1
|
Tong W, Zhu L, Han P, Bai Y, Wang T, Chen D, Li Z, Chi H, Deng X, Zhang Y, Shen Z. TWEAK is an activator of Hippo-YAP signaling protecting against hepatic Ischemia/ reperfusion injury. Int Immunopharmacol 2024; 143:113567. [PMID: 39500083 DOI: 10.1016/j.intimp.2024.113567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/11/2024] [Accepted: 10/31/2024] [Indexed: 12/08/2024]
Abstract
Hepatic ischemia-reperfusion injury (IRI) represents a formidable complication commonly linked with hemorrhagic shock, liver resection, and transplantation. This study aims to elucidate the role of Tumor Necrosis Factor-like Weak Inducer of Apoptosis (TWEAK) in the pathogenesis of hepatic I/R injury and to delineate the underlying mechanisms involved. Utilizing a hypoxia-reoxygenation model in human liver organoids (HLOs) alongside a murine model of warm ischemia-reperfusion injury, we systematically investigated the interplay between TWEAK, its receptor Fn14, and the HIPPO signaling pathway. Our findings indicate that TWEAK pretreatment significantly mitigates IRI in murine livers as well as hypoxia/reoxygenation injury in HLOs. Notably, administration of adeno-associated virus (AAV) to knock down Fn14 abrogated the protective effects of TWEAK in the murine model. Transcriptome sequencing analysis revealed that the interaction between TWEAK and Fn14 enhances cellular resistance to IRI by activating the HIPPO signaling pathway. Overall, TWEAK emerges as a promising therapeutic target for mitigating hepatic I/R injury, potentially improving outcomes in liver transplantation.
Collapse
Affiliation(s)
- Wen Tong
- The First Central Clinical School, Tianjin Medical University, Tianjin 300070, China
| | - Liuyang Zhu
- The First Central Clinical School, Tianjin Medical University, Tianjin 300070, China
| | - Pinsheng Han
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yi Bai
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin 300192, China
| | - Tianze Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Dapeng Chen
- The First Central Clinical School, Tianjin Medical University, Tianjin 300070, China
| | - Zhongmin Li
- Department of Hepatobiliary Surgery, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Hao Chi
- The First Central Clinical School, Tianjin Medical University, Tianjin 300070, China
| | - Xiyue Deng
- The First Central Clinical School, Tianjin Medical University, Tianjin 300070, China
| | - Yamin Zhang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin 300192, China.
| | - Zhongyang Shen
- Organ Transplantation Centre, Tianjin First Central Hospital, Tianjin 300192, China.
| |
Collapse
|
2
|
Quan J, Xie D, Li Z, Yu X, Liang Z, Chen Y, Wu L, Huang D, Lin L, Fan L. Luteolin alleviates airway remodeling in asthma by inhibiting the epithelial-mesenchymal transition via β-catenin regulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156090. [PMID: 39393303 DOI: 10.1016/j.phymed.2024.156090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND Asthma is a prevalent long-term inflammatory condition that causes airway inflammation and remodeling. Increasing evidence indicates that epithelial-mesenchymal transition (EMT) holds a prominent implication in airway reconstruction in patients with asthma. Flavonoids obtained from Chinese Materia Medica (CMM), such as Luteolin (Lut), exhibit various beneficial effects in various asthma models. Lut has been shown to mitigate various asthma symptoms, including airway inflammation, hyperresponsiveness, bronchoconstriction, excessive mucus production, pulmonary autophagy, and neutrophilic asthma. However, whether flavonoids can suppress EMT-associated airway remodeling in asthma and the fundamental mechanisms involved remain unclear, with no studies specifically addressing Lut in this context. PURPOSE To evaluate the inhibition of airway remodeling in asthma by Lut and its potential mechanisms, while examining the significance of β-catenin in this process through cellular and animal studies. METHODS A BEAS-2B cell model stimulated by lipopolysaccharide (LPS) was established in vitro. Wound closure and Transwell assays were utilized to assess the cellular migratory ability. EMT- and fibrosis-related markers in LPS-stimulated cells were evaluated using RT-qPCR and western blotting. The status of the β-catenin/E-cadherin and β-catenin destruction complexes was evaluated using western blotting, immunofluorescence (IF) staining, and co-immunoprecipitation (Co-IP) analysis. The regulatory function of Lut in β-catenin-dependent EMT was further validated by β-catenin overexpression with adenovirus transduction and siRNA-mediated knockdown of β-catenin. Moreover, the counts of different types of bronchoalveolar lavage fluid (BALF) inflammatory cells from mice with asthma induced by ovalbumin (OVA) were evaluated in vivo using Congo red staining. Hematoxylin and eosin (H&E), Masson's trichrome, and periodic acid-Schiff (PAS) staining were used to evaluate collagen deposition, mucus production, and inflammation in murine lung tissues. Western blotting and immunohistochemistry (IHC) assays were used to assess EMT- and fibrosis-related markers in the lung tissues in vivo. RESULT Six naturally derived flavonoids, including Lut, attenuated cell migration and prevented EMT in LPS-treated BEAS-2B cells. Moreover, Lut suppressed TGF-β1, MMP-9, fibronectin (FN), and α-smooth muscle actin (α-SMA) levels in LPS-stimulated BEAS-2B cells. Additionally, Lut downregulated the levels of β-catenin by modulating the β-catenin/E-cadherin and β-catenin destruction complexes, highlighting the pivotal role of β-catenin in EMT inhibition by Lut in LPS-stimulated BEAS-2B cells. Furthermore, Lut suppressed airway inflammation and attenuated EMT-associated airway remodeling through β-catenin blockade in OVA-induced asthmatic mice. The bronchial wall thickness notably reduced from 37.24 ± 4.00 μm in the asthmatic model group to 30.06 ± 4.40 μm in the Lut low-dose group and 24.69 ± 2.87 μm in the Lut high-dose group. CONCLUSION According to our current understanding, this research is the first to reveal that Lut diminishes airway remodeling in asthma by inhibiting EMT via β-catenin regulation, thereby filling a research gap concerning Lut and flavonoids. These results provide a theoretical basis for treating asthma with anti-asthmatic CMM, as well as a candidate and complementary therapeutic approach to treat asthma.
Collapse
Affiliation(s)
- Jingyu Quan
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Dan Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Zihong Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Xuhua Yu
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Ziyao Liang
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Yuanbin Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Lei Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Donghui Huang
- Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, China.
| | - Lin Lin
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China.
| | - Long Fan
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China.
| |
Collapse
|
3
|
Kreiner P, Eggenhofer E, Schneider L, Rejas C, Goetz M, Bogovic N, Brunner SM, Evert K, Schlitt HJ, Geissler EK, Junger H. Extrahepatic Bile Duct Organoids as a Model to Study Ischemia/Reperfusion Injury During Liver Transplantation. Transpl Int 2024; 37:13212. [PMID: 39323909 PMCID: PMC11422091 DOI: 10.3389/ti.2024.13212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
Biliary complications are still a major cause for morbidity and mortality after liver transplantation (LT). Ischemia/reperfusion injury (IRI) leads to disruption of the biliary epithelium. We introduce a novel model to study the effect of IRI on human cholangiocytes using extrahepatic cholangiocyte organoids (ECOs). Extrahepatic bile duct tissue was collected during LT at static cold storage and after reperfusion (n = 15); gallbladder tissue was used for controls (n = 5). ECOs (n = 9) were cultured from extrahepatic biliary tissue, with IRI induced in an atmosphere of 95% air (nitrogen), 1% O2 and 5% CO2for 48 h, followed by 24 h of reoxygenation. Qualitative and quantitative histology and qRT-PCR were performed to discern phenotype, markers of hypoxia, programmed cell death and proliferation. ECOs self-organized into circular structures resembling biliary architecture containing cholangiocytes that expressed EpCAM, CK19, LGR5 and SOX-9. After hypoxia, ECOs showed increased expression of VEGF A (p < 0.0001), SLC2A1 (p < 0.0001) and ACSL4 (p < 0.0001) to indicate response to hypoxic damage and subsequent programmed cell death. Increase in cyclin D1 (p < 0.0001) after reoxygenation indicated proliferative activity in ECOs. Therefore, ECO structure and response to IRI are comparable to that found in-vivo, providing a suitable model to study IRI of the bile duct in-vitro.
Collapse
Affiliation(s)
- P Kreiner
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - E Eggenhofer
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - L Schneider
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - C Rejas
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - M Goetz
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - N Bogovic
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - S M Brunner
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - K Evert
- Department of Pathology, University Hospital Regensburg, Regensburg, Germany
| | - H J Schlitt
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - E K Geissler
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - H Junger
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
4
|
Jia C, Yang M, Xiao G, Zeng Z, Li L, Li Y, Jiang J, Xu A, Qiu J, Tang R, Li D, Jia D, Xie C, Wu G, Cai D, Bi X. ESL attenuates BLM-induced IPF in mice: Dual mediation of the TLR4/NF-κB and TGF-β1/PI3K/Akt/FOXO3a pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155545. [PMID: 38972238 DOI: 10.1016/j.phymed.2024.155545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 03/04/2024] [Accepted: 03/17/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUNDS Idiopathic pulmonary fibrosis (IPF) is a persistent and advanced pulmonary ailment. The roles of innate immunity and adaptive immunity are pivotal in the evolution of IPF. An ill-adjusted interaction between epithelial cells and immune cells is responsible for initiating the epithelial-mesenchymal transition (EMT) process and sustaining chronic inflammation, thereby fostering fibrosis progression. The intricacy of IPF pathogenesis has hindered the availability of efficacious agents. Elephantopus scaber Linn. (ESL) is a canonical Chinese medicine with significant immunoregulatory effects, and its aqueous extract has been proven to attenuate IPF symptoms in bleomycin (BLM)-induced mice. However, the underlying mechanism through which ESL relieves IPF remains unclear. AIM To validate whether ESL reverses IPF by mediating the immune response and EMT. METHODS Ultra-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) and UPLC were used to identify the components and determine the concentrations of the specific compounds in the ESL. Network pharmacology and molecular docking were applied to predict the potential mechanism underlying the anti-IPF effect of ESL. BLM-induced IPF mice were used to validate the anti-IPF effect of ESL, and lung tissue was collected to test putative pathways involved in inflammation and EMT via immunohistochemistry (ICH), real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting. RESULTS Sixty-one compounds were identified, and thirteen main ingredients were quantified in the ESL. In silico experiments predicted that the IPF-mediated reversal of adverse effects by ESL would be related to interruption of the Toll-like receptor 4 (TLR4)/nuclear factor-k-gene binding (NF-ĸB) inflammatory pathway and the transforming growth factor-beta l (TGF-β1)/phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/forkhead box O3 (FOXO3a) fibrosis pathway. In vivo experiments showed that ESL alleviates BLM-induced lung inflammation and fibrosis by reducing neutrophil aggregation and fibroblast foci, similar to the effects of the positive control drug pirfenidone (PFD). ESL markedly inhibited the transcription of TNF-α, IL-1β, and IL-6, which are downstream genes of the NF-κB signaling pathway. Furthermore, the protein levels of TLR4 and p-NF-κB were correspondingly inhibited in response to ESL treatment. Additionally, ESL reverses BLM-induced changes in the expression of EMT-related biological characteristic indicators (collagen I [COLIA1], E-cadherin, and alpha smooth muscle actin [α-SMA]) at the messenger ribonucleic acid (mRNA) level and markedly inhibits the expression of EMT-related upstream proteins (TGF-β1, p-PI3K, p-Akt, and p-FOXO3a). CONCLUSION Our research suggested that ESL attenuates BLM-induced IPF through mediating the EMT process via the TGF-β1/PI3K/Akt/FOXO3a signaling pathway and inhibiting inflammation through the TLR4/NF-κB signaling pathway, highlighting that ESL can serve as an immunoregulator for relieving the abnormal immune response and reversing the EMT in IPF.
Collapse
Affiliation(s)
- Canchao Jia
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405,; Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095
| | - Minjuan Yang
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405,; Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095
| | - Guanlin Xiao
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095,; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095
| | - Zhihao Zeng
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405,; Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095
| | - Lingjie Li
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Yangxue Li
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095,; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095
| | - Jieyi Jiang
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095,; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095
| | - Aili Xu
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095,; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095
| | - Jinyan Qiu
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405
| | - Ruiyin Tang
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405
| | - Dongmei Li
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405,; Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095
| | - Dezheng Jia
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405,; Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095
| | - Canhui Xie
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405,; Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095
| | - Guangying Wu
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405,; Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095
| | - Dake Cai
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China.
| | - Xiaoli Bi
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095,; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095,.
| |
Collapse
|
5
|
Dwyer BJ, Tirnitz-Parker JEE. Patient-derived organoid models to decode liver pathophysiology. Trends Endocrinol Metab 2024:S1043-2760(24)00200-5. [PMID: 39191607 DOI: 10.1016/j.tem.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Liver diseases represent a growing global health challenge, and the increasing prevalence of obesity and metabolic disorders is set to exacerbate this crisis. To meet evolving regulatory demands, patient-specific in vitro liver models are essential for understanding disease mechanisms and developing new therapeutic approaches. Organoid models, which faithfully recapitulate liver biology, can be established from both non-malignant and malignant liver tissues, offering insight into various liver conditions, from acute injuries to chronic diseases and cancer. Improved understanding of liver microenvironments, innovative biomaterials, and advanced imaging techniques now facilitate comprehensive and unbiased data analysis, paving the way for personalised medicine. In this review, we discuss state-of-the-art patient-derived liver organoid models, recent technological advancements, and strategies to enhance their clinical impact.
Collapse
Affiliation(s)
- Benjamin J Dwyer
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia; Liver Cancer Collaborative, Perth, WA, Australia; www.livercancercollaborative.au.
| | - Janina E E Tirnitz-Parker
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia; Liver Cancer Collaborative, Perth, WA, Australia; www.livercancercollaborative.au.
| |
Collapse
|
6
|
D'Artista L, Seehawer M. Cell Death and Survival Mechanisms in Cholangiocarcinogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2024:S0002-9440(24)00278-5. [PMID: 39103094 DOI: 10.1016/j.ajpath.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/23/2024] [Accepted: 06/17/2024] [Indexed: 08/07/2024]
Abstract
Cholangiocarcinoma (CCA) and other liver cancer subtypes often develop in damaged organs. Physiological agents or extrinsic factors, like toxins, can induce cell death in such tissues, triggering compensatory proliferation and inflammation. Depending on extracellular and intracellular factors, different mechanisms, like apoptosis, necroptosis, ferroptosis, or autophagy, can be triggered. Each of them can lead to protumorigenic or anti-tumorigenic events within a cell or through regulation of the microenvironment. However, the exact role of each cell death mechanism in CCA onset, progression, and treatment is not well known. Here, we summarize current knowledge of different cell death mechanisms in patients with CCA and preclinical CCA research. We discuss cell death-related drugs with relevance to CCA treatment and how they could be used in the future to improve targeted CCA therapy.
Collapse
Affiliation(s)
- Luana D'Artista
- Center of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Marco Seehawer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
7
|
Rejas C, Junger H. Cholangiocyte Organoids in Liver Transplantation; a Comprehensive Review. Transpl Int 2024; 37:12708. [PMID: 39100755 PMCID: PMC11294148 DOI: 10.3389/ti.2024.12708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/17/2024] [Indexed: 08/06/2024]
Abstract
Liver transplantation is the only curative option for many liver diseases that end up in liver failure, and cholangiopathy remains a challenging complication post-liver transplant, associated with significant morbidity and potential graft loss. The low availability of organs and high demand for transplantation motivate scientists to find novel interventions. Organoids, as three-dimensional cell cultures derived from adult cells or induced pluripotent cells, may help to address this problem. Different types of organoids have been described, from which cholangiocyte organoids offer a high level of versatility and plasticity for a deeper study of liver disease mechanisms. Cholangiocytes can be obtained from different segments of the biliary tree and have shown a remarkable capacity to adapt to new environments, presenting an effective system for studying cholangiopathies. Studies using cholangiocyte organoids show promising results for disease modeling, where organoids offer fundamental features to recapitulate the complexities of tissues in vitro and uncover fundamental pathological pathways to potentially reveal therapeutic strategies for personalized medicine. Organoids could hold the potential for regeneration of injured livers, representing tools of clinical impact in regenerative medicine when tissue damage is already present.
Collapse
Affiliation(s)
| | - H. Junger
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
8
|
Fang H, Xu H, Yu J, Cao H, Li L. Human Hepatobiliary Organoids: Recent Advances in Drug Toxicity Verification and Drug Screening. Biomolecules 2024; 14:794. [PMID: 39062508 PMCID: PMC11274902 DOI: 10.3390/biom14070794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/08/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Many drug and therapeutic modalities have emerged over the past few years. However, successful commercialization is dependent on their safety and efficacy evaluations. Several preclinical models are available for drug-screening and safety evaluations, including cellular- and molecular-level models, tissue and organoid models, and animal models. Organoids are three-dimensional cell cultures derived from primary tissues or stem cells that are structurally and functionally similar to the original organs and can self-renew, and they are used to establish various disease models. Human hepatobiliary organoids have been used to study the pathogenesis of diseases, such as hepatitis, liver fibrosis, hepatocellular carcinoma, primary sclerosing cholangitis and biliary tract cancer, as they retain the physiological and histological characteristics of the liver and bile ducts. Here, we review recent research progress in validating drug toxicity, drug screening and personalized therapy for hepatobiliary-related diseases using human hepatobiliary organoid models, discuss the challenges encountered in current research and evaluate the possible solutions.
Collapse
Affiliation(s)
- Haoyu Fang
- Department of Pathology and Pathophysiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China;
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China; (J.Y.); (L.L.)
| | - Haoying Xu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China;
| | - Jiong Yu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China; (J.Y.); (L.L.)
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China;
- Zhejiang Key Laboratory for Diagnosis and Treatment of Physic-Chemical and Aging-Related Injuries, 79 Qingchun Rd., Hangzhou 310003, China
| | - Hongcui Cao
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China; (J.Y.); (L.L.)
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China;
- Zhejiang Key Laboratory for Diagnosis and Treatment of Physic-Chemical and Aging-Related Injuries, 79 Qingchun Rd., Hangzhou 310003, China
| | - Lanjuan Li
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China; (J.Y.); (L.L.)
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China;
| |
Collapse
|
9
|
Obeid DA, Mir TA, Alzhrani A, Altuhami A, Shamma T, Ahmed S, Kazmi S, Fujitsuka I, Ikhlaq M, Shabab M, Assiri AM, Broering DC. Using Liver Organoids as Models to Study the Pathobiology of Rare Liver Diseases. Biomedicines 2024; 12:446. [PMID: 38398048 PMCID: PMC10887144 DOI: 10.3390/biomedicines12020446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 02/25/2024] Open
Abstract
Liver organoids take advantage of several important features of pluripotent stem cells that self-assemble in a three-dimensional culture matrix and reproduce many aspects of the complex organization found within their native tissue or organ counterparts. Compared to other 2D or 3D in vitro models, organoids are widely believed to be genetically stable or docile structures that can be programmed to virtually recapitulate certain biological, physiological, or pathophysiological features of original tissues or organs in vitro. Therefore, organoids can be exploited as effective substitutes or miniaturized models for the study of the developmental mechanisms of rare liver diseases, drug discovery, the accurate evaluation of personalized drug responses, and regenerative medicine applications. However, the bioengineering of organoids currently faces many groundbreaking challenges, including a need for a reasonable tissue size, structured organization, vascularization, functional maturity, and reproducibility. In this review, we outlined basic methodologies and supplements to establish organoids and summarized recent technological advances for experimental liver biology. Finally, we discussed the therapeutic applications and current limitations.
Collapse
Affiliation(s)
- Dalia A. Obeid
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence, Transplant Research and Innovation Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia (A.A.); (S.A.)
| | - Tanveer Ahmad Mir
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence, Transplant Research and Innovation Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia (A.A.); (S.A.)
| | - Alaa Alzhrani
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence, Transplant Research and Innovation Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia (A.A.); (S.A.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- College of Applied Medical Sciences, King Abdulaziz University, Jeddah 21423, Saudi Arabia
| | - Abdullah Altuhami
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence, Transplant Research and Innovation Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia (A.A.); (S.A.)
| | - Talal Shamma
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence, Transplant Research and Innovation Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia (A.A.); (S.A.)
| | - Sana Ahmed
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence, Transplant Research and Innovation Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia (A.A.); (S.A.)
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi 923-1292, Ishikawa, Japan
| | - Shadab Kazmi
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi 923-1292, Ishikawa, Japan
- Department of Child Health, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | | | - Mohd Ikhlaq
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Toyama, Japan
| | - Mohammad Shabab
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh 147301, Punjab, India
| | - Abdullah M. Assiri
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence, Transplant Research and Innovation Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia (A.A.); (S.A.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Dieter C. Broering
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence, Transplant Research and Innovation Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia (A.A.); (S.A.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|