1
|
Liu D, Qiu L, Han L, Wang Y, Wang F, Liu X, Wu J. Prevalence and influencing factors of medication-related burden among patients with late-life depression in typical city of eastern China: a cross-sectional study. BMC Public Health 2024; 24:3521. [PMID: 39696225 DOI: 10.1186/s12889-024-20939-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
AIM To evaluate the medication-related burden (MRB) of patients with late-life depression (LLD) and its influencing factors in China using the Living with Medicines Questionnaire-3 (LMQ-3), providing reference for reducing the MRB of those patients. METHOD A cross-sectional study was conducted between September 2023 and January 2024 on 588 patients with LLD. LMQ-3 and MRB factors questionnaire were used for data collection. The distribution of variables was assessed using descriptive analysis, while analyses of Mann-Whitney and Kruskal-Wallis were performed to evaluate inter-group differences. To explore the MRB among patients with LLD and influencing factors, multiple linear regression analysis was performed. RESULTS The median (IQR) LMQ-3 score of 588 participants was 102 (18), indicating a moderate MRB level. Regression analysis revealed a significant trend toward higher perceived burden among patients aged 70-79 years old, living in rural areas, receiving more medical insurance settlements, using all cash, taking more than 5 drugs each time, and taking medicine more than 3 times a day (p < 0.05), which were risk factors for higher MRB. Conversely, patients who lived with their children, had an annual household income (including adult children) more than 50,000 Chinese Yuan, and no adverse drug reactions had lower LMQ-3 scores (p < 0.05), which were protective factors. Patients' concerns about medicine, their lack of autonomy in medicine regimens, and the lack of communication between patients and doctors on treatment regimens were the main causes of the burden. CONCLUSIONS Results of this study provided preliminary evidence of the MRB among patients with LLD. Age, residence, living status, annual household income, type of drug payment, quantity and frequency of medication, and adverse reactions significantly affected the perceived medication burden. It is advisable for health policy makers and health care providers to implement appropriate intervention strategies and burden reduction programs for this vulnerable group.
Collapse
Affiliation(s)
- Dan Liu
- Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Linghe Qiu
- Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Lu Han
- Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yajing Wang
- Zhengzhou Ninth People's Hospital, 25 Sha Kou Road, Zhengzhou, Henan, 450008, China
| | - Fei Wang
- Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Xiaowei Liu
- Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China.
| | - Jianhong Wu
- Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China.
| |
Collapse
|
2
|
Ma YM, Zhang DP, Zhang HL, Cao FZ, Zhou Y, Wu B, Wang LZ, Xu B. Why is vestibular migraine associated with many comorbidities? J Neurol 2024; 271:7422-7433. [PMID: 39302416 DOI: 10.1007/s00415-024-12692-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Vestibular migraine (VM) is a usual trigger of episodic vertigo. Patients with VM often experience spinning, shaking, or unsteady sensations, which are usually also accompanied by photophobia, phonophobia, motor intolerance, and more. VM is often associated with a number of comorbidities. Recurrent episodes of VM can affect the patient's emotions, sleep, and cognitive functioning to varying degrees. Patients with VM may be accompanied by adverse moods such as anxiety, fear, and depression, which can gradually develop into anxiety disorders or depressive disorders. Sleep disorders are also a common concomitant symptom of VM, which significantly lower patients' quality of life. The influence of anxiety disorders and sleep disorders may reduce cognitive functions of VM, such as visuospatial ability, attention, and memory decline. Clinically, it is also common to see VM comorbid with other vestibular disorders, making the diagnosis more difficult. VM episodes are relieved but lingering, in which case VM may coexist with persistent postural-perceptual dizziness (PPPD). Anxiety may be an important bridge between recurrent VM and PPPD. The clinical manifestations of VM and Meniere's disease (MD) overlap considerably, and those who meet the diagnostic criteria for both can be said to have VM/MD comorbidity. VM can also present with positional vertigo, and some patients with VM present with typical benign paroxysmal positional vertigo (BPPV) nystagmus on positional testing. In this paper, we synthesize and analyze the pathomechanisms of VM comorbidity by reviewing the literature. The results show that it may be related to the extensive connectivity of the vestibular system with different brain regions and the close connection of the trigeminovascular system with the periphery of the vestibule. Therefore, it is necessary to pay attention to the diagnosis of comorbidities in VM, synthesize its pathogenesis, and give comprehensive treatment to patients.
Collapse
Affiliation(s)
- Yan-Min Ma
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou City, China
| | - Dao-Pei Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Henan Province, Zhengzhou City, China
| | - Huai-Liang Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Henan Province, Zhengzhou City, China
| | - Fang-Zheng Cao
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou City, China
| | - Yu Zhou
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou City, China
| | - Bin Wu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou City, China
| | - Ling-Zhe Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou City, China
| | - Bin Xu
- Department of Neurology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou City, 310053, China.
| |
Collapse
|
3
|
He CYY, Zhou Z, Kan MMP, Chan DHY, Wong ACT, Mok KHY, Lam FMH, Chan SCC, Cheung CKC, Yeung MKC, Wong AYL. Modifiable risk factors for mild cognitive impairment among cognitively normal community-dwelling older adults: A systematic review and meta-analysis. Ageing Res Rev 2024; 99:102350. [PMID: 38942197 DOI: 10.1016/j.arr.2024.102350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/16/2024] [Accepted: 05/26/2024] [Indexed: 06/30/2024]
Abstract
Although numerous studies have investigated modifiable risk factors for mild cognitive impairment (MCI) among community-dwelling seniors, no meta-analysis has summarized these findings. Five databases were searched from January 1, 2000, to December 30, 2023. The protocol was registered with PROSPERO. Data were extracted and reported following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Relevant meta-analyses of modifiable risk factors were performed. The evidence of each factor was assessed by the GRADE for cohort studies. Of 16,651 citations, 87 studies involving 225,584 community-dwelling seniors were included. Fourteen meta-analyses involving 20 studies with 44,199 participants were performed. The analyses revealed low-to-moderate-quality evidence supporting that diabetes, 2 or more comorbidities, anxiety, apathy, depressive symptoms, and physical frailty were risk factors for incident MCI in older adults. Conversely, hypertension, agitation, and irritability might not be risk factors. Additionally, moderate-quality evidence supports the protective effect of engaging in cognitive-demanding activities on the onset of MCI. Collectively, this study constitutes the first extensive compilation of evidence regarding the various risk factors for the development of MCI in older adults. Our findings hold significant potential to guide the formulation of prevention and management strategies to either prevent or potentially reverse the onset of MCI.
Collapse
Affiliation(s)
- Christo Y Y He
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, 999077, Hong Kong Special Administrative Region of China.
| | - Zhixing Zhou
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, 999077, Hong Kong Special Administrative Region of China.
| | - Mandy M P Kan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, 999077, Hong Kong Special Administrative Region of China.
| | - Dorothy H Y Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, 999077, Hong Kong Special Administrative Region of China.
| | - Athena C T Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, 999077, Hong Kong Special Administrative Region of China.
| | - Kenny H Y Mok
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, 999077, Hong Kong Special Administrative Region of China.
| | - Freddy M H Lam
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, 999077, Hong Kong Special Administrative Region of China.
| | - Sam C C Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, 999077, Hong Kong Special Administrative Region of China.
| | - Chelsia K C Cheung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, 999077, Hong Kong Special Administrative Region of China.
| | - Michael K C Yeung
- Department of Psychology, The Education University of Hong Kong, 999077, Hong Kong Special Administrative Region of China.
| | - Arnold Y L Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, 999077, Hong Kong Special Administrative Region of China; Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China.
| |
Collapse
|
4
|
Ni W, Niu Y, Cao S, Fan C, Fan J, Zhu L, Wang X. Intermittent hypoxia exacerbates anxiety in high-fat diet-induced diabetic mice by inhibiting TREM2-regulated IFNAR1 signaling. J Neuroinflammation 2024; 21:166. [PMID: 38956653 PMCID: PMC11218348 DOI: 10.1186/s12974-024-03160-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) and obstructive sleep apnea (OSA) are mutual risk factors, with both conditions inducing cognitive impairment and anxiety. However, whether OSA exacerbates cognitive impairment and anxiety in patients with T2DM remains unclear. Moreover, TREM2 upregulation has been suggested to play a protective role in attenuating microglia activation and improving synaptic function in T2DM mice. The aim of this study was to explore the regulatory mechanisms of TREM2 and the cognitive and anxiety-like behavioral changes in mice with OSA combined with T2DM. METHODS A T2DM with OSA model was developed by treating mice with a 60% kcal high-fat diet (HFD) combined with intermittent hypoxia (IH). Spatial learning memory capacity and anxiety in mice were investigated. Neuronal damage in the brain was determined by the quantity of synapses density, the number and morphology of brain microglia, and pro-inflammatory factors. For mechanism exploration, an in vitro model of T2DM combined with OSA was generated by co-treating microglia with high glucose (HG) and IH. Regulation of TREM2 on IFNAR1-STAT1 pathway was determined by RNA sequencing and qRT-PCR. RESULTS Our results showed that HFD mice exhibited significant cognitive dysfunction and anxiety-like behavior, accompanied by significant synaptic loss. Furthermore, significant activation of brain microglia and enhanced microglial phagocytosis of synapses were observed. Moreover, IH was found to significantly aggravate anxiety in the HFD mice. The mechanism of HG treatment may potentially involve the promotion of TREM2 upregulation, which in turn attenuates the proinflammatory microglia by inhibiting the IFNAR1-STAT1 pathway. Conversely, a significant reduction in TREM2 in IH-co-treated HFD mice and HG-treated microglia resulted in the further activation of the IFNAR1-STAT1 pathway and consequently increased proinflammatory microglial activation. CONCLUSIONS HFD upregulated the IFNAR1-STAT1 pathway and induced proinflammatory microglia, leading to synaptic damage and causing anxiety and cognitive deficits. The upregulated TREM2 inT2DM mice brain exerted a negative regulation of the IFNAR1-STAT1 pathway. Mice with T2DM combined with OSA exacerbated anxiety via the downregulation of TREM2, causing heightened IFNAR1-STAT1 pathway activation and consequently increasing proinflammatory microglia.
Collapse
MESH Headings
- Animals
- Mice
- Diet, High-Fat/adverse effects
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/genetics
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/genetics
- Anxiety/etiology
- Anxiety/metabolism
- Signal Transduction/physiology
- Signal Transduction/drug effects
- Hypoxia/metabolism
- Hypoxia/complications
- Male
- Mice, Inbred C57BL
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/psychology
- Receptor, Interferon alpha-beta/metabolism
- Receptor, Interferon alpha-beta/genetics
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/metabolism
- Microglia/metabolism
- STAT1 Transcription Factor/metabolism
- Sleep Apnea, Obstructive/complications
- Sleep Apnea, Obstructive/metabolism
- Sleep Apnea, Obstructive/psychology
Collapse
Affiliation(s)
- Wenyu Ni
- Qidong People's Hospital, Affiliated Qidong Hospital of Nantong University, Qidong Liver Cancer Institute, No.9, Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226000, China
| | - Yun Niu
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Sitong Cao
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Chunsun Fan
- Qidong People's Hospital, Affiliated Qidong Hospital of Nantong University, Qidong Liver Cancer Institute, No.9, Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226000, China
| | - Jian Fan
- Qidong People's Hospital, Affiliated Qidong Hospital of Nantong University, Qidong Liver Cancer Institute, No.9, Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226000, China
| | - Li Zhu
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| | - Xueting Wang
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.
- Medical Research Center Affiliated Hospital 2 of Nantong University, Nantong, China.
| |
Collapse
|
5
|
Liu C, Li L, Zhu D, Lin S, Ren L, Zhen W, Tan W, Wang L, Tian L, Wang Q, Mao P, Pan W, Li B, Ma X. Individualized prediction of cognitive test scores from functional brain connectome in patients with first-episode late-life depression. J Affect Disord 2024; 352:32-42. [PMID: 38360359 DOI: 10.1016/j.jad.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/17/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND In the realm of cognitive screening, the Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA) are widely utilized for detecting cognitive deficits in patients with late-life depression (LLD), However, the interindividual variability in neuroimaging biomarkers contributing to individual-specific symptom severity remains poorly understood. In this study, we used a connectome-based predictive model (CPM) approach on resting-state functional magnetic resonance imaging data from patients with LLD to establish individualized prediction models for the MoCA and the MMSE scores. METHODS We recruited 135 individuals diagnosed with first-episode LLD for this research. Participants underwent the MMSE and MoCA tests, along with resting-state functional magnetic resonance imaging scans. Functional connectivity matrices derived from these scans were utilized in CPM models to predict MMSE or MoCA scores. Predictive precision was assessed by correlating predicted and observed scores, with the significance of prediction performance evaluated through a permutation test. RESULTS The negative model of the CPM procedure demonstrated a significant capacity to predict MoCA scores (r = -0.309, p = 0.002). Similarly, the CPM procedure could predict MMSE scores (r = -0.236, p = 0.016). The predictive models for cognitive test scores in LLD primarily involved the visual network, somatomotor network, dorsal attention network, and ventral attention network. CONCLUSIONS Brain functional connectivity emerges as a promising predictor of personalized cognitive test scores in LLD, suggesting that functional connectomes are potential neurobiological markers for cognitive performance in patients with LLD.
Collapse
Affiliation(s)
- Chaomeng Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Li Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Dandi Zhu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Shuo Lin
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Li Ren
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Wenfeng Zhen
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Weihao Tan
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Lina Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Lu Tian
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qian Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Peixian Mao
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Weigang Pan
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Bing Li
- Hebei Provincial Mental Health Center, Baoding, China; Hebei Key Laboratory of Major Mental and Behavioral Disorders, Baoding, China; The Sixth Clinical Medical College of Hebei University, Baoding, China.
| | - Xin Ma
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Nguyen CQN, Ma L, Low YLC, Tan ECK, Fowler C, Masters CL, Jin L, Pan Y. Exploring the link between comorbidities and Alzheimer's dementia in the Australian Imaging, Biomarker & Lifestyle (AIBL) study. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12593. [PMID: 38770381 PMCID: PMC11103763 DOI: 10.1002/dad2.12593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Mounting evidence suggests that certain comorbidities may influence the clinical evolution of Alzheimer's dementia (AD). METHODS We conducted logistic regression analyses on the medical history and cognitive health diagnoses of participants in the Australian Imaging, Biomarker & Lifestyle study (n = 2443) to investigate cross-sectional associations between various comorbidities and mild cognitive impairment (MCI)/AD. RESULTS A mixture of associations were observed. Higher comorbidity of anxiety and other neurological disorders was associated with higher odds of AD, while arthritis, cancer, gastric complaints, high cholesterol, joint replacement, visual defect, kidney and liver disease were associated with lower odds of AD. DISCUSSION This study underscores the links between specific comorbidities and MCI/AD. Further research is needed to elucidate the longitudinal comorbidity-MCI/AD associations and underlying mechanisms of these associations. Highlights Comorbidities that significantly increased AD odds included anxiety and other neurological disorders.Arthritis, cancer, gastric complaints, high cholesterol, joint replacement, visual defect, kidney and liver disease were associated with lower odds of AD.Alcohol consumption had the most significant confounding effect in the study.Visual-AD association was modified by age, sex, and APOE ε4 allele status.Anxiety-AD and depression-AD associations were modified by sex.
Collapse
Affiliation(s)
| | - Liwei Ma
- The Florey InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Yi Ling Clare Low
- The Florey InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Edwin C. K. Tan
- School of PharmacyFaculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Christopher Fowler
- The Florey InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Colin L. Masters
- The Florey InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Liang Jin
- The Florey InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Yijun Pan
- The Florey InstituteThe University of MelbourneParkvilleVictoriaAustralia
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
- Department of Organ AnatomyGraduate School of MedicineTohoku UniversitySendaiMiyagiJapan
| | | |
Collapse
|
7
|
Freudenberg-Hua Y, Li W, Lee UJ, Ma Y, Koppel J, Goate A. Association between pre-dementia psychiatric diagnoses and all-cause dementia is independent from polygenic dementia risks in the UK Biobank. EBioMedicine 2024; 101:104978. [PMID: 38320878 PMCID: PMC10944156 DOI: 10.1016/j.ebiom.2024.104978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/27/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Psychiatric disorders have been associated with higher risk for future dementia. Understanding how pre-dementia psychiatric disorders (PDPD) relate to established dementia genetic risks has implications for dementia prevention. METHODS In this retrospective cohort study, we investigated the relationships between polygenic risk scores for Alzheimer's disease (AD PRS), PDPD, alcohol use disorder (AUD), and subsequent dementia in the UK Biobank (UKB) and tested whether the relationships are consistent with different causal models. FINDINGS Among 502,408 participants, 9352 had dementia. As expected, AD PRS was associated with greater risk for dementia (odds ratio (OR) 1.62, 95% confidence interval (CI), 1.59-1.65). A total of 94,237 participants had PDPD, of whom 2.6% (n = 2519) developed subsequent dementia, compared to 1.7% (n = 6833) of 407,871 participants without PDPD. Accordingly, PDPD were associated with 73% greater risk of incident dementia (OR 1.73, 1.65-1.83). Among dementia subtypes, the risk increase was 1.5-fold for AD (n = 3365) (OR 1.46, 1.34-1.59) and 2-fold for vascular dementia (VaD, n = 1823) (OR 2.08, 1.87-2.32). Our data indicated that PDPD were neither a dementia prodrome nor a mediator for AD PRS. Shared factors for both PDPD and dementia likely substantially account for the observed association, while a causal role of PDPD in dementia could not be excluded. AUD could be one of the shared causes for PDPD and dementia. INTERPRETATION Psychiatric diagnoses were associated with subsequent dementia in UKB participants, and the association is orthogonal to established dementia genetic risks. Investigating shared causes for psychiatric disorders and dementia would shed light on this dementia pathway. FUNDING US NIH (K08AG054727).
Collapse
Affiliation(s)
- Yun Freudenberg-Hua
- Center for Alzheimer's Disease Research, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Division of Geriatric Psychiatry, Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA.
| | - Wentian Li
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA; Center for Genomics and Human Genetics, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Un Jung Lee
- Biostatistics Unit, Office of Academic Affairs, Northwell Health, New Hyde Park, NY, USA
| | - Yilong Ma
- Center for Neurosciences, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Jeremy Koppel
- Center for Alzheimer's Disease Research, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Division of Geriatric Psychiatry, Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
| | - Alison Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
8
|
Hausman HK, Alexander GE, Cohen R, Marsiske M, DeKosky ST, Hishaw GA, O'Shea A, Kraft JN, Dai Y, Wu S, Woods AJ. tDCS reduces depression and state anxiety symptoms in older adults from the augmenting cognitive training in older adults study (ACT). Brain Stimul 2024; 17:283-311. [PMID: 38438012 PMCID: PMC11110843 DOI: 10.1016/j.brs.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Pharmacological interventions for depression and anxiety in older adults often have significant side effects, presenting the need for more tolerable alternatives. Transcranial direct current stimulation (tDCS) is a promising non-pharmacological intervention for depression in clinical populations. However, its effects on depression and anxiety symptoms, particularly in older adults from the general public, are understudied. OBJECTIVE We conducted a secondary analysis of the Augmenting Cognitive Training in Older Adults (ACT) trial to assess tDCS efficacy in reducing psychological symptoms in older adults. We hypothesized that active stimulation would yield greater reductions in depression and state anxiety compared to sham post-intervention and at the one-year follow-up. We also explored tDCS effects in subgroups characterized by baseline symptom severity. METHODS A sample of 378 older adults recruited from the community completed a 12-week tDCS intervention with cognitive or education training. Electrodes were placed at F3/F4, and participants received active or sham tDCS during training sessions. We assessed the association between tDCS group and changes in depression, state anxiety, and trait anxiety from baseline to post-intervention and one-year controlling for covariates. RESULTS The active tDCS group demonstrated greater reductions in depression and state anxiety compared to sham post-intervention, particularly in individuals with mild depression and moderate/severe state anxiety at baseline. Furthermore, the active tDCS group with moderate/severe state anxiety maintained greater symptom reductions at one-year. CONCLUSIONS tDCS effectively reduced depression and state anxiety symptoms in a large sample of older adults. These findings highlight the importance of considering symptom severity when identifying those who may benefit most from this intervention.
Collapse
Affiliation(s)
- Hanna K Hausman
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Gene E Alexander
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Disease Consortium, Tucson, AZ, USA; Brain Imaging, Behavior and Aging Laboratory, Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Ronald Cohen
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Michael Marsiske
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Steven T DeKosky
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Neurology, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Georg A Hishaw
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Disease Consortium, Tucson, AZ, USA
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Jessica N Kraft
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yunfeng Dai
- Department of Biostatistics, College of Public Health and Health Professions, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Samuel Wu
- Department of Biostatistics, College of Public Health and Health Professions, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA.
| |
Collapse
|