1
|
El Mathari S, Bhoera RA, Hopman LHGA, Heidendael J, Malekzadeh A, Nederveen A, van Ooij P, Götte MJW, Kluin J. Disparities in quantification of mitral valve regurgitation between cardiovascular magnetic resonance imaging and trans-thoracic echocardiography: a systematic review. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024:10.1007/s10554-024-03280-y. [PMID: 39499451 DOI: 10.1007/s10554-024-03280-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/27/2024] [Indexed: 11/07/2024]
Abstract
Primary mitral regurgitation (MR) is a prevalent valvular heart disease. Therapy stratification for MR depends on accurate assessment of MR severity and left ventricular (LV) dimensions. While trans-thoracic echocardiography (TTE) has been the standard/preferred assessment method, cardiovascular magnetic resonance imaging (CMR) has gained recognition for its superior assessment of LV dimensions and MR severity. Both imaging modalities have their own advantages and limitation for therapy guidance. However, the differences between the two modalities for assessing/grade severity and clinical impact of MR remains unclear. This systematic review aims to evaluate the differences between TTE and CMR in quantifying MR severity and LV dimensions, providing insights for optimal clinical management. A literature search was performed from inception up to March 21st 2023. This resulted in 2,728 articles. After screening, 22 articles were deemed eligible for inclusion in the meta-analysis. The included study variables were, mitral valve regurgitation volume (MRVOL), regurgitation fraction (MRFRAC), LV end-diastolic volume (LVEDV), LV end-systolic volume (LVESV), LV stroke volume (LVSV), and LV ejection fraction (LVEF). TTE showed a significant higher MRVOL (10.4 ml, I2 = 88%, p = 0.002) and MRFRAC (6.3%, I2 = 51%, p = 0.05) compared to CMR, while CMR demonstrated a higher LVEDV (21.9 ml, I2 = 66%, p = < 0.001) and LVESV (16.8 ml, I2 = 0%, p = < 0.001) compared to TTE. Our findings demonstrate substantial disparities in TTE and CMR derived measurements for parameters that play a pivotal role in the clinical stratification guidelines. This discrepancy prompts a critical question regarding the prognostic value of both imaging modalities, which warrants future research.
Collapse
Affiliation(s)
- Sulayman El Mathari
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, The Netherlands.
| | - Rahul A Bhoera
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Luuk H G A Hopman
- Department of Cardiology, Amsterdam University Medical Center, Room D3-221, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Josephine Heidendael
- Department of Cardiology, Amsterdam University Medical Center, Room D3-221, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Arjan Malekzadeh
- Medical Library, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Aart Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Pim van Ooij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Marco J W Götte
- Department of Cardiology, Amsterdam University Medical Center, Room D3-221, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jolanda Kluin
- Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Heo R. Searching for 'the method' in the assessment of complex mitral valve. J Cardiovasc Imaging 2024; 32:14. [PMID: 39080792 PMCID: PMC11288064 DOI: 10.1186/s44348-024-00004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/15/2023] [Indexed: 08/03/2024] Open
Affiliation(s)
- Ran Heo
- Division of Cardiology, Hanyang University Medical Center, Hanyang University College of Medicine, 222 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Korea.
| |
Collapse
|
3
|
Berthelot-Richer M, Vakulenko HV, Calleja A, Woo A, Thavendiranathan P, Poulin F. Two-dimensional transthoracic measure of mitral annulus in mitral valve prolapse and moderate to severe regurgitation: a method comparison analysis with three-dimensional transesophageal echocardiography. J Cardiovasc Imaging 2024; 32:2. [PMID: 38907302 PMCID: PMC11177645 DOI: 10.1186/s44348-024-00001-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/18/2023] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Mitral annulus (MA) area is derived during transthoracic echocardiography (TTE) assuming of a circular shape using the MA diameter from the apical 4 chamber (A4c) view. Since the MA is not a circular structure, we hypothesized that an elliptical model using parasternal long-axis (PLAX) and apical 2 chamber (A2c) view measured MA diameters would have better agreement with 3-dimensional transesophageal echocardiography (3D TEE) measured MA in degenerative mitral valve disease (DMVD). METHODS Seventy-six patients with moderate-to-severe DMVD had 2D TTE and 3D TEE performed. MA area was measured retrospectively using semi-automatic modeling of 3D data (3D TEEsa) and considered as the reference method. MA diameters were measured using different 2D TTE views. MA area was calculated using assumptions of a circular or an elliptical shape. 2D TTE derived and 3D TEEsa. MA areas were compared using linear regression and Bland-Altman analysis. RESULTS The median MA area measured at 3D TEEsa was 1,386 (1,293-1,673) mm2. With 2D TTE, the circular model using A4c view diameter resulted in a small systematic underestimation of MA area (6%), while the elliptical model using PLAX and A2c diameters resulted in 25% systematic underestimation. The standard deviations of the distributions of inter-method differences were wide for all 2D TTE methods (265-289 mm2) when compared to 3D TEEsa, indicating imprecision. CONCLUSIONS When compared with 3D TEEsa modeling of the MA as the reference, the assumption of a circular shape using A4c TTE view diameter was the method with the least systematic error to assess MA area in DMVD and moderate to severe regurgitation.
Collapse
Affiliation(s)
- Maxime Berthelot-Richer
- Department of Cardiology, Hôpital du Sacré-Cœur de Montréal, University of Montreal, 5400 Gouin W Blvd, Montréal, QC, H4J 1C5, Canada
| | - Halyna Viktorivna Vakulenko
- Department of Cardiology, Hôpital du Sacré-Cœur de Montréal, University of Montreal, 5400 Gouin W Blvd, Montréal, QC, H4J 1C5, Canada
| | - Anna Calleja
- Division of Cardiology, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Anna Woo
- Division of Cardiology, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | | | - Frédéric Poulin
- Department of Cardiology, Hôpital du Sacré-Cœur de Montréal, University of Montreal, 5400 Gouin W Blvd, Montréal, QC, H4J 1C5, Canada.
| |
Collapse
|
4
|
Beneki E, Dimitriadis K, Tsioufis K, Aggeli K. Can We Use an Algorithm as an "Ariadne's Thread" to Escape the Maze of Mitral Regurgitation Phenotype? J Am Soc Echocardiogr 2024; 37:373. [PMID: 37839618 DOI: 10.1016/j.echo.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023]
Affiliation(s)
- Eirini Beneki
- First Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Kyriakos Dimitriadis
- First Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Tsioufis
- First Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Aggeli
- First Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
5
|
Pino PG, Madeo A, Lucà F, Ceravolo R, di Fusco SA, Benedetto FA, Bisignani G, Oliva F, Colivicchi F, Gulizia MM, Gelsomino S. Clinical Utility of Three-Dimensional Echocardiography in the Evaluation of Mitral Valve Disease: Tips and Tricks. J Clin Med 2023; 12:2522. [PMID: 37048605 PMCID: PMC10094963 DOI: 10.3390/jcm12072522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Although real-time 3D echocardiography (RT3DE) has only been introduced in the last decades, its use still needs to be improved since it is a time-consuming and operator-dependent technique and acquiring a good quality data can be difficult. Moreover, the additive value of this important diagnostic tool still needs to be wholly appreciated in clinical practice. This review aims at explaining how, why, and when performing RT3DE is useful in clinical practice.
Collapse
Affiliation(s)
- Paolo G. Pino
- Former Cardiology Department, San Camillo Forlanini Hospital, 00151 Roma, Italy
| | - Andrea Madeo
- Cardiology Department, Ferrari Hospital, 87012 Castrovillari, Italy
| | - Fabiana Lucà
- Cardiology Department, Grande Ospedale Metropolitano, GOM, AO Bianchi Melacrino Morelli, 89129 Reggio Calabria, Italy
| | - Roberto Ceravolo
- Cardiology Unit, Giovanni Paolo II Hospital, 88046 Lamezia, Italy
| | | | - Francesco Antonio Benedetto
- Cardiology Department, Grande Ospedale Metropolitano, GOM, AO Bianchi Melacrino Morelli, 89129 Reggio Calabria, Italy
| | | | - Fabrizio Oliva
- De Gasperis Cardio Center, Niguarda Hospital, 20162 Milan, Italy
| | - Furio Colivicchi
- Cardiology Department, San Filippo Neri Hospital, 00135 Rome, Italy
| | | | - Sandro Gelsomino
- Cardiothoracic Department, Maastricht University, 6211 LK Maastrich, The Netherlands
| |
Collapse
|
6
|
Altes A, Vermes E, Levy F, Vancraeynest D, Pasquet A, Vincentelli A, Gerber BL, Tribouilloy C, Maréchaux S. Quantification of primary mitral regurgitation by echocardiography: A practical appraisal. Front Cardiovasc Med 2023; 10:1107724. [PMID: 36970355 PMCID: PMC10036770 DOI: 10.3389/fcvm.2023.1107724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
The accurate quantification of primary mitral regurgitation (MR) and its consequences on cardiac remodeling is of paramount importance to determine the best timing for surgery in these patients. The recommended echocardiographic grading of primary MR severity relies on an integrated multiparametric approach. It is expected that the large number of echocardiographic parameters collected would offer the possibility to check the measured values regarding their congruence in order to conclude reliably on MR severity. However, the use of multiple parameters to grade MR can result in potential discrepancies between one or more of them. Importantly, many factors beyond MR severity impact the values obtained for these parameters including technical settings, anatomic and hemodynamic considerations, patient's characteristics and echocardiographer' skills. Hence, clinicians involved in valvular diseases should be well aware of the respective strengths and pitfalls of each of MR grading methods by echocardiography. Recent literature highlighted the need for a reappraisal of the severity of primary MR from a hemodynamic perspective. The estimation of MR regurgitation fraction by indirect quantitative methods, whenever possible, should be central when grading the severity of these patients. The assessment of the MR effective regurgitant orifice area by the proximal flow convergence method should be used in a semi-quantitative manner. Furthermore, it is crucial to acknowledge specific clinical situations in MR at risk of misevaluation when grading severity such as late-systolic MR, bi-leaflet prolapse with multiple jets or extensive leak, wall-constrained eccentric jet or in older patients with complex MR mechanism. Finally, it is debatable whether the 4-grades classification of MR severity would be still relevant nowadays, since the indication for mitral valve (MV) surgery is discussed in clinical practice for patients with 3+ and 4+ primary MR based on symptoms, specific markers of adverse outcome and MV repair probability. Primary MR grading should be seen as a continuum integrating both quantification of MR and its consequences, even for patients with presumed "moderate" MR.
Collapse
Affiliation(s)
- Alexandre Altes
- GCS-Groupement des Hôpitaux de l’Institut Catholique de Lille/Lille Catholic Hospitals, Heart Valve Center, Cardiology Department, ETHICS EA 7446, Lille Catholic University, Lille, France
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | | | - Franck Levy
- Department of Cardiology, Center Cardio-Thoracique de Monaco, Monaco, Monaco
| | - David Vancraeynest
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Agnès Pasquet
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - André Vincentelli
- Cardiac Surgery Department, Centre Hospitalier Régional et Universitaire de Lille, Lille, France
| | - Bernhard L. Gerber
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | | | - Sylvestre Maréchaux
- GCS-Groupement des Hôpitaux de l’Institut Catholique de Lille/Lille Catholic Hospitals, Heart Valve Center, Cardiology Department, ETHICS EA 7446, Lille Catholic University, Lille, France
| |
Collapse
|
7
|
de Siqueira VS, Borges MM, Furtado RG, Dourado CN, da Costa RM. Artificial intelligence applied to support medical decisions for the automatic analysis of echocardiogram images: A systematic review. Artif Intell Med 2021; 120:102165. [PMID: 34629153 DOI: 10.1016/j.artmed.2021.102165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/07/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022]
Abstract
The echocardiogram is a test that is widely used in Heart Disease Diagnoses. However, its analysis is largely dependent on the physician's experience. In this regard, artificial intelligence has become an essential technology to assist physicians. This study is a Systematic Literature Review (SLR) of primary state-of-the-art studies that used Artificial Intelligence (AI) techniques to automate echocardiogram analyses. Searches on the leading scientific article indexing platforms using a search string returned approximately 1400 articles. After applying the inclusion and exclusion criteria, 118 articles were selected to compose the detailed SLR. This SLR presents a thorough investigation of AI applied to support medical decisions for the main types of echocardiogram (Transthoracic, Transesophageal, Doppler, Stress, and Fetal). The article's data extraction indicated that the primary research interest of the studies comprised four groups: 1) Improvement of image quality; 2) identification of the cardiac window vision plane; 3) quantification and analysis of cardiac functions, and; 4) detection and classification of cardiac diseases. The articles were categorized and grouped to show the main contributions of the literature to each type of ECHO. The results indicate that the Deep Learning (DL) methods presented the best results for the detection and segmentation of the heart walls, right and left atrium and ventricles, and classification of heart diseases using images/videos obtained by echocardiography. The models that used Convolutional Neural Network (CNN) and its variations showed the best results for all groups. The evidence produced by the results presented in the tabulation of the studies indicates that the DL contributed significantly to advances in echocardiogram automated analysis processes. Although several solutions were presented regarding the automated analysis of ECHO, this area of research still has great potential for further studies to improve the accuracy of results already known in the literature.
Collapse
Affiliation(s)
- Vilson Soares de Siqueira
- Federal Institute of Tocantins, Av. Bernado Sayão, S/N, Santa Maria, Colinas do Tocantins, TO, Brazil; Federal University of Goias, Alameda Palmeiras, Quadra D, Câmpus Samambaia, Goiânia, GO, Brazil.
| | - Moisés Marcos Borges
- Diagnostic Imaging Center - CDI, Av. Portugal, 1155, St. Marista, Goiânia, GO, Brazil
| | - Rogério Gomes Furtado
- Diagnostic Imaging Center - CDI, Av. Portugal, 1155, St. Marista, Goiânia, GO, Brazil
| | - Colandy Nunes Dourado
- Diagnostic Imaging Center - CDI, Av. Portugal, 1155, St. Marista, Goiânia, GO, Brazil. http://www.cdigoias.com.br
| | - Ronaldo Martins da Costa
- Federal University of Goias, Alameda Palmeiras, Quadra D, Câmpus Samambaia, Goiânia, GO, Brazil.
| |
Collapse
|
8
|
Sharma H, Liu B, Mahmoud-Elsayed H, Myerson SG, Steeds RP. Multimodality Imaging in Secondary Mitral Regurgitation. Front Cardiovasc Med 2020; 7:546279. [PMID: 33415127 PMCID: PMC7782243 DOI: 10.3389/fcvm.2020.546279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/16/2020] [Indexed: 01/11/2023] Open
Abstract
Secondary mitral regurgitation (sMR) is characterized by left ventricular (LV) dilatation or dysfunction, resulting in failure of mitral leaflet coaptation. sMR complicates up to 35% of ischaemic cardiomyopathies (1) and 57% of dilated cardiomyopathies (2). Due to the prevalence of coronary artery disease worldwide, ischaemic cardiomyopathy is the most frequently encountered cause of sMR in clinical practice. Although mortality from cardiovascular disease has gradually fallen in Western countries, severe sMR remains an independent predictor of mortality (3) and hospitalization for heart failure (4). The presence of even mild sMR following acute MI reduces long-term survival free of major adverse events (1). Such adverse outcomes worsen as the severity of sMR increases, due to a cycle in which LV remodeling begets sMR and vice versa. Current guidelines do not recommend invasive treatment of the sMR alone as a first-line approach, due to the paucity of evidence supporting improvement in clinical outcomes. Furthermore, a lack of international consensus on the thresholds that define severe sMR has resulted in confusion amongst clinicians determining whether intervention is warranted (5, 6). The recent Cardiovascular Outcomes Assessment of the MitraClip Percutaneous Therapy for Heart Failure Patients with Functional Mitral Regurgitation (COAPT) trial (7) assessing the effectiveness of transcatheter mitral valve repair is the first study to demonstrate mortality benefit from correction of sMR and has reignited interest in identifying patients who would benefit from mitral valve intervention. Multimodality imaging, including echocardiography and cardiovascular magnetic resonance (CMR), plays a key role in helping to diagnose, quantify, monitor, and risk stratify patients for surgical and transcatheter mitral valve interventions.
Collapse
Affiliation(s)
- Harish Sharma
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Cardiology, Queen Elizabeth Hospital, University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
| | - Boyang Liu
- Department of Cardiology, Queen Elizabeth Hospital, University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
| | - Hani Mahmoud-Elsayed
- Department of Cardiology, Queen Elizabeth Hospital, University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
- Department of Cardiology, Al-Nas Hospital, Cairo, Egypt
| | - Saul G. Myerson
- Department of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | - Richard P. Steeds
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Cardiology, Queen Elizabeth Hospital, University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Degenerative mitral regurgitation (DMR) continues to be an important cause of morbidity and mortality with surgical mitral valve repair remaining the gold standard for the treatment of severe disease. The purpose of this review is to summarize recent advances in the understanding of DMR as well as the progress made in its assessment with a focus on imaging techniques. RECENT FINDINGS Recent insights into the anatomy and physiology of DMR challenge the assumption that fibroelastic deficiency and Barlow disease are part of a single DMR spectrum. Advances in echocardiography and cardiovascular MRI have the potential to improve quantification of mitral regurgitation, provide unique information on prognosis and impact of DMR, further the association between DMR and arrhythmic risk and aide in decision-making for DMR treatment. SUMMARY With growing interest in the use of noninvasive transcatheter therapies in the mitral valve space, comprehensive assessment of the mitral valve is critical to instruct decision-making and guide therapeutic strategy.
Collapse
|
10
|
Mitral valve regurgitation: a disease with a wide spectrum of therapeutic options. Nat Rev Cardiol 2020; 17:807-827. [DOI: 10.1038/s41569-020-0395-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/12/2020] [Indexed: 12/30/2022]
|
11
|
Validation of Semiautomated Quantification of Mitral Valve Regurgitation by Three-Dimensional Color Doppler Transesophageal Echocardiography. J Am Soc Echocardiogr 2020; 33:342-354. [DOI: 10.1016/j.echo.2019.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/27/2019] [Accepted: 10/31/2019] [Indexed: 11/18/2022]
|
12
|
Abstract
Mitral regurgitation (MR) is a common valvular heart disease and is the second most frequent indication for heart valve surgery in Western countries. Echocardiography is the recommended first-line test for the assessment of valvular heart disease, but cardiovascular magnetic resonance imaging (CMR) provides complementary information, especially for assessing MR severity and to plan the timing of intervention. As new CMR techniques for the assessment of MR have arisen, standardizing CMR protocols for research and clinical studies has become important in order to optimize diagnostic utility and support the wider use of CMR for the clinical assessment of MR. In this Consensus Statement, we provide a detailed description of the current evidence on the use of CMR for MR assessment, highlight its current clinical utility, and recommend a standardized CMR protocol and report for MR assessment. In this Consensus Statement, Garg and colleagues describe the current evidence on the use of cardiovascular magnetic resonance imaging for the assessment of mitral regurgitation, highlight its current clinical utility, and recommend a standardized imaging protocol and report.
Collapse
|
13
|
Martiniello AR, Bianchi V, Tonti G, Cioppa C, Tavoletta V, D’Onofrio A, Caso VM, Pedrizzetti G, Caso P. Combined flow-based imaging assessment of optimal cardiac resynchronization therapy pacing vector: a case report. J Med Case Rep 2019; 13:161. [PMID: 31126329 PMCID: PMC6534894 DOI: 10.1186/s13256-019-2048-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/12/2019] [Indexed: 11/25/2022] Open
Abstract
Background There are still many pendent issues about the effective evaluation of cardiac resynchronization therapy impact on functional mitral regurgitation. In order to reduce the intrinsic difficulties of quantification of functional mitral regurgitation itself, an automatic quantification of real-time three-dimensional full-volume color Doppler transthoracic echocardiography was proposed as a new, rapid, and accurate method for the assessment of functional mitral regurgitation severity. Recent studies suggested that images of left ventricle flow by echo-particle imaging velocimetry could be a useful marker of synchrony. Echo-particle imaging velocimetry has shown that regional anomalies of synchrony/synergy of the left ventricle are related to the alteration, reduction, or suppression of the physiological intracavitary pressure gradients. Case summary We describe a case in which the two technologies are used in combination during acute echocardiographic optimization of left pacing vector in a 63-year-old man, Caucasian, who showed worsening heart failure symptoms a few days after an implant, and the effect of the device’s optimization at 6-month follow-up. Discussion The degree of realignment of hemodynamic forces, with quantitative analysis of the orientation of blood flow momentum (φ), can represent improvement of fluid dynamics synchrony of the left ventricle, and explain, with a new deterministic parameter, the effects of cardiac resynchronization therapy on functional mitral regurgitation. Real-time three-dimensional color flow Doppler quantification is feasible and accurate for measurement of mitral inflow, left ventricular outflow stroke volumes, and functional mitral regurgitation severity. Conclusion This clinical case offers an innovative and accurate approach for acute echocardiographic optimization of left pacing vector. It shows clinical utility of combined three-dimensional full-volume color Doppler transthoracic echocardiography/echo-particle imaging velocimetry assessment to increase response to cardiac resynchronization therapy, in terms of reduction of functional mitral regurgitation, improving fluid dynamics synchrony of the left ventricle. Electronic supplementary material The online version of this article (10.1186/s13256-019-2048-1) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Quantification of mitral valve regurgitation by 2D and 3D echocardiography compared with cardiac magnetic resonance a systematic review and meta-analysis. Int J Cardiovasc Imaging 2019; 36:279-289. [DOI: 10.1007/s10554-019-01713-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/04/2019] [Indexed: 10/25/2022]
|
15
|
Barberato SH, Romano MMD, Beck ALDS, Rodrigues ACT, Almeida ALCD, Assunção BMBL, Gripp EDA, Guimarães Filho FV, Abensur H, Castillo JMD, Miglioranza MH, Vieira MLC, Barros MVLD, Nunes MDCP, Otto MEB, Hortegal RDA, Barretto RBDM, Campos TH, Siqueira VND, Morhy SS. Position Statement on Indications of Echocardiography in Adults - 2019. Arq Bras Cardiol 2019; 113:135-181. [PMID: 31411301 PMCID: PMC6684182 DOI: 10.5935/abc.20190129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Silvio Henrique Barberato
- CardioEco-Centro de Diagnóstico Cardiovascular, Curitiba, PR - Brazil.,Quanta Diagnóstico e Terapia, Curitiba, PR - Brazil
| | - Minna Moreira Dias Romano
- Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Ribeirão Preto, SP - Brazil
| | - Adenalva Lima de Souza Beck
- Instituto de Cardiologia do Distrito Federal, Brasília, DF - Brazil.,Fundação Universitária de Cardiologia (ICDF/FUC), Brasília, DF - Brazil
| | - Ana Clara Tude Rodrigues
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, SP - Brazil
| | | | | | - Eliza de Almeida Gripp
- Hospital Pró-Cardíaco, Rio de Janeiro, RJ - Brazil.,Hospital Universitário Antônio Pedro, Niterói, RJ - Brazil.,DASA, São Paulo, SP - Brazil
| | | | - Henry Abensur
- Hospital Beneficência Portuguesa de São Paulo, São Paulo, SP - Brazil
| | | | - Marcelo Haertel Miglioranza
- Fundação Universitária de Cardiologia (ICDF/FUC), Brasília, DF - Brazil.,Instituto de Cardiologia de Porto Alegre, Porto Alegre, RS - Brazil
| | - Marcelo Luiz Campos Vieira
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (InCor-HCFMUSP), São Paulo, SP - Brazil.,Hospital Israelita Albert Einstein, São Paulo, SP - Brazil
| | - Márcio Vinicius Lins de Barros
- Faculdade de Saúde e Ecologia Humana (FASEH), Vespasiano, MG - Brazil.,Rede Materdei de Saúde, Belo Horizonte, MG - Brazil.,Hospital Vera Cruz, Belo Horizonte, MG - Brazil
| | | | | | | | | | - Thais Harada Campos
- Diagnoson-Fleury, Salvador, BA - Brazil.,Hospital Ana Nery, Salvador, BA - Brazil
| | | | | |
Collapse
|
16
|
Nolan MT, Thavendiranathan P. Automated Quantification in Echocardiography. JACC Cardiovasc Imaging 2019; 12:1073-1092. [DOI: 10.1016/j.jcmg.2018.11.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/25/2018] [Accepted: 11/29/2018] [Indexed: 12/19/2022]
|
17
|
Evaluation of the Integrative Algorithm for Grading Chronic Aortic and Mitral Regurgitation Severity Using the Current American Society of Echocardiography Recommendations: To Discriminate Severe from Moderate Regurgitation. J Am Soc Echocardiogr 2018; 31:1002-1012.e2. [DOI: 10.1016/j.echo.2018.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Indexed: 11/21/2022]
|
18
|
Weir-McCall JR, Blanke P, Naoum C, Delgado V, Bax JJ, Leipsic J. Mitral Valve Imaging with CT: Relationship with Transcatheter Mitral Valve Interventions. Radiology 2018; 288:638-655. [DOI: 10.1148/radiol.2018172758] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jonathan R. Weir-McCall
- From the UBC Department of Medical Imaging, Centre for Heart Valve Innovation, St Paul’s Hospital and University of British Columbia, 1081 Burrard St, Vancouver, BC, Canada V6Z 1Y6 (J.R.W.M., P.B., J.L.); Department of Cardiology, Concord Hospital, The University of Sydney, Sydney, Australia (C.N.); and Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands (V.D., J.J.B.)
| | - Philipp Blanke
- From the UBC Department of Medical Imaging, Centre for Heart Valve Innovation, St Paul’s Hospital and University of British Columbia, 1081 Burrard St, Vancouver, BC, Canada V6Z 1Y6 (J.R.W.M., P.B., J.L.); Department of Cardiology, Concord Hospital, The University of Sydney, Sydney, Australia (C.N.); and Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands (V.D., J.J.B.)
| | - Christopher Naoum
- From the UBC Department of Medical Imaging, Centre for Heart Valve Innovation, St Paul’s Hospital and University of British Columbia, 1081 Burrard St, Vancouver, BC, Canada V6Z 1Y6 (J.R.W.M., P.B., J.L.); Department of Cardiology, Concord Hospital, The University of Sydney, Sydney, Australia (C.N.); and Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands (V.D., J.J.B.)
| | - Victoria Delgado
- From the UBC Department of Medical Imaging, Centre for Heart Valve Innovation, St Paul’s Hospital and University of British Columbia, 1081 Burrard St, Vancouver, BC, Canada V6Z 1Y6 (J.R.W.M., P.B., J.L.); Department of Cardiology, Concord Hospital, The University of Sydney, Sydney, Australia (C.N.); and Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands (V.D., J.J.B.)
| | - Jeroen J. Bax
- From the UBC Department of Medical Imaging, Centre for Heart Valve Innovation, St Paul’s Hospital and University of British Columbia, 1081 Burrard St, Vancouver, BC, Canada V6Z 1Y6 (J.R.W.M., P.B., J.L.); Department of Cardiology, Concord Hospital, The University of Sydney, Sydney, Australia (C.N.); and Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands (V.D., J.J.B.)
| | - Jonathon Leipsic
- From the UBC Department of Medical Imaging, Centre for Heart Valve Innovation, St Paul’s Hospital and University of British Columbia, 1081 Burrard St, Vancouver, BC, Canada V6Z 1Y6 (J.R.W.M., P.B., J.L.); Department of Cardiology, Concord Hospital, The University of Sydney, Sydney, Australia (C.N.); and Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands (V.D., J.J.B.)
| |
Collapse
|
19
|
Wunderlich NC, Beigel R, Ho SY, Nietlispach F, Cheng R, Agricola E, Siegel RJ. Imaging for Mitral Interventions. JACC Cardiovasc Imaging 2018; 11:872-901. [DOI: 10.1016/j.jcmg.2018.02.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/12/2018] [Accepted: 02/22/2018] [Indexed: 10/14/2022]
|
20
|
Jang JY, Kang JW, Yang DH, Lee S, Sun BJ, Kim DH, Song JM, Kang DH, Song JK. Impact of a Geometric Correction for Proximal Flow Constraint on the Assessment of Mitral Regurgitation Severity Using the Proximal Flow Convergence Method. J Cardiovasc Ultrasound 2018; 26:33-39. [PMID: 29629022 PMCID: PMC5881082 DOI: 10.4250/jcu.2018.26.1.33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/25/2018] [Accepted: 02/26/2018] [Indexed: 11/22/2022] Open
Abstract
Background Overestimation of the severity of mitral regurgitation (MR) by the proximal isovelocity surface area (PISA) method has been reported. We sought to test whether angle correction (AC) of the constrained flow field is helpful to eliminate overestimation in patients with eccentric MR. Methods In a total of 33 patients with MR due to prolapse or flail mitral valve, both echocardiography and cardiac magnetic resonance image (CMR) were performed to calculate regurgitant volume (RV). In addition to RV by conventional PISA (RVPISA), convergence angle (α) was measured from 2-dimensional Doppler color flow maps and RV was corrected by multiplying by α/180 (RVAC). RV measured by CMR (RVCMR) was used as a gold standard, which was calculated by the difference between total stroke volume measured by planimetry of the short axis slices and aortic stroke volume by phase-contrast image. Results The correlation between RVCMR and RV by echocardiography was modest [RVCMR vs. RVPISA (r = 0.712, p < 0.001) and RVCMR vs. RVAC (r = 0.766, p < 0.001)]. However, RVPISA showed significant overestimation (RVPISA - RVCMR = 50.6 ± 40.6 mL vs. RVAC - RVCMR = 7.7 ± 23.4 mL, p < 0.001). The overall accuracy of RVPISA for diagnosis of severe MR, defined as RV ≥ 60 mL, was 57.6% (19/33), whereas it increased to 84.8% (28/33) by using RVAC (p = 0.028). Conclusion Conventional PISA method tends to provide falsely large RV in patients with eccentric MR and a simple geometric AC of the proximal constraint flow largely eliminates overestimation.
Collapse
Affiliation(s)
- Jeong Yoon Jang
- Division of Cardiology, Department of Internal Medicine, Gyeongsang National University School of Medicine, Gyeongsang National University Changwon Hospital, Changwon, Korea
| | - Joon-Won Kang
- Cardiac Imaging Center, Asan Medical Center Heart Institute, University of Ulsan College of Medicine, Seoul, Korea
| | - Dong Hyun Yang
- Cardiac Imaging Center, Asan Medical Center Heart Institute, University of Ulsan College of Medicine, Seoul, Korea
| | - Sahmin Lee
- Cardiac Imaging Center, Asan Medical Center Heart Institute, University of Ulsan College of Medicine, Seoul, Korea
| | - Byung Joo Sun
- Division of Cardiology, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Dae-Hee Kim
- Cardiac Imaging Center, Asan Medical Center Heart Institute, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong-Min Song
- Cardiac Imaging Center, Asan Medical Center Heart Institute, University of Ulsan College of Medicine, Seoul, Korea
| | - Duk-Hyun Kang
- Cardiac Imaging Center, Asan Medical Center Heart Institute, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae-Kwan Song
- Cardiac Imaging Center, Asan Medical Center Heart Institute, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
21
|
Penicka M, Vecera J, Mirica DC, Kotrc M, Kockova R, Van Camp G. Prognostic Implications of Magnetic Resonance-Derived Quantification in Asymptomatic Patients With Organic Mitral Regurgitation: Comparison With Doppler Echocardiography-Derived Integrative Approach. Circulation 2018; 137:1349-1360. [PMID: 29269390 DOI: 10.1161/circulationaha.117.029332] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 11/16/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) is an accurate method for the quantitative assessment of organic mitral regurgitation (OMR). The aim of the present study was to compare the discriminative power of MRI quantification and the recommended Doppler echocardiography (ECHO)-derived integrative approach to identify asymptomatic patients with OMR and adverse outcome. METHODS The study population consisted of 258 asymptomatic patients (63±14 years, 60% men) with preserved left ventricular ejection fraction (>60%) and chronic moderate and severe OMR (flail 25%, prolapse 75%) defined by using the ECHO-derived integrative approach. All patients underwent MRI to quantify regurgitant volume (RV) of OMR by subtracting the aortic forward flow volume from the total left ventricular stroke volume. Severe OMR was defined as RV≥60 mL. RESULTS Mean ECHO-derived RV was on average 17.1 mL larger than the MRI-derived RV (P<0.05). Concordant grading of OMR severity with both techniques was observed in 197 (76%) individuals with 62 (31%) patients having severe OMR (MRI SEV-ECHO SEV) and 135 (69%) patients having moderate OMR (MRI MOD-ECHO MOD). The remaining 61 (24%) individuals had discordant findings (MRI SEV-ECHO MOD or MRI MOD-ECHO SEV) between the 2 techniques. The majority of these differences in OMR classification were observed in patients with late systolic or multiple jets (both κ<0.2). Patients with eccentric jets showed moderate agreement (κ=0.53; 95% confidence interval, 0.41-0.64). In contrast, a very good agreement (κ=0.90; 95% confidence interval, 0.82-0.98) was observed in a combination of holosystolic, central, and single jet. During a median follow-up of 5.0 years (interquartile range, 3.5-6.0 years), 38 (15%) patients died and 106 (41%) either died or developed indication for mitral valve surgery. In separate Cox regression analyses, the MRI-derived left ventricular end-systolic volume index, RV, and OMR category (severe versus moderate), and the ECHO-derived OMR category were independent predictors of all-cause mortality (all P<0.05). The MRI-derived RV showed the largest area under the curve to predict mortality (0.72) or its combination with the development of indication for mitral valve surgery (0.83). CONCLUSIONS The findings of the present study suggest that the MRI-derived assessment of OMR can better identify patients with severe OMR and adverse outcome than ECHO-derived integrative approach warranting close follow-up and perhaps, early mitral valve surgery.
Collapse
Affiliation(s)
- Martin Penicka
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium (M.P., J.V., D.C.M., G.V.C.)
| | - Jan Vecera
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium (M.P., J.V., D.C.M., G.V.C.)
| | - Daniela C Mirica
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium (M.P., J.V., D.C.M., G.V.C.)
| | - Martin Kotrc
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic (M.K., R.K.)
| | - Radka Kockova
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic (M.K., R.K.)
| | - Guy Van Camp
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium (M.P., J.V., D.C.M., G.V.C.)
| |
Collapse
|
22
|
Uretsky S, Argulian E, Narula J, Wolff SD. Use of Cardiac Magnetic Resonance Imaging in Assessing Mitral Regurgitation. J Am Coll Cardiol 2018; 71:547-563. [DOI: 10.1016/j.jacc.2017.12.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/16/2017] [Accepted: 12/07/2017] [Indexed: 02/04/2023]
|
23
|
Abstract
PURPOSE OF REVIEW Three-dimensional (3D) echocardiography (3DE) and 4-dimensional echocardiography (4DE), also known as real-time (RT) 3DE (RT3DE), are rapidly emerging technologies which have made significant impact in the clinical arena over the years. This review will discuss the recent applications of 3DE in diagnosing and treating different types of cardiovascular disease. RECENT FINDINGS Recent studies using 3DE expanded on prior findings and introduced additional applications to different cardiac conditions. Some studies have used 3D parameters to prognosticate long-term outcomes. Numerous innovative software designs including fully automated algorithms have been introduced to better evaluate valvular heart disease and cardiac function. SUMMARY With further evolution of 3DE technologies, this imaging modality will emerge as a powerful tool and likely become the imaging modality of choice in the diagnosis and management of various cardiac disorders.
Collapse
Affiliation(s)
- Susan H. Kwon
- Research Department, 100 Port Washington Blvd, Roslyn, NY 11576 USA
| | - Aasha S. Gopal
- Research Department, 100 Port Washington Blvd, Roslyn, NY 11576 USA
| |
Collapse
|
24
|
Capoulade R, Piriou N, Serfaty JM, Le Tourneau T. Multimodality imaging assessment of mitral valve anatomy in planning for mitral valve repair in secondary mitral regurgitation. J Thorac Dis 2017; 9:S640-S660. [PMID: 28740719 PMCID: PMC5505945 DOI: 10.21037/jtd.2017.06.99] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 06/13/2017] [Indexed: 12/23/2022]
Abstract
Secondary mitral regurgitation (MR) is frequent valvular heart disease and conveys worse prognostic. Therapeutic surgical or percutaneous options are available in the context of severe symptomatic secondary MR, but the best approach to treat these patients remains unclear, given the lack of clear clinical evidence of benefit. A comprehensive evaluation of the mitral valve apparatus and the left ventricle (LV) has the ability to clearly define and characterize the disease, and thus determine the best option for the patient to improve its clinical outcomes, as well as quality of life and symptoms. The current report reviews the mitral valve (MV) anatomy, the underlying mechanisms associated with secondary MR, the related therapeutic options available, and finally the usefulness of a multimodality imaging approach for the planning of surgical or percutaneous mitral valve intervention.
Collapse
Affiliation(s)
- Romain Capoulade
- Cardiac Ultrasound Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Institut du Thorax, CHU Nantes, Nantes University, Nantes, France
| | - Nicolas Piriou
- Institut du Thorax, CHU Nantes, Nantes University, Nantes, France
- Department of Nuclear Medicine, CHU Nantes, Nantes University, Nantes, France
| | | | | |
Collapse
|