021, China
| | - Wence Wu
- Department of Orthopedics, Peking University First Hospital, Beijing, 100021, China
| | - Zhenguo Zhao
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, 100021, China
| | - Xinxin Zhang
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, 100021, China
| | - Shengji Yu
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
16
|
Li L, Tang Q, Ge J, Wang D, Mo Y, Zhang Y, Wang Y, Xiong F, Yan Q, Liao Q, Guo C, Wang F, Zhou M, Xiang B, Zeng Z, Shi L, Chen P, Xiong W. METTL14 promotes lipid metabolism reprogramming and sustains nasopharyngeal carcinoma progression via enhancing m 6A modification of ANKRD22 mRNA. Clin Transl Med 2024; 14:e1766. [PMID: 39021049 PMCID: PMC11255023 DOI: 10.1002/ctm2.1766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) modification is essential for modulating RNA processing as well as expression, particularly in the context of malignant tumour progression. However, the exploration of m6A modification in nasopharyngeal carcinoma (NPC) remains very limited. METHODS RNA m6A levels were analysed in NPC using m6A dot blot assay. The expression level of methyltransferase-like 14 (METTL14) within NPC tissues was analysed from public databases as well as RT-qPCR and immunohistochemistry. The influences on METTL14 expression on NPC proliferation and metastasis were explored via in vitro as well as in vivo functional assays. Targeted genes of METTL14 were screened using the m6A and gene expression profiling microarray data. Actinomycin D treatment and polysome analysis were used to detect the half-life and translational efficiency of ANKRD22. Flow cytometry, immunofluorescence and immunoprecipitation were used to validate the role of ANKRD22 on lipid metabolism in NPC cells. ChIP-qPCR analysis of H3K27AC signalling near the promoters of METTL14, GINS3, POLE2, PLEK2 and FERMT1 genes. RESULTS We revealed METTL14, in NPC, correlating with poor patient prognosis. In vitro and in vivo assays indicated METTL14 actively promoted NPC cells proliferation and metastasis. METTL14 catalysed m6A modification on ANKRD22 messenger ribonucleic acid (mRNA), recognized by the reader IGF2BP2, leading to increased mRNA stability and higher translational efficiency. Moreover, ANKRD22, a metabolism-related protein on mitochondria, interacted with SLC25A1 to enhance citrate transport, elevating intracellular acetyl-CoA content. This dual impact of ANKRD22 promoted lipid metabolism reprogramming and cellular lipid synthesis while upregulating the expression of genes associated with the cell cycle (GINS3 and POLE2) and the cytoskeleton (PLEK2 and FERMT1) through heightened epigenetic histone acetylation levels in the nucleus. Intriguingly, our findings highlighted elevated ANKRD22-mediated histone H3 lysine 27 acetylation (H3K27AC) signals near the METTL14 promoter, which contributes to a positive feedback loop perpetuating malignant progression in NPC. CONCLUSIONS The identified METTL14-ANKRD22-SLC25A1 axis emerges as a promising therapeutic target for NPC, and also these molecules may serve as novel diagnostic biomarkers.
Collapse
Affiliation(s)
- Lvyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| | - Qiling Tang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| | - Junshang Ge
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| | - Dan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| | - Yongzhen Mo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
- Department of Otolaryngology Head and Neck SurgeryXiangya Hospital, Central South UniversityChangshaChina
| | - Yijie Zhang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| | - Yumin Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
- Department of Otolaryngology Head and Neck SurgeryXiangya Hospital, Central South UniversityChangshaChina
| | - Fang Xiong
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
- Department of Otolaryngology Head and Neck SurgeryXiangya Hospital, Central South UniversityChangshaChina
| | - Qijia Yan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
- Department of Otolaryngology Head and Neck SurgeryXiangya Hospital, Central South UniversityChangshaChina
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| | - Fuyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| | - Ming Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| | - Bo Xiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| | - Lei Shi
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
- Department of Pathologythe Second Xiangya Hospital, Central South UniversityChangshaChina
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| |
Collapse
|
17
|
Han J, Wang C, Yang H, Luo J, Zhang X, Zhang XA. Novel Insights into the Links between N6-Methyladenosine and Regulated Cell Death in Musculoskeletal Diseases. Biomolecules 2024; 14:514. [PMID: 38785921 PMCID: PMC11117795 DOI: 10.3390/biom14050514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 05/25/2024] Open
Abstract
Musculoskeletal diseases (MSDs), including osteoarthritis (OA), osteosarcoma (OS), multiple myeloma (MM), intervertebral disc degeneration (IDD), osteoporosis (OP), and rheumatoid arthritis (RA), present noteworthy obstacles associated with pain, disability, and impaired quality of life on a global scale. In recent years, it has become increasingly apparent that N6-methyladenosine (m6A) is a key regulator in the expression of genes in a multitude of biological processes. m6A is composed of 0.1-0.4% adenylate residues, especially at the beginning of 3'-UTR near the translation stop codon. The m6A regulator can be classified into three types, namely the "writer", "reader", and "eraser". Studies have shown that the epigenetic modulation of m6A influences mRNA processing, nuclear export, translation, and splicing. Regulated cell death (RCD) is the autonomous and orderly death of cells under genetic control to maintain the stability of the internal environment. Moreover, distorted RCDs are widely used to influence the course of various diseases and receiving increasing attention from researchers. In the past few years, increasing evidence has indicated that m6A can regulate gene expression and thus influence different RCD processes, which has a central role in the etiology and evolution of MSDs. The RCDs currently confirmed to be associated with m6A are autophagy-dependent cell death, apoptosis, necroptosis, pyroptosis, ferroptosis, immunogenic cell death, NETotic cell death and oxeiptosis. The m6A-RCD axis can regulate the inflammatory response in chondrocytes and the invasive and migratory of MM cells to bone remodeling capacity, thereby influencing the development of MSDs. This review gives a complete overview of the regulatory functions on the m6A-RCD axis across muscle, bone, and cartilage. In addition, we also discuss recent advances in the control of RCD by m6A-targeted factors and explore the clinical application prospects of therapies targeting the m6A-RCD in MSD prevention and treatment. These may provide new ideas and directions for understanding the pathophysiological mechanism of MSDs and the clinical prevention and treatment of these diseases.
Collapse
Affiliation(s)
- Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China; (J.H.); (C.W.)
| | - Cuijing Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China; (J.H.); (C.W.)
| | - Haolin Yang
- College of Pharmacy, Jilin University, Changchun 132000, China;
| | - Jiayi Luo
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China; (J.H.); (C.W.)
| | - Xiaoyi Zhang
- College of Second Clinical Medical, China Medical University, Shenyang 110100, China;
| | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China; (J.H.); (C.W.)
| |
Collapse
|
18
|
Liang J, Yi Q, Liu Y, Li J, Yang Z, Sun W, Sun W. Recent advances of m6A methylation in skeletal system disease. J Transl Med 2024; 22:153. [PMID: 38355483 PMCID: PMC10868056 DOI: 10.1186/s12967-024-04944-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Skeletal system disease (SSD) is defined as a class of chronic disorders of skeletal system with poor prognosis and causes heavy economic burden. m6A, methylation at the N6 position of adenosine in RNA, is a reversible and dynamic modification in posttranscriptional mRNA. Evidences suggest that m6A modifications play a crucial role in regulating biological processes of all kinds of diseases, such as malignancy. Recently studies have revealed that as the most abundant epigentic modification, m6A is involved in the progression of SSD. However, the function of m6A modification in SSD is not fully illustrated. Therefore, make clear the relationship between m6A modification and SSD pathogenesis might provide novel sights for prevention and targeted treatment of SSD. This article will summarize the recent advances of m6A regulation in the biological processes of SSD, including osteoporosis, osteosarcoma, rheumatoid arthritis and osteoarthritis, and discuss the potential clinical value, research challenge and future prospect of m6A modification in SSD.
Collapse
Affiliation(s)
- Jianhui Liang
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
- Shantou University Medical College, Shantou, 515000, China
| | - Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646099, Sichuan, China
| | - Yang Liu
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Jiachen Li
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
- Shantou University Medical College, Shantou, 515000, China
| | - Zecheng Yang
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
| | - Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
- The Central Laboratory, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
19
|
Wei H, Xu Y, Lin L, Li Y, Zhu X. A review on the role of RNA methylation in aging-related diseases. Int J Biol Macromol 2024; 254:127769. [PMID: 38287578 DOI: 10.1016/j.ijbiomac.2023.127769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024]
Abstract
Senescence is the underlying mechanism of organism aging and is robustly regulated at the post-transcriptional level. This regulation involves the chemical modifications, of which the RNA methylation is the most common. Recently, a rapidly growing number of studies have demonstrated that methylation is relevant to aging and aging-associated diseases. Owing to the rapid development of detection methods, the understanding on RNA methylation has gone deeper. In this review, we summarize the current understanding on the influence of RNA modification on cellular senescence, with a focus on mRNA methylation in aging-related diseases, and discuss the emerging potential of RNA modification in diagnosis and therapy.
Collapse
Affiliation(s)
- Hong Wei
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China; Department of Neurology, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China; Central Laboratory of the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Yuhao Xu
- Medical School, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Li Lin
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China; Central Laboratory of the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Yuefeng Li
- Medical School, Jiangsu University, Zhenjiang, Jiangsu 212001, China.
| | - Xiaolan Zhu
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China; Central Laboratory of the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China.
| |
Collapse
|
20
|
Zhang Y, Xu Y, Bao Y, Luo Y, Qiu G, He M, Lu J, Xu J, Chen B, Wang Y. N6-methyladenosine (m6A) modification in osteosarcoma: expression, function and interaction with noncoding RNAs - an updated review. Epigenetics 2023; 18:2260213. [PMID: 37766615 PMCID: PMC10540650 DOI: 10.1080/15592294.2023.2260213] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Osteosarcoma, originating from primitive bone-forming mesenchymal cells, is the most common malignant bone tumour among children and adolescents. N6-methyladenosine (m6A), the most ubiquitous type of posttranscriptional modification, is a methylation that occurs in the N6-position of adenosine. m6A dramatically affects the splicing, export, translation, and stability of various RNAs, including mRNA and noncoding RNAs (ncRNAs). Increasing evidence suggests that ncRNAs, especially microRNAs (miRNA), long noncoding RNAs (lncRNA), and circular RNAs (circRNAs), regulate the m6A modification process by affecting the expression of m6A-associated enzymes. m6A modification interactions with ncRNAs provide new perspectives for exploring the underlying mechanisms of tumorigenesis and progression. In the current review, we summarized the expression and biological functions of m6A regulators in osteosarcoma. At the same time, the present review systematically elucidated the functional and mechanical interactions between m6A modification and ncRNAs in osteosarcoma. In addition, we discussed the effect of m6A and ncRNAs in the tumour microenvironment and potential clinical applications of osteosarcoma.
Collapse
Affiliation(s)
- Yuanzhuang Zhang
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Yeqiu Xu
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Yuxin Bao
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Yinzhou Luo
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Guanzhen Qiu
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Ming He
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jie Lu
- Department of Cardiology, Shenyang Fourth People's Hospital, China Medical University, Shenyang, Liaoning, China
| | - Jian Xu
- Department of Orthopedic Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bin Chen
- Department of Orthopedic Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yong Wang
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| |
Collapse
|
21
|
Sadrkhanloo M, Paskeh MDA, Hashemi M, Raesi R, Bahonar A, Nakhaee Z, Entezari M, Beig Goharrizi MAS, Salimimoghadam S, Ren J, Nabavi N, Rashidi M, Dehkhoda F, Taheriazam A, Tan SC, Hushmandi K. New emerging targets in osteosarcoma therapy: PTEN and PI3K/Akt crosstalk in carcinogenesis. Pathol Res Pract 2023; 251:154902. [PMID: 37922723 DOI: 10.1016/j.prp.2023.154902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Osteosarcoma (OS) is a malignant bone carcinoma that affects people in childhood and adulthood. The heterogeneous nature and chromosomal instability represent certain characteristics of OS cells. These cancer cells grow and migrate abnormally, making the prognosis undesirable for patients. Conventional and current treatments fail to completely eradicate tumor cells, so new therapeutics targeting genes may be considered. PI3K/Akt is a regulator of events such as growth, cell death, migration, and differentiation, and its expression changes during cancer progression. PTEN reduces PI3K/Akt expression, and its mutations and depletions have been reported in various tumors. Experimental evidence shows that there is upregulation of PI3K/Akt and downregulation of PTEN in OS. Increasing PTEN expression may suppress PI3K/Akt to minimize tumorigenesis. In addition, PI3K/Akt shows a positive association with growth, metastasis, EMT and metabolism of OS cells and inhibits apoptosis. Importantly, overexpression of PI3K/Akt causes drug resistance and radio-resistance and its level can be modulated by miRNAs, lncRNAs and circRNAs. Silencing PI3K/Akt by compounds and drugs can suppress OS. Here, we review in detail the function of the PTEN/PI3K/Akt in OS, revealing its biological function, function in tumor progression, resistance to therapy, and pharmacological significance.
Collapse
Affiliation(s)
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Bahonar
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Zahra Nakhaee
- Medical School, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Farshid Dehkhoda
- Department of Orthopedics, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
22
|
Bian J, Liu Y, Zhao X, Meng C, Zhang Y, Duan Y, Wang G. Research progress in the mechanism and treatment of osteosarcoma. Chin Med J (Engl) 2023; 136:2412-2420. [PMID: 37649421 PMCID: PMC10586865 DOI: 10.1097/cm9.0000000000002800] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Indexed: 09/01/2023] Open
Abstract
ABSTRACT Osteosarcoma (OS) is the most common primary malignant bone tumor that more commonly occurs in children and adolescents. The most commonly used treatment for OS is surgery combined with chemotherapy, but the treatment outcomes are typically unsatisfactory. High rates of metastasis and post-treatment recurrence rates are major challenges in the treatment of OS. This underlines the need for studying the in-depth characterization of the pathogenetic mechanisms of OS and development of more effective therapeutic modalities. Previous studies have demonstrated the important role of the bone microenvironment and the regulation of signaling pathways in the occurrence and development of OS. In this review, we discussed the available evidence pertaining to the mechanisms of OS development and identified therapeutic targets for OS. We also summarized the available treatment modalities for OS and identified future priorities for therapeutics research.
Collapse
Affiliation(s)
- Jichao Bian
- Department of Joint and Sports Medicine, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Yang Liu
- Department of Pathology, The Second People's Hospital Of Jining, Jining, Shandong 272049, China
| | - Xiaowei Zhao
- Department of Joint and Sports Medicine, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Chunyang Meng
- Department of Spine, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Yuanmin Zhang
- Department of Joint and Sports Medicine, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Yangmiao Duan
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Guodong Wang
- Department of Joint and Sports Medicine, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| |
Collapse
|
23
|
Lavudi K, Nuguri SM, Olverson Z, Dhanabalan AK, Patnaik S, Kokkanti RR. Targeting the retinoic acid signaling pathway as a modern precision therapy against cancers. Front Cell Dev Biol 2023; 11:1254612. [PMID: 37645246 PMCID: PMC10461636 DOI: 10.3389/fcell.2023.1254612] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/28/2023] [Indexed: 08/31/2023] Open
Abstract
Retinoic acid (RA) is a vital metabolite derived from vitamin A. RA plays a prominent role during development, which helps in embryological advancement and cellular differentiation. Mechanistically, RA binds to its definite nuclear receptors including the retinoic acid receptor and retinoid X receptor, thus triggering gene transcription and further consequences in gene regulation. This functional heterodimer activation later results in gene activation/inactivation. Several reports have been published related to the detailed embryonic and developmental role of retinoic acids and as an anti-cancer drug for specific cancers, including acute promyelocytic leukemia, breast cancer, and prostate cancer. Nonetheless, the other side of all-trans retinoic acid (ATRA) has not been explored widely yet. In this review, we focused on the role of the RA pathway and its downstream gene activation in relation to cancer progression. Furthermore, we explored the ways of targeting the retinoic acid pathway by focusing on the dual role of aldehyde dehydrogenase (ALDH) family enzymes. Combination strategies by combining RA targets with ALDH-specific targets make the tumor cells sensitive to the treatment and improve the progression-free survival of the patients. In addition to the genomic effects of ATRA, we also highlighted the role of ATRA in non-canonical mechanisms as an immune checkpoint inhibitor, thus targeting the immune oncological perspective of cancer treatments in the current era. The role of ATRA in activating independent mechanisms is also explained in this review. This review also highlights the current clinical trials of ATRA in combination with other chemotherapeutic drugs and explains the future directional insights related to ATRA usage.
Collapse
Affiliation(s)
- Kousalya Lavudi
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Shreya Madhav Nuguri
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
| | - Zianne Olverson
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Anantha Krishna Dhanabalan
- Centre for Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, India
| | - Srinivas Patnaik
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Rekha Rani Kokkanti
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam, Tirupati, Andhra Pradesh, India
| |
Collapse
|
24
|
Qi YN, Liu Z, Hong LL, Li P, Ling ZQ. Methyltransferase-like proteins in cancer biology and potential therapeutic targeting. J Hematol Oncol 2023; 16:89. [PMID: 37533128 PMCID: PMC10394802 DOI: 10.1186/s13045-023-01477-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023] Open
Abstract
RNA modification has recently become a significant process of gene regulation, and the methyltransferase-like (METTL) family of proteins plays a critical role in RNA modification, methylating various types of RNAs, including mRNA, tRNA, microRNA, rRNA, and mitochondrial RNAs. METTL proteins consist of a unique seven-beta-strand domain, which binds to the methyl donor SAM to catalyze methyl transfer. The most typical family member METTL3/METTL14 forms a methyltransferase complex involved in N6-methyladenosine (m6A) modification of RNA, regulating tumor proliferation, metastasis and invasion, immunotherapy resistance, and metabolic reprogramming of tumor cells. METTL1, METTL4, METTL5, and METTL16 have also been recently identified to have some regulatory ability in tumorigenesis, and the rest of the METTL family members rely on their methyltransferase activity for methylation of different nucleotides, proteins, and small molecules, which regulate translation and affect processes such as cell differentiation and development. Herein, we summarize the literature on METTLs in the last three years to elucidate their roles in human cancers and provide a theoretical basis for their future use as potential therapeutic targets.
Collapse
Affiliation(s)
- Ya-Nan Qi
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, P.R. China
| | - Zhu Liu
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No.1 Banshan East Rd., Gongshu District, Hangzhou, 310022, Zhejiang, P.R. China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, P.R. China
| | - Lian-Lian Hong
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No.1 Banshan East Rd., Gongshu District, Hangzhou, 310022, Zhejiang, P.R. China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, P.R. China
| | - Pei Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, P.R. China.
| | - Zhi-Qiang Ling
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No.1 Banshan East Rd., Gongshu District, Hangzhou, 310022, Zhejiang, P.R. China.
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, P.R. China.
| |
Collapse
|
25
|
Zhou H, Sun Q, Feng M, Gao Z, Jia S, Cao L, Yu X, Gao S, Wu H, Li K. Regulatory mechanisms and therapeutic implications of insulin-like growth factor 2 mRNA-binding proteins, the emerging crucial m 6A regulators of tumors. Theranostics 2023; 13:4247-4265. [PMID: 37554271 PMCID: PMC10405845 DOI: 10.7150/thno.86528] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023] Open
Abstract
Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs) serve essential biological functions as post-transcriptional performers, participating in the acquisition or maintenance of tumor hallmarks due to their distinct protein structures. Emerging evidence indicates that IGF2BPs belong to the class III type of RNA N6-methyladenosine (m6A) modification readers, controlling RNA stability, storage, localization, metabolism, and translation in multiple vital bioprocesses, particularly tumorigenesis and tumor progression. Here, we discuss the underlying regulatory mechanisms and pathological functions of IGF2BPs which act as m6A readers in the context of tumor pathogenesis and multidrug resistance. Furthermore, we highlight the potential of IGF2BPs as drug targets in clinical tumor treatment. Hence, precise and novel tumor therapeutic approaches could be uncovered by targeting epigenetic heterogeneity.
Collapse
Affiliation(s)
- Heng Zhou
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Qiang Sun
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Mingliang Feng
- Department of Endoscopy, The First Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Ziming Gao
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Shiheng Jia
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Lanxin Cao
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Xue Yu
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Shan Gao
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation; Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, 110122, People's Republic of China
- Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Liaoning Province, China
| | - Kai Li
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| |
Collapse
|
26
|
Zhu TY, Hong LL, Ling ZQ. Oncofetal protein IGF2BPs in human cancer: functions, mechanisms and therapeutic potential. Biomark Res 2023; 11:62. [PMID: 37280679 PMCID: PMC10245617 DOI: 10.1186/s40364-023-00499-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent and well-characterized internal chemical modification in eukaryotic RNA, influencing gene expression and phenotypic changes by controlling RNA fate. Insulin-like growth factor-2 mRNA-binding proteins (IGF2BPs) preferentially function as m6A effector proteins, promoting stability and translation of m6A-modified RNAs. IGF2BPs, particularly IGF2BP1 and IGF2BP3, are widely recognized as oncofetal proteins predominantly expressed in cancer rather than normal tissues, playing a critical role in tumor initiation and progression. Consequently, IGF2BPs hold potential for clinical applications and serve as a good choice for targeted treatment strategies. In this review, we discuss the functions and mechanisms of IGF2BPs as m6A readers and explore the therapeutic potential of targeting IGF2BPs in human cancer.
Collapse
Affiliation(s)
- Tian-Yu Zhu
- Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, China
- The Second School of Clinical Medicine, Wenzhou Medical University, No.109 Xueyuan West Road, Wenzhou, 325027 Zhejiang, China
- Jinhua People's Hospital, No.267 Danxi East Road, Jinhua, 321000 Zhejiang, China
| | - Lian-Lian Hong
- Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China
| | - Zhi-Qiang Ling
- Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China.
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, China.
- The Second School of Clinical Medicine, Wenzhou Medical University, No.109 Xueyuan West Road, Wenzhou, 325027 Zhejiang, China.
| |
Collapse
|
27
|
An X, Wu W, Yang L, Dong J, Liu B, Guo J, Chen J, Guo B, Cao W, Jiang Q. ZBTB7C m6A modification incurred by METTL3 aberration promotes osteosarcoma progression. Transl Res 2023:S1931-5244(23)00072-5. [PMID: 37121538 DOI: 10.1016/j.trsl.2023.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/27/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
Aberrant N6-methyladenosine (m6A) modification of mRNAs contributes significantly to the epigenetic tumorigenesis, however, its precise role and the key targets in osteosarcoma (OS) are not defined. Here we reported that selective METTL3 (methyltransferase like 3) elevation and the consequential increase of m6A modification causally affect OS progression. The fast-growing OS cells displayed preferential upregulation of METTL3 and increased m6A modification. Conversely, m6A inhibition by 3-deazaadenosine, siRNA-mediated METTL3 knockdown or a METTL3-selective inhibitor by STM2457 effectively inhibits OS cell growth and induced OS cell apoptosis. Further investigation revealed that an oncogenic protein ZBTB7C was likely a critical m6A target that mediated the oncogenic effects. ZBTB7C mRNA contains a typical m6A motif of high confidence and its mRNA and protein were enriched with increased m6A modification in OS samples/cells. In an OS xenograft model, STM2457 or siRNA-mediated METTL3 knockdown effectively lowed ZBTB7C abundance. More importantly, the anti-OS effects of STM2457 were significantly reduced when ZBTB7C was overexpressed by lentivirus. Together, our results demonstrate that the METTL3 aberration and the resultant ZBTB7C m6A modification form an important epigenetic regulatory loop that promotes OS progression, and targeting the METTL3/ZBTB7C axis may provide novel insights into the potential strategies for OS therapy.
Collapse
Affiliation(s)
- Xueying An
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wenshu Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lin Yang
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Jian Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.; Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, China
| | - Bin Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.; Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, China
| | - Junxia Guo
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Jianmei Chen
- Institute of Translational Medicine, Medical College,Yangzhou University, Yangzhou, China..
| | - Baosheng Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.; Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, China..
| | - Wangsen Cao
- Nanjing University Medical School, Jiangsu Key Lab of Molecular Medicine. Nanjing, China.; Department of Central Laboratory, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, China..
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.; Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, China..
| |
Collapse
|
28
|
Xu A, Liu M, Huang MF, Zhang Y, Hu R, Gingold JA, Liu Y, Zhu D, Chien CS, Wang WC, Liao Z, Yuan F, Hsu CW, Tu J, Yu Y, Rosen T, Xiong F, Jia P, Yang YP, Bazer DA, Chen YW, Li W, Huff CD, Zhu JJ, Aguilo F, Chiou SH, Boles NC, Lai CC, Hung MC, Zhao Z, Van Nostrand EL, Zhao R, Lee DF. Rewired m 6A epitranscriptomic networks link mutant p53 to neoplastic transformation. Nat Commun 2023; 14:1694. [PMID: 36973285 PMCID: PMC10042811 DOI: 10.1038/s41467-023-37398-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
N6-methyladenosine (m6A), one of the most prevalent mRNA modifications in eukaryotes, plays a critical role in modulating both biological and pathological processes. However, it is unknown whether mutant p53 neomorphic oncogenic functions exploit dysregulation of m6A epitranscriptomic networks. Here, we investigate Li-Fraumeni syndrome (LFS)-associated neoplastic transformation driven by mutant p53 in iPSC-derived astrocytes, the cell-of-origin of gliomas. We find that mutant p53 but not wild-type (WT) p53 physically interacts with SVIL to recruit the H3K4me3 methyltransferase MLL1 to activate the expression of m6A reader YTHDF2, culminating in an oncogenic phenotype. Aberrant YTHDF2 upregulation markedly hampers expression of multiple m6A-marked tumor-suppressing transcripts, including CDKN2B and SPOCK2, and induces oncogenic reprogramming. Mutant p53 neoplastic behaviors are significantly impaired by genetic depletion of YTHDF2 or by pharmacological inhibition using MLL1 complex inhibitors. Our study reveals how mutant p53 hijacks epigenetic and epitranscriptomic machinery to initiate gliomagenesis and suggests potential treatment strategies for LFS gliomas.
Collapse
Affiliation(s)
- An Xu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Mo Liu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Mo-Fan Huang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Yang Zhang
- College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Ruifeng Hu
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Julian A Gingold
- Department of Obstetrics & Gynecology and Women's Health, Einstein/Montefiore Medical Center, Bronx, NY, 10461, USA
| | - Ying Liu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Dandan Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Chian-Shiu Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 112, Taiwan
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Wei-Chen Wang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Zian Liao
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology and Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Fei Yuan
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology and Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chih-Wei Hsu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jian Tu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yao Yu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Taylor Rosen
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Feng Xiong
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 112, Taiwan
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Danielle A Bazer
- Department of Neurology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794, USA
| | - Ya-Wen Chen
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Institute for Airway Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Wenbo Li
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Chad D Huff
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jay-Jiguang Zhu
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Francesca Aguilo
- Wallenberg Centre for Molecular Medicine (WCMM), Umea University, SE-901 85, Umea, Sweden
- Department of Molecular Biology, Umea University, SE-901 85, Umea, Sweden
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 112, Taiwan
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | | | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
- Graduate institute of Chinese Medical Science, China Medical University, Taichung, 40402, Taiwan
- Ph.D. Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, and Office of the President, China Medical University, Taichung, 404, Taiwan
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan
| | - Zhongming Zhao
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Eric L Van Nostrand
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology and Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ruiying Zhao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
29
|
Wang C, Chen R, Zhu X, Zhang X, Lian N. METTL14 alleviates the development of osteoporosis in ovariectomized mice by upregulating m 6A level of SIRT1 mRNA. Bone 2023; 168:116652. [PMID: 36584783 DOI: 10.1016/j.bone.2022.116652] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
The purpose of this study was to investigate whether METTL14 participated in ovariectomized (OVX)-induced osteoporosis (OP) in mice by regulating the m6A level of SIRT1 mRNA. OVX was performed on mice to induce OP, and mouse bone marrow stromal cells (BMSCs) and bone marrow mononuclear macrophages (BMMs) were isolated to induce osteoblast differentiation and osteoclast differentiation, respectively. The morphology of bone trabeculae was evaluated under a micro-CT scanner. The changes in pathology of bone tissues were observed through staining using hematoxylin-eosin. The number of osteoclasts was measured by tartrate-resistant acid phosphatase staining, and the content of serum calcium, PINP, and CTX-I was tested by enzyme-linked immunosorbent assay, accompanied by the measurement of the expression of SIRT1, METTL14, osteogenic marker genes, and osteoclast marker genes. The m6A modification level of SIRT1 and the binding between METTL14 and SIRT1 were verified. In OVX mice, SIRT1 and METTL14 were downregulated. Overexpression of SIRT1 or METTL14 increased the expression of osteogenic marker genes but decreased the expression of osteoclast marker genes. Additionally, METTL14 overexpression increased m6A level of SIRT1 mRNA. Furthermore, overexpression of METTL14 promoted osteoblast differentiation and suppressed osteoclast differentiation, which were reversed by knockdown of SIRT1. METTL14 promoted osteoblast differentiation and repressed osteoclast differentiation by m6A-dependent upregulation of SIRT1 mRNA, thereby alleviating OP development.
Collapse
Affiliation(s)
- Changsheng Wang
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, PR China.
| | - Rongsheng Chen
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, PR China
| | - Xitian Zhu
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, PR China
| | - Xiaobo Zhang
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, PR China
| | - Nancheng Lian
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, PR China
| |
Collapse
|
30
|
Tian H, Cao J, Li B, Nice EC, Mao H, Zhang Y, Huang C. Managing the immune microenvironment of osteosarcoma: the outlook for osteosarcoma treatment. Bone Res 2023; 11:11. [PMID: 36849442 PMCID: PMC9971189 DOI: 10.1038/s41413-023-00246-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/17/2022] [Accepted: 12/29/2022] [Indexed: 03/01/2023] Open
Abstract
Osteosarcoma, with poor survival after metastasis, is considered the most common primary bone cancer in adolescents. Notwithstanding the efforts of researchers, its five-year survival rate has only shown limited improvement, suggesting that existing therapeutic strategies are insufficient to meet clinical needs. Notably, immunotherapy has shown certain advantages over traditional tumor treatments in inhibiting metastasis. Therefore, managing the immune microenvironment in osteosarcoma can provide novel and valuable insight into the multifaceted mechanisms underlying the heterogeneity and progression of the disease. Additionally, given the advances in nanomedicine, there exist many advanced nanoplatforms for enhanced osteosarcoma immunotherapy with satisfactory physiochemical characteristics. Here, we review the classification, characteristics, and functions of the key components of the immune microenvironment in osteosarcoma. This review also emphasizes the application, progress, and prospects of osteosarcoma immunotherapy and discusses several nanomedicine-based options to enhance the efficiency of osteosarcoma treatment. Furthermore, we examine the disadvantages of standard treatments and present future perspectives for osteosarcoma immunotherapy.
Collapse
Affiliation(s)
- Hailong Tian
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Jiangjun Cao
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Bowen Li
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Edouard C. Nice
- grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800 Australia
| | - Haijiao Mao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315020, People's Republic of China.
| | - Yi Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
31
|
Cheng H, Li L, Xue J, Ma J, Ge J. TNC Accelerates Hypoxia-Induced Cardiac Injury in a METTL3-Dependent Manner. Genes (Basel) 2023; 14:591. [PMID: 36980863 PMCID: PMC10048594 DOI: 10.3390/genes14030591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Cardiac fibrosis and cardiomyocyte apoptosis are reparative processes after myocardial infarction (MI), which results in cardiac remodeling and heart failure at last. Tenascin-C (TNC) consists of four distinct domains, which is a large multimodular glycoprotein of the extracellular matrix. It is also a key regulator of proliferation and apoptosis in cardiomyocytes. As a significant m6A regulator, METTL3 binds m6A sites in mRNA to control its degradation, maturation, stabilization, and translation. Whether METTL3 regulates the occurrence and development of myocardial infarction through the m6A modification of TNC mRNA deserves our study. Here, we have demonstrated that overexpression of METTL3 aggravated cardiac dysfunction and cardiac fibrosis after 4 weeks after MI. Moreover, we also demonstrated that TNC resulted in cardiac fibrosis and cardiomyocyte apoptosis after MI. Mechanistically, METTL3 led to enhanced m6A levels of TNC mRNA and promoted TNC mRNA stability. Then, we mutated one m6A site "A" to "T", and the binding ability of METTL3 was reduced. In conclusion, METTL3 is involved in cardiac fibrosis and cardiomyocyte apoptosis by increasing m6A levels of TNC mRNA and may be a promising target for the therapy of cardiac fibrosis after MI.
Collapse
Affiliation(s)
- Hao Cheng
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Linnan Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Junqiang Xue
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Jianying Ma
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| |
Collapse
|
32
|
Wang J, Wu Z, Zheng M, Yu S, Zhang X, Xu X. CD146 is closely associated with the prognosis and molecular features of osteosarcoma: Guidance for personalized clinical treatment. Front Genet 2022; 13:1025306. [PMID: 36338992 PMCID: PMC9635853 DOI: 10.3389/fgene.2022.1025306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Osteosarcoma (OSA), a focus for orthopedic surgeons, always results in severe death due to metastasis. CD146 is severely expressed in several tumors, indicating its potential as a biomarker for OSA. Method: Two OSA cohorts were enrolled in this study. A Therapeutically Applicable Research to Generate Effective Treatments-Osteosarcoma (TARGET-OS) cohort was used as a training cohort, and GSE21257 was used as the external validation cohort. The R package “limma” was used to discriminate the differentially expressed genes among CD146-high and CD146-low patients and was further annotated by the enriched signaling pathways. The R package MOVICS was used to evaluate immune infiltration and the response to chemotherapy and immunotherapy. All statistical analyses were performed by R version 4.0.2, and p < 0.05 was considered statistically significant. Result: CD146 plays an important role in promoting the progression, invasion, and metastasis of several tumors. In the current study, we first revealed an integrative unfavorable prognosis in patients with tumors (p < 0.01, HR: 1.10, 95% CI: 1.07-1.14). CD146 is tightly correlated with m5C RNA methylation modification genes in OSA. Furthermore, we revealed that CD146 acts as an oncogene in OSA patients and is linked to poor prognosis in both the TARGET-OS cohort (p = 0.019, HR: 2.61, 95% CI: 1.171-5.834) and the GSE21257 cohort (p = 0.005, HR: 3.61, 95% CI: 1.474-8.855), with a total of 137 patients, regardless of whether they were adjusted for clinical pathological features. Highly-expressed CD146 impacts the signaling pathways of cytokine‒cytokine receptor interactions and is associated with the high infiltration of immunocytes. Moreover, patients with high CD146 expression were more likely to be sensitive to anti-PD-1 immunotherapy, while patients with low expression of CD146 were more likely to be sensitive to cisplatin and doxorubicin chemotherapy. Conclusion: Overall, CD146 is an independent prognostic factor for OSA patients and can help doctors select clinical treatment strategies.
Collapse
|
33
|
Liu D, Li Z, Zhang K, Lu D, Zhou D, Meng Y. N 6-methyladenosine reader YTHDF3 contributes to the aerobic glycolysis of osteosarcoma through stabilizing PGK1 stability. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04337-y. [PMID: 36171455 DOI: 10.1007/s00432-022-04337-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/27/2022] [Indexed: 10/14/2022]
Abstract
PURPOSE N6-methyladenosine (m6A) modification is a pivotal transcript chemical modification of eukaryotics, which has been identified to play critical roles on tumor metabolic reprogramming. However, the functions of m6A-reading protein YTH N6-methyladenosine RNA-binding protein 3 (YTHDF3) in osteosarcoma is still unclear. This research planned to investigate the bio-functions and mechanism in osteosarcoma tumorigenesis. METHODS The aerobic glycolysis of osteosarcoma cells were calculated by glucose uptake, lactate production analysis, ATP analysis and metabolic flux analysis for extracellular acidification rate (ECAR). Molecular binding was identified by RIP-qPCR, RNA decay analysis. RESULTS Results indicated that YTHDF3 is upregulated in the osteosarcoma tissue samples and cells, and closely correlated to the poor prognosis of osteosarcoma patients. Functionally, gain and loss-of-functional assays illustrated that YTHDF3 promoted the proliferation and aerobic glycolysis of osteosarcoma cells in vitro, and accelerated the tumor growth in vivo. Mechanistically, a m6A-modified PGK1 mRNA functioned as the target of YTHDF3, and YTHDF3 enhanced the PGK1 mRNA stability via m6A-dependent manner. CONCLUSIONS In conclusion, these findings indicated that YTHDF3 functioned as an oncogene in osteosarcoma tumorigenesis through m6A/PGK1 manner, providing a therapeutic strategy for human osteosarcoma.
Collapse
Affiliation(s)
- Deyin Liu
- Department of Orthopaedic, Hong Hui Hospital Xi'an Jiao Tong University, Xian, 710054, Shaanxi, China
| | - Zhong Li
- Department of Orthopaedic, Hong Hui Hospital Xi'an Jiao Tong University, Xian, 710054, Shaanxi, China
| | - Kun Zhang
- Department of Orthopaedic, Hong Hui Hospital Xi'an Jiao Tong University, Xian, 710054, Shaanxi, China
| | - Daigang Lu
- Department of Orthopaedic, Hong Hui Hospital Xi'an Jiao Tong University, Xian, 710054, Shaanxi, China
| | - Dawei Zhou
- Department of Orthopaedic, Hong Hui Hospital Xi'an Jiao Tong University, Xian, 710054, Shaanxi, China
| | - Yibin Meng
- Department of Spine Surgery, Hong Hui Hospital Xi'an Jiao Tong University, Xian, 710054, Shaanxi, China.
| |
Collapse
|
34
|
Ren L, Li X, Su R. Targeting METTL14 and RNA methylation to treat osteosarcoma. EBioMedicine 2022; 82:104190. [PMID: 35907369 PMCID: PMC9335374 DOI: 10.1016/j.ebiom.2022.104190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Lili Ren
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Pathology, Harbin Medical University, Harbin 150081, China
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin 150081, China.
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA.
| |
Collapse
|