1
|
Dicorato MM, Basile P, Muscogiuri G, Carella MC, Naccarati ML, Dentamaro I, Guglielmo M, Baggiano A, Mushtaq S, Fusini L, Pontone G, Forleo C, Ciccone MM, Guaricci AI. Novel Insights into Non-Invasive Diagnostic Techniques for Cardiac Amyloidosis: A Critical Review. Diagnostics (Basel) 2024; 14:2249. [PMID: 39410653 PMCID: PMC11475987 DOI: 10.3390/diagnostics14192249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiac amyloidosis (CA) is a cardiac storage disease caused by the progressive extracellular deposition of misfolded proteins in the myocardium. Despite the increasing interest in this pathology, it remains an underdiagnosed condition. Non-invasive diagnostic techniques play a central role in the suspicion and detection of CA, also thanks to the continuous scientific and technological advances in these tools. The 12-lead electrocardiography is an inexpensive and reproducible test with a diagnostic accuracy that, in some cases, exceeds that of imaging techniques, as recent studies have shown. Echocardiography is the first-line imaging modality, although none of its parameters are pathognomonic. According to the 2023 ESC Guidelines, a left ventricular wall thickness ≥ 12 mm is mandatory for the suspicion of CA, making this technique crucial. Cardiac magnetic resonance provides high-resolution images associated with tissue characterization. The use of contrast and non-contrast sequences enhances the diagnostic power of this imaging modality. Nuclear imaging techniques, including bone scintigraphy and positron emission tomography, allow the detection of amyloid deposition in the heart, and their role is also central in assessing the prognosis and response to therapy. The role of computed tomography was recently evaluated by several studies, above in population affected by aortic stenosis undergoing transcatheter aortic valve replacement, with promising results. Finally, machine learning and artificial intelligence-derived algorithms are gaining ground in this scenario and provide the basis for future research. Understanding the new insights into non-invasive diagnostic techniques is critical to better diagnose and manage patients with CA and improve their survival.
Collapse
Affiliation(s)
- Marco Maria Dicorato
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, Polyclinic University Hospital, 70124 Bari, Italy; (M.M.D.); (P.B.); (M.C.C.); (M.L.N.); (I.D.); (C.F.); (M.M.C.); (A.I.G.)
| | - Paolo Basile
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, Polyclinic University Hospital, 70124 Bari, Italy; (M.M.D.); (P.B.); (M.C.C.); (M.L.N.); (I.D.); (C.F.); (M.M.C.); (A.I.G.)
| | - Giuseppe Muscogiuri
- Department of Radiology, IRCCS Istituto Auxologico Italiano, San Luca Hospital, 20149 Milan, Italy
| | - Maria Cristina Carella
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, Polyclinic University Hospital, 70124 Bari, Italy; (M.M.D.); (P.B.); (M.C.C.); (M.L.N.); (I.D.); (C.F.); (M.M.C.); (A.I.G.)
| | - Maria Ludovica Naccarati
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, Polyclinic University Hospital, 70124 Bari, Italy; (M.M.D.); (P.B.); (M.C.C.); (M.L.N.); (I.D.); (C.F.); (M.M.C.); (A.I.G.)
| | - Ilaria Dentamaro
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, Polyclinic University Hospital, 70124 Bari, Italy; (M.M.D.); (P.B.); (M.C.C.); (M.L.N.); (I.D.); (C.F.); (M.M.C.); (A.I.G.)
| | - Marco Guglielmo
- Department of Cardiology, Division of Heart and Lungs, Utrecht University, Utrecht University Medical Center, 3584 Utrecht, The Netherlands;
- Department of Cardiology, Haga Teaching Hospital, 2545 The Hague, The Netherlands
| | - Andrea Baggiano
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (G.P.)
| | - Saima Mushtaq
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (G.P.)
| | - Laura Fusini
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (G.P.)
| | - Gianluca Pontone
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (G.P.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Cinzia Forleo
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, Polyclinic University Hospital, 70124 Bari, Italy; (M.M.D.); (P.B.); (M.C.C.); (M.L.N.); (I.D.); (C.F.); (M.M.C.); (A.I.G.)
| | - Marco Matteo Ciccone
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, Polyclinic University Hospital, 70124 Bari, Italy; (M.M.D.); (P.B.); (M.C.C.); (M.L.N.); (I.D.); (C.F.); (M.M.C.); (A.I.G.)
| | - Andrea Igoren Guaricci
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, Polyclinic University Hospital, 70124 Bari, Italy; (M.M.D.); (P.B.); (M.C.C.); (M.L.N.); (I.D.); (C.F.); (M.M.C.); (A.I.G.)
| |
Collapse
|
2
|
Zheng Y, Liu X, Yang K, Chen X, Wang J, Zhao K, Dong W, Yin G, Yu S, Yang S, Lu M, Su G, Zhao S. Cardiac MRI feature-tracking-derived torsion mechanics in systolic and diastolic dysfunction in systemic light-chain cardiac amyloidosis. Clin Radiol 2024; 79:e692-e701. [PMID: 38388253 DOI: 10.1016/j.crad.2023.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 11/09/2023] [Accepted: 12/29/2023] [Indexed: 02/24/2024]
Abstract
AIM To describe the myocardial torsion mechanics in cardiac amyloidosis (CA), and evaluate the correlations between left ventricle (LV) torsion mechanics and conventional parameters using cardiac magnetic resonance imaging feature tracking (CMR-FT). MATERIALS AND METHODS One hundred and thirty-nine patients with light-chain CA (AL-CA) were divided into three groups: group 1 with preserved systolic function (LV ejection fraction [LVEF] ≥50%, n=55), group 2 with mildly reduced systolic function (40% ≤ LVEF <50%, n=51), and group 3 with reduced systolic function (LVEF <40%, n=33), and compared with age- and gender-matched healthy controls (n=26). All patients underwent cine imaging and late gadolinium-enhancement (LGE). Cine images were analysed offline using CMR-FT to estimate torsion parameters. RESULTS Global torsion, base-mid torsion, and peak diastolic torsion rate (diasTR) were significantly impaired in patients with preserved systolic function (p<0.05 for all), whereas mid-apex torsion and peak systolic torsion rate (sysTR) were preserved (p>0.05 for both) compared with healthy controls. In patients with mildly reduced systolic function, global torsion and base-mid torsion were lower compared to those with preserved systolic function (p<0.05 for both), while mid-apex torsion, sysTR, and diasTR were preserved (p>0.05 for all). In patients with reduced systolic function, only sysTR was significantly worse compared with mildly reduced systolic function (p<0.05). At multivariable analysis, right ventricle (RV) end-systolic volume RVESV index and NYHA class were independently related to global torsion, whereas LVEF was independently related to sysTR. RV ejection fraction (RVEF) was independently related to diasTR. LV global torsion performed well (AUC 0.71; 95% confidence interval [CI]: 0.61, 0.77) in discriminating transmural from non-transmural LGE in AL-CA patients. CONCLUSION LV torsion mechanics derived by CMR-FT could help to monitor LV systolic and diastolic function in AL-CA patients and function as a new imaging marker for LV dysfunction and LGE transmurality.
Collapse
Affiliation(s)
- Y Zheng
- Department of Radiology, Tsinghua University Hospital, Tsinghua University, Beijing, 100084, China; Department of Magnetic Resonance Imaging, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital and National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beilishi Road No 167, Xicheng District, Beijing 100037, China
| | - X Liu
- Department of Neurology, Beijing Geriatric Hospital, Wenquan Road No 118, Haidian District, Beijing 100095, China
| | - K Yang
- Department of Magnetic Resonance Imaging, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital and National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beilishi Road No 167, Xicheng District, Beijing 100037, China
| | - X Chen
- Department of Magnetic Resonance Imaging, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital and National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beilishi Road No 167, Xicheng District, Beijing 100037, China
| | - J Wang
- Department of Magnetic Resonance Imaging, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital and National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beilishi Road No 167, Xicheng District, Beijing 100037, China
| | - K Zhao
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, SZ University Town, Shenzhen 518055, China
| | - W Dong
- Department of Magnetic Resonance Imaging, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital and National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beilishi Road No 167, Xicheng District, Beijing 100037, China
| | - G Yin
- Department of Magnetic Resonance Imaging, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital and National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beilishi Road No 167, Xicheng District, Beijing 100037, China
| | - S Yu
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu 610041, Sichuan, China
| | - S Yang
- Department of Magnetic Resonance Imaging, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital and National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beilishi Road No 167, Xicheng District, Beijing 100037, China
| | - M Lu
- Department of Magnetic Resonance Imaging, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital and National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beilishi Road No 167, Xicheng District, Beijing 100037, China
| | - G Su
- Department of Cardiology, Jinan Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250013, China.
| | - S Zhao
- Department of Magnetic Resonance Imaging, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital and National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beilishi Road No 167, Xicheng District, Beijing 100037, China.
| |
Collapse
|
3
|
Khatib M, Elbaz-Greener G, Nitzan O, Soboh S, Peretz A, Hazanov E, Kinany W, Halahla Y, Grosman-Rimon L, Houle H, Amir O, Carasso S. Unmasking Myocardial Dysfunction in Patients Hospitalized for Community-Acquired Pneumonia Using a 4-Chamber 3-Dimensional Volume/Strain Analysis. J Digit Imaging 2022; 35:1654-1661. [PMID: 35705794 PMCID: PMC9200371 DOI: 10.1007/s10278-022-00665-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
Lower respiratory infection was reported as the most common fatal infectious disease. Community-acquired pneumonia (CAP) and myocardial injury are associated; yet, true prevalence of myocardial injury is probably underestimated. We assessed the rate and severity of myocardial dysfunction in patients with CAP. Admitted patients diagnosed with CAP were prospectively recruited. All the patients had C-reactive protein (CRP), brain natriuretic peptide (BNP), and high-sensitivity cardiac troponin (hs-cTnl) tests added to their routine workup. 2D/3D Doppler echocardiography was done on a Siemens Acuson SC2000 machine ≤ 24 h of diagnosis. 3D datasets were blindly analyzed for 4-chamber volumes/strains using EchobuildR 3D-Volume Analysis prototype software, v3.0 2019, Siemens-Medical Solutions. Volume/strain parameters were correlated with admission clinical and laboratory findings. The cohort included 34 patients, median age 60 years (95% CI 55-72). The cohort included 18 (53%) patients had hypertension, 9 (25%) had diabetes mellitus, 7 (21%) were smokers, 7 (21%) had previous myocardial infarction, 4 (12%) had chronic renal failure, and 1 (3%) was on hemodialysis treatment. 2D/Doppler echocardiography findings showed normal ventricular size/function (LVEF 63 ± 9%), mild LV hypertrophy (104 ± 36 g/m2), and LA enlargement (41 ± 6 mm). 3D volumes/strains suggested bi-atrial and right ventricular dysfunction (global longitudinal strain RVGLS = - 8 ± 4%). Left ventricular strain was normal (LVGLS = - 18 ± 5%) and correlated with BNP (r = 0.40, p = 0.024). The patients with LVGLS > - 17% had higher admission blood pressure and lower SaO2 (144 ± 33 vs. 121 ± 20, systolic, mmHg, p = 0.02, and 89 ± 4 vs. 94 ± 4%, p = 0.006, respectively). hs-cTnl and CRP were not different. Using novel 3D volume/strain software in CAP patients, we demonstrated diffuse global myocardial dysfunction involving several chambers. The patients with worse LV GLS had lower SaO2 and higher blood pressure at presentation. LV GLS correlated with maximal BNP level and did not correlate with inflammation or myocardial damage markers.
Collapse
Affiliation(s)
- Moayad Khatib
- The Lydia and Carol Kittner, Lea and Benjamin Davidai Division of Cardiovascular Medicine and Surgery, Padeh Poriya Medical Center, Lower Galilee, Tiberias, Israel
| | - Gabby Elbaz-Greener
- Hebrew University of Jerusalem, Jerusalem, Israel
- Cardiovascular Institute, Hadassah Medical Center, Jerusalem, Israel
| | - Orna Nitzan
- Infectious Disease Unit, Baruch Padeh Medical Center, Poriya, Israel
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, POB 1589, 8 Henrietta Szold Street, Safed, Israel, 1311502
| | - Soboh Soboh
- The Lydia and Carol Kittner, Lea and Benjamin Davidai Division of Cardiovascular Medicine and Surgery, Padeh Poriya Medical Center, Lower Galilee, Tiberias, Israel
- Infectious Disease Unit, Baruch Padeh Medical Center, Poriya, Israel
| | - Avi Peretz
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, POB 1589, 8 Henrietta Szold Street, Safed, Israel, 1311502
- Clinical Microbiology Laboratory, Baruch Padeh Medical Center, Poriya, Israel
| | - Evgeni Hazanov
- The Lydia and Carol Kittner, Lea and Benjamin Davidai Division of Cardiovascular Medicine and Surgery, Padeh Poriya Medical Center, Lower Galilee, Tiberias, Israel
| | - Wadia Kinany
- The Lydia and Carol Kittner, Lea and Benjamin Davidai Division of Cardiovascular Medicine and Surgery, Padeh Poriya Medical Center, Lower Galilee, Tiberias, Israel
| | - Yusra Halahla
- The Lydia and Carol Kittner, Lea and Benjamin Davidai Division of Cardiovascular Medicine and Surgery, Padeh Poriya Medical Center, Lower Galilee, Tiberias, Israel
| | - Liza Grosman-Rimon
- The Lydia and Carol Kittner, Lea and Benjamin Davidai Division of Cardiovascular Medicine and Surgery, Padeh Poriya Medical Center, Lower Galilee, Tiberias, Israel
| | - Helene Houle
- Siemens Medical Solutions USA, Mountain View, CA, USA
| | - Offer Amir
- Hebrew University of Jerusalem, Jerusalem, Israel.
- Cardiovascular Institute, Hadassah Medical Center, Jerusalem, Israel.
| | - Shemy Carasso
- The Lydia and Carol Kittner, Lea and Benjamin Davidai Division of Cardiovascular Medicine and Surgery, Padeh Poriya Medical Center, Lower Galilee, Tiberias, Israel.
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, POB 1589, 8 Henrietta Szold Street, Safed, Israel, 1311502.
- Non-Invasive Cardiac Imaging Cardiovascular Institute, The Baruch Padeh Medical Center, Poriya, Lower Galilee, Israel, 15208.
| |
Collapse
|
4
|
3D echocardiography, arterial stiffness, and biomarkers in early diagnosis and prediction of CHOP-induced cardiotoxicity in non-Hodgkin's lymphoma. Sci Rep 2020; 10:18473. [PMID: 33116212 PMCID: PMC7595195 DOI: 10.1038/s41598-020-75043-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone) represents standard chemotherapy in non-Hodgkin's lymphoma (NHL) with risk of cardiotoxicity. To define new parameters, such as 3D myocardial deformation, arterial stiffness, and biomarkers for early diagnosis and prediction of cardiotoxicity. 110 NHL patients with LVEF > 50%, scheduled for CHOP, were evaluated at baseline, after third cycle and chemotherapy completion. 3DE assessed LVEF and myocardial deformation: longitudinal (LS), radial, circumferential, area strain. Echo-tracking analysed arterial stiffness: PWV, β index, wave intensity. Troponin I and NT-pro-BNP were measured. After chemotherapy completion, 18 patients (16%) (group I) developed cardiotoxicity (LVEF decrease < 50%, with > 10% from baseline); 92 patients (group II) did not. Significant reduction of 3D LV deformation and increase of arterial stiffness developed starting with third cycle, with greater changes in group I. LS reduction and PWV increase after third cycle were the best independent predictors for LVEF decrease; the association of LS decrease by > 19% and PWV increase by > 27% after third cycle predicted cardiotoxicity after chemotherapy completion (90% sensitivity and 81% specificity). 3D LS and PWV can detect early chemotherapy-induced cardiotoxicity and predict LVEF decline. These parameters should be incorporated in clinical protocols to monitor cardiovascular function during chemotherapy and early intervention.
Collapse
|
5
|
Amzulescu MS, De Craene M, Langet H, Pasquet A, Vancraeynest D, Pouleur AC, Vanoverschelde JL, Gerber BL. Myocardial strain imaging: review of general principles, validation, and sources of discrepancies. Eur Heart J Cardiovasc Imaging 2020; 20:605-619. [PMID: 30903139 PMCID: PMC6529912 DOI: 10.1093/ehjci/jez041] [Citation(s) in RCA: 294] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/07/2019] [Indexed: 01/01/2023] Open
Abstract
Myocardial tissue tracking imaging techniques have been developed for a more accurate evaluation of myocardial deformation (i.e. strain), with the potential to overcome the limitations of ejection fraction (EF) and to contribute, incremental to EF, to the diagnosis and prognosis in cardiac diseases. While most of the deformation imaging techniques are based on the similar principles of detecting and tracking specific patterns within an image, there are intra- and inter-imaging modality inconsistencies limiting the wide clinical applicability of strain. In this review, we aimed to describe the particularities of the echocardiographic and cardiac magnetic resonance deformation techniques, in order to understand the discrepancies in strain measurement, focusing on the potential sources of variation: related to the software used to analyse the data, to the different physics of image acquisition and the different principles of 2D vs. 3D approaches. As strain measurements are not interchangeable, it is highly desirable to work with validated strain assessment tools, in order to derive information from evidence-based data. There is, however, a lack of solid validation of the current tissue tracking techniques, as only a few of the commercial deformation imaging softwares have been properly investigated. We have, therefore, addressed in this review the neglected issue of suboptimal validation of tissue tracking techniques, in order to advocate for this matter.
Collapse
Affiliation(s)
- M S Amzulescu
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Av Hippocrate 10/2806, B Brussels, Belgium
| | - M De Craene
- Philips Research, Medical Imaging (Medisys), 33 rue de Verdun, CS60055, Suresnes Cedex, France
| | - H Langet
- Clinical Research Board, Philips Research, 33 rue de Verdun, CS60055, Suresnes Cedex, France
| | - A Pasquet
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Av Hippocrate 10/2806, B Brussels, Belgium
| | - D Vancraeynest
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Av Hippocrate 10/2806, B Brussels, Belgium
| | - A C Pouleur
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Av Hippocrate 10/2806, B Brussels, Belgium
| | - J L Vanoverschelde
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Av Hippocrate 10/2806, B Brussels, Belgium
| | - B L Gerber
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Av Hippocrate 10/2806, B Brussels, Belgium
- Corresponding author. Tel: +32 (2) 764 2803; Fax: +32 (2) 764 8980. E-mail:
| |
Collapse
|
6
|
Dilaveris P, Antoniou CK, Manolakou P, Tsiamis E, Gatzoulis K, Tousoulis D. Biomarkers Associated with Atrial Fibrosis and Remodeling. Curr Med Chem 2019; 26:780-802. [PMID: 28925871 DOI: 10.2174/0929867324666170918122502] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/16/2016] [Accepted: 12/23/2016] [Indexed: 12/22/2022]
Abstract
Atrial fibrillation is the most common rhythm disturbance encountered in clinical practice. Although often considered as solely arrhythmic in nature, current evidence has established that atrial myopathy constitutes both the substrate and the outcome of atrial fibrillation, thus initiating a vicious, self-perpetuating cycle. This myopathy is triggered by stress-induced (including pressure/volume overload, inflammation, oxidative stress) responses of atrial tissue, which in the long term become maladaptive, and combine elements of both structural, especially fibrosis, and electrical remodeling, with contemporary approaches yielding potentially useful biomarkers of these processes. Biomarker value becomes greater given the fact that they can both predict atrial fibrillation occurrence and treatment outcome. This mini-review will focus on the biomarkers of atrial remodeling (both electrical and structural) and fibrosis that have been validated in human studies, including biochemical, histological and imaging approaches.
Collapse
Affiliation(s)
- Polychronis Dilaveris
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Panagiota Manolakou
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftherios Tsiamis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Gatzoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Tousoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
Laser KT, Karabiyik A, Körperich H, Horst JP, Barth P, Kececioglu D, Burchert W, DallaPozza R, Herberg U. Validation and Reference Values for Three-Dimensional Echocardiographic Right Ventricular Volumetry in Children: A Multicenter Study. J Am Soc Echocardiogr 2018; 31:1050-1063. [DOI: 10.1016/j.echo.2018.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Indexed: 01/24/2023]
|
8
|
Abstract
PURPOSE OF REVIEW Three-dimensional (3D) echocardiography (3DE) and 4-dimensional echocardiography (4DE), also known as real-time (RT) 3DE (RT3DE), are rapidly emerging technologies which have made significant impact in the clinical arena over the years. This review will discuss the recent applications of 3DE in diagnosing and treating different types of cardiovascular disease. RECENT FINDINGS Recent studies using 3DE expanded on prior findings and introduced additional applications to different cardiac conditions. Some studies have used 3D parameters to prognosticate long-term outcomes. Numerous innovative software designs including fully automated algorithms have been introduced to better evaluate valvular heart disease and cardiac function. SUMMARY With further evolution of 3DE technologies, this imaging modality will emerge as a powerful tool and likely become the imaging modality of choice in the diagnosis and management of various cardiac disorders.
Collapse
Affiliation(s)
- Susan H. Kwon
- Research Department, 100 Port Washington Blvd, Roslyn, NY 11576 USA
| | - Aasha S. Gopal
- Research Department, 100 Port Washington Blvd, Roslyn, NY 11576 USA
| |
Collapse
|
9
|
Left Ventricular Systolic Myocardial Deformation: A Comparison of Two- and Three-Dimensional Echocardiography in Children. J Am Soc Echocardiogr 2017; 30:974-983. [DOI: 10.1016/j.echo.2017.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Indexed: 01/02/2023]
|
10
|
Leischik R, Dworrak B, Sanchis-Gomar F, Lucia A, Buck T, Erbel R. Echocardiographic assessment of myocardial ischemia. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:259. [PMID: 27500160 DOI: 10.21037/atm.2016.07.06] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Over the last 60 years, echocardiography has emerged as a dominant and indispensable technique for the detection and assessment of coronary heart disease (CHD). In this review, we will describe and discuss this powerful tool of cardiology, especially in the hands of an experienced user, with a focus on myocardial ischemia. Technical development is still on-going, and various new ultrasound techniques have been established in the field of echocardiography in the last several years, including tissue Doppler imaging (TDI), contrast echocardiography, three-dimensional echocardiography (3DE), and speckle tracking echocardiography (i.e., strain/strain rate-echocardiography). High-end equipment with harmonic imaging, high frame rates and the opportunity to adjust mechanical indices has improved imaging quality. Like all new techniques, these techniques must first be subjected to comprehensive scientific assessment, and appropriate training that accounts for physical and physiological limits should be provided. These limits will constantly be redefined as echocardiographic techniques continue to change, which will present new challenges for the further development of ultrasound technology.
Collapse
Affiliation(s)
- Roman Leischik
- Faculty of Health, School of Medicine, University Witten/Herdecke, Hagen, Germany
| | - Birgit Dworrak
- Faculty of Health, School of Medicine, University Witten/Herdecke, Hagen, Germany
| | | | - Alejandro Lucia
- Research Institute Hospital 12 de Octubre ("i+12"), Madrid, Spain;; European University of Madrid, Madrid, Spain
| | - Thomas Buck
- Clinic of Cardiology, Klinikum Westfalen, Dortmund, Germany
| | - Raimund Erbel
- Institute of Medical Informatics, Biometry, Epidemiology, University Clinic Essen, Essen, Germany
| |
Collapse
|