1
|
Thaitumu MN, Frank EL. Analysis of Urinary Metanephrines Using Liquid Chromatography Tandem Mass Spectrometry. Methods Mol Biol 2025; 2891:257-268. [PMID: 39812987 DOI: 10.1007/978-1-0716-4334-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Metanephrines (metanephrine [MN] and normetanephrine [NMN]) are O-methylated metabolites derived from the catecholamines, epinephrine, and norepinephrine, respectively. High concentrations of metanephrines have been observed in individuals with pheochromocytoma, a neuroendocrine tumor. Measurement of metanephrines in urine is used to screen for the tumor. Analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) is recommended due to the high sensitivity, specificity, and throughput of the technique. Herein, we describe an optimized LC-MS/MS assay for the analysis of urinary metanephrines.
Collapse
Affiliation(s)
- Marlene N Thaitumu
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
- ARUP Laboratories, Inc., Salt Lake City, UT, USA
| | - Elizabeth L Frank
- Analytic Biochemistry, Calculi and Manual Chemistry, Mass Spectrometry, ARUP Laboratories, Inc., Salt Lake City, UT, USA
| |
Collapse
|
2
|
Zhang W, Li X, Li W, Zhang Y, Cai J, Feng S, Sun Z. Clinical diagnosis of pheochromocytoma and paraganglioma-induced secondary hypertension through UPLC-MS/MS analysis of plasma catecholamines and their metabolites. J Clin Hypertens (Greenwich) 2024; 26:416-424. [PMID: 38459755 PMCID: PMC11007807 DOI: 10.1111/jch.14779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 03/10/2024]
Abstract
This study aimed to elucidate the clinical diagnostic value of plasma catecholamines and their metabolites for pheochromocytoma and paraganglioma (PPGL)-induced secondary hypertension using ultraperformance liquid chromatography-mass spectrometry (UPLC-MS/MS). The study population included 155 patients with PPGL that were divided into the PPGL with hypertension (n = 79) and a PPGL without hypertension (n = 76) groups, and 90 healthy volunteers and 90 patients with primary hypertension as the control groups. UPLC-MS/MS was performed to detect plasma levels of catecholamines and their metabolites, including dopamine, vanillylmandelic acid (VMA), norepinephrine, metanephrine, and normetanephrine. Receiver operating characteristic curves were generated to analyze the diagnostic value of the plasma levels of catecholamines and their metabolites in PPGL-induced secondary hypertension. Patients in the primary hypertension and PPGL without hypertension groups had higher levels of dopamine, VMA, norepinephrine, metanephrine, and normetanephrine than patients in the normal group (all p < .05). On the other hand, patients in the PPGL with hypertension group had higher levels of dopamine, VMA, norepinephrine, metanephrine, and normetanephrine than patients in the normal, primary hypertension, and PPGL without hypertension groups (all p < .05). Collectively, our findings showed that dopamine, VMA, norepinephrine, metanephrine, and normetanephrine are all effective biomarkers for the diagnosis of PPGL and PPGL-induced secondary hypertension.
Collapse
Affiliation(s)
- Weiyun Zhang
- Department of Laboratory Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiao Li
- Department of Laboratory Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Wanqin Li
- Department of Laboratory Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Yanmei Zhang
- Department of Laboratory Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Jiajia Cai
- Department of Laboratory Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Shiyu Feng
- Department of Laboratory Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Zhaohui Sun
- Department of Laboratory Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Van Beusecum JP, Rianto F, Teakell J, Kon V, Sparks MA, Hoorn EJ, Kirabo A, Ramkumar N. Novel Concepts in Nephron Sodium Transport: A Physiological and Clinical Perspective. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:124-136. [PMID: 36868728 DOI: 10.1053/j.akdh.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 04/13/2023]
Abstract
The kidneys play a critical role in maintaining total body sodium (Na+) balance across a wide range of dietary intake, accomplished by a concerted effort involving multiple Na+ transporters along the nephron. Furthermore, nephron Na+ reabsorption and urinary Na+ excretion are closely linked to renal blood flow and glomerular filtration such that perturbations in either of them can modify Na+ transport along the nephron, ultimately resulting in hypertension and other Na+-retentive states. In this article, we provide a brief physiological overview of nephron Na+ transport and illustrate clinical syndromes and therapeutic agents that affect Na+ transporter function. We highlight recent advances in kidney Na+ transport, particularly the role of immune cells, lymphatics, and interstitial Na+ in regulating Na+ reabsorption, the emergence of potassium (K+) as a regulator of Na+ transport, and the evolution of the nephron to modulate Na+ transport.
Collapse
Affiliation(s)
- Justin P Van Beusecum
- Ralph H. Johnson VA Medical Center, Charleston, SC; Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC
| | - Fitra Rianto
- Division of Nephrology, Department of Medicine, Duke University School of Medicine and Renal Section, Durham VA Health Care System Durham, Durham, NC
| | - Jade Teakell
- Division of Renal Diseases and Hypertension, Department of Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX
| | - Valentina Kon
- Division of Nephrology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University School of Medicine and Renal Section, Durham VA Health Care System Durham, Durham, NC
| | - Ewout J Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Nirupama Ramkumar
- Division of Nephrology and Hypertension, Department of Medicine, University of Utah Health, Salt Lake City, UT.
| |
Collapse
|
4
|
Garimella PS, du Toit C, Le NN, Padmanabhan S. A genomic deep field view of hypertension. Kidney Int 2023; 103:42-52. [PMID: 36377113 DOI: 10.1016/j.kint.2022.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/06/2022]
Abstract
Blood pressure is regulated by a complex neurohumoral system including the renin-angiotensin-aldosterone system, natriuretic peptides, endothelial pathways, the sympathetic nervous system, and the immune system. This review charts the evolution of our understanding of the genomic basis of hypertension at increasing resolution over the last 5 decades from monogenic causes to polygenic associations, spanning ∼30 monogenic rare variants and >1500 single nucleotide variants. Unexpected early wins from blood pressure genomics include deepening of our understanding of the complex causation of hypertension; refinement of causal estimates bidirectionally between blood pressure, risk factors, and outcomes through Mendelian randomization; risk stratification using polygenic risk scores; and opportunities for precision medicine and drug repurposing.
Collapse
Affiliation(s)
- Pranav S Garimella
- Division of Nephrology and Hypertension, University of California San Diego, San Diego, California, USA
| | - Clea du Toit
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Nhu Ngoc Le
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Sandosh Padmanabhan
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK.
| |
Collapse
|
5
|
Tosun BG, Guran T. Congenital adrenal hyperplasia and hypertension. ENDOCRINE HYPERTENSION 2023:113-125. [DOI: 10.1016/b978-0-323-96120-2.00015-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Ceccato F, Torchio M, Tizianel I, Peleg Falb M, Barbot M, Sabbadin C, Betterle C, Scaroni C. Renin and electrolytes indicate the mineralocorticoid activity of fludrocortisone: a 6 year study in primary adrenal insufficiency. J Endocrinol Invest 2023; 46:111-122. [PMID: 35947299 PMCID: PMC9829625 DOI: 10.1007/s40618-022-01889-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/28/2022] [Indexed: 01/13/2023]
Abstract
CONTEXT Fludrocortisone (FC) is the mineralocorticoid (MC) replacement treatment for patients with primary adrenal insufficiency (PAI). OBJECTIVE To explore the dose of FC treatment and its relationship with glucocorticoid therapy, sodium, potassium, renin and clinical parameters. SETTING Monocentric cohort. PATIENTS Data of 193 patients with PAI (130 autoimmune) were collected during baseline (T0), intermediate (T1) and last follow-up visit (T2, respectively, after a mean of 38 and 72 months). MAIN OUTCOME MEASURE Utility of endocrine and clinical parameters to titrate FC dose. RESULTS FC dose (50-75 μg/daily) was stable in the follow-up in half patients. The MC activity of FC was dose-dependent: we observed a reduced but significant positive linear correlation between FC dose and sodium (r = 0.132) and negative linear correlation between FC and potassium (r = - 0.162) or renin (r = - 0.131, all p < 0.01). An overall reduction in the FC dose was observed at T2 in the group with longer follow-up (> 60 months, p < 0.05). Higher doses of FC were observed in patients with low-normal renin, especially in autoimmune PAI (86 vs 65 μg/daily, p < 0.05). On the contrary, reduced sodium and increased potassium levels were observed in patients with high renin at T2. The number of cardiovascular events (15 in the whole cohort) was similar in patients sorted by renin levels or FC dose. CONCLUSIONS Renin and electrolytes can indicate the MC activity of FC treatment: they should be routinely evaluated and used to titrate its dose that can be reduced in the long-term follow-up.
Collapse
Affiliation(s)
- F Ceccato
- Endocrinology Unit, Department of Medicine DIMED, University of Padova, Via Ospedale Civile, 105, 35128, Padua, Italy.
- Endocrine Disease Unit, University-Hospital of Padova, Padua, Italy.
| | - M Torchio
- Endocrinology Unit, Department of Medicine DIMED, University of Padova, Via Ospedale Civile, 105, 35128, Padua, Italy
- Endocrine Disease Unit, University-Hospital of Padova, Padua, Italy
| | - I Tizianel
- Endocrinology Unit, Department of Medicine DIMED, University of Padova, Via Ospedale Civile, 105, 35128, Padua, Italy
- Endocrine Disease Unit, University-Hospital of Padova, Padua, Italy
| | - M Peleg Falb
- Endocrinology Unit, Department of Medicine DIMED, University of Padova, Via Ospedale Civile, 105, 35128, Padua, Italy
| | - M Barbot
- Endocrinology Unit, Department of Medicine DIMED, University of Padova, Via Ospedale Civile, 105, 35128, Padua, Italy
- Endocrine Disease Unit, University-Hospital of Padova, Padua, Italy
| | - C Sabbadin
- Endocrine Disease Unit, University-Hospital of Padova, Padua, Italy
| | - C Betterle
- Endocrinology Unit, Department of Medicine DIMED, University of Padova, Via Ospedale Civile, 105, 35128, Padua, Italy
| | - C Scaroni
- Endocrinology Unit, Department of Medicine DIMED, University of Padova, Via Ospedale Civile, 105, 35128, Padua, Italy
- Endocrine Disease Unit, University-Hospital of Padova, Padua, Italy
| |
Collapse
|
7
|
Costa-Barbosa FA, Giorgi RB, Kater CE. Focus on adrenal and related causes of hypertension in childhood and adolescence: Rare or rarely recognized? ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2022; 66:895-907. [PMID: 35929903 PMCID: PMC10118774 DOI: 10.20945/2359-3997000000507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
High blood pressure (BP) is not restricted to adults; children and adolescents may also be affected, albeit less frequently. Aside from unfavorable environmental factors, such as obesity and sedentary life leading to early-onset essential hypertension (HT), several secondary causes must be investigated in the occasional hypertensive child/adolescent. Endocrine causes are relevant and multiple, related to the pituitary, thyroid, parathyroid, gonads, insulin, and others, but generally are associated with adrenal disease. This common scenario has several vital components, such as aldosterone, deoxycorticosterone (DOC), cortisol, or catecholamines, but there are also monogenic disorders involving the kidney tubule that cause inappropriate salt retention and HT that simulate adrenal disease. Finally, a blood vessel disease was recently described that may also participate in this vast spectrum of pediatric hypertensive disease. This review will shed some light on the diagnosis and management of conditions, focusing on the most prevalent adrenal (or adrenal-like) disturbances causing HT.
Collapse
|
8
|
Kater CE, Giorgi RB, Costa-Barbosa FA. Classic and current concepts in adrenal steroidogenesis: a reappraisal. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2022; 66:77-87. [PMID: 35263051 PMCID: PMC9991025 DOI: 10.20945/2359-3997000000438] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Adrenal steroid biosynthesis and its related pathology are constant evolving disciplines. In this paper, we review classic and current concepts of adrenal steroidogenesis, plus control mechanisms of steroid pathways, distribution of unique enzymes and cofactors, and major steroid families. We highlight the presence of a "mineralocorticoid (MC) pathway of zona fasciculata (ZF)", where most circulating corticosterone and deoxycorticosterone (DOC) originate together with 18OHDOC, under ACTH control, a claim based on functional studies in normal subjects and in patients with 11β-, and 17α-hydroxylase deficiencies. We emphasize key differences between CYP11B1 (11β-hydroxylase) and CYP11B2 (aldosterone synthase) and the onset of a hybrid enzyme - CYP11B1/CYP11B2 -, responsible for aldosterone formation in ZF under ACTH control, in "type I familial hyperaldosteronism" (dexamethasone suppressible). In "apparent MC excess syndrome", peripheral conversion of cortisol to cortisone is impaired by lack of 11β-hydroxysteroid dehydrogenase type 2, permitting free cortisol access to MC receptors resulting in severe hypertension. We discuss two novel conditions involving the synthesis of adrenal androgens: the "backdoor pathway", through which dihydrotestosterone is formed directly from androsterone, being relevant for the fetoplacental setting and sexual differentiation of male fetuses, and the rediscovery of C19 11-oxygenated steroids (11-hydroxyandrostenedione and 11-ketotestosterone), active androgens and important markers of virilization in 21-hydroxylase deficiency and polycystic ovaries syndrome. Finally, we underline two enzyme cofactor deficiencies: cytochrome P450 oxidoreductase which partially affects 21- and 17α-hydroxylation, producing a combined clinical/hormonal picture and causing typical skeletal malformations (Antley-Bixler syndrome), and PAPSS2, coupled to SULT2A1, that promotes sulfation of DHEA to DHEAS, preventing active androgens to accumulate. Its deficiency results in reduced DHEAS and elevated DHEA and androgens with virilization. Future and necessary studies will shed light on remaining issues and questions on adrenal steroidogenesis.
Collapse
Affiliation(s)
- Claudio E Kater
- Unidade de Adrenal e Hipertensão; Laboratório de Esteroides, Divisão de Endocrinologia e Metabolismo, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-Unifesp), São Paulo, SP, Brasil,
| | - Rafael B Giorgi
- Divisão de Endocrinologia e Metabolismo, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-Unifesp); Ambulatório de Adrenal, Divisão de Endocrinologia, Faculdade de Ciências Médicas e da Saúde, Pontifícia Universidade Católica de Sorocaba (PUC-Sorocaba), Sorocaba, SP, Brasil
| | - Flavia A Costa-Barbosa
- Divisão de Clínica Médica e Divisão de Endocrinologia e Metabolismo, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-Unifesp), São Paulo, SP, Brasil
| |
Collapse
|
9
|
Mareš Š, Filipovský J. Liddle syndrome. VNITRNI LEKARSTVI 2022; 68:8-11. [PMID: 36575060 DOI: 10.36290/vnl.2022.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Liddle syndrome is an inherited form of arterial hypertension with autosomal dominant pattern of inheritance. It is caused by activating mutation of genes coding of the epithelial sodium channel in distal nephron. Mutation leads to excessive reabsorbtion of sodium ions and volume expansion resulting in arterial hypertension. Antoher typical laboratory findings are hypokalaemia, low levels of serum aldosteron and metabolic alkalosis. Phenotypic variability makes it difficult to identify patients with Liddle syndrome, often resulting in misdiagnosis and severe complications at early age. Genetic studies should be done to confirm the diagnosis. Therapy of Liddle syndrome is based on administration of epithelial sodium channel blocker amilorid.
Collapse
|
10
|
Ceccato F, Barbot M, Scaroni C, Boscaro M. Frequently asked questions and answers (if any) in patients with adrenal incidentaloma. J Endocrinol Invest 2021; 44:2749-2763. [PMID: 34160793 PMCID: PMC8572215 DOI: 10.1007/s40618-021-01615-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 06/14/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE Adrenal incidentalomas (AIs) are incidentally discovered adrenal masses, during an imaging study undertaken for other reasons than the suspicion of adrenal disease. Their management is not a minor concern for patients and health-care related costs, since their increasing prevalence in the aging population. The exclusion of malignancy is the first question to attempt, then a careful evaluation of adrenal hormones is suggested. Surgery should be considered in case of overt secretion (primary aldosteronism, adrenal Cushing's Syndrome or pheochromocytoma), however the management of subclinical secretion is still a matter of debate. METHODS The aim of the present narrative review is to offer a practical guidance regarding the management of AI, by providing evidence-based answers to frequently asked questions. CONCLUSION The clinical experience is of utmost importance: a personalized diagnostic-therapeutic approach, based upon multidisciplinary discussion, is suggested.
Collapse
Affiliation(s)
- F Ceccato
- Endocrinology Unit, Department of Medicine DIMED, University of Padova, Via Ospedale Civile, 105-35128, Padova, Italy.
- Endocrine Disease Unit, University-Hospital of Padova, Padova, Italy.
- Department of Neuroscience DNS, University of Padova, Padova, Italy.
| | - M Barbot
- Endocrinology Unit, Department of Medicine DIMED, University of Padova, Via Ospedale Civile, 105-35128, Padova, Italy
- Endocrine Disease Unit, University-Hospital of Padova, Padova, Italy
| | - C Scaroni
- Endocrinology Unit, Department of Medicine DIMED, University of Padova, Via Ospedale Civile, 105-35128, Padova, Italy
- Endocrine Disease Unit, University-Hospital of Padova, Padova, Italy
| | - M Boscaro
- Endocrinology Unit, Department of Medicine DIMED, University of Padova, Via Ospedale Civile, 105-35128, Padova, Italy
| |
Collapse
|
11
|
Pinelli S, Barbot M, Scaroni C, Ceccato F. Second-Line Tests in the Diagnosis of Adrenocorticotropic Hormone-Dependent Hypercortisolism. Ann Lab Med 2021; 41:521-531. [PMID: 34108279 PMCID: PMC8203434 DOI: 10.3343/alm.2021.41.6.521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/17/2020] [Accepted: 05/17/2021] [Indexed: 11/19/2022] Open
Abstract
Cushing’s syndrome (CS) is a rare disease caused by chronic and excessive cortisol secretion. When adrenocorticotropin hormone (ACTH) is measurable, autonomous adrenal cortisol secretion could be reasonably ruled out in a differential diagnosis of CS. ACTH-dependent CS accounts for 80%–85% of cases and involves cortisol production stimulated by uncontrolled pituitary or ectopic ACTH secretion. Pituitary adenoma is not detected in up to one-third of cases with pituitary ACTH secretion, whereas cases of CS due to ectopic ACTH secretion may be associated with either malignant neoplasia (such as small cell lung carcinoma) or less aggressive neuroendocrine tumors, exhibiting only the typical symptoms and signs of CS. Since the differential diagnosis of ACTH-dependent CS may be a challenge, many strategies have been proposed. Since none of the available tests show 100% diagnostic accuracy, a step-by-step approach combining several diagnostic tools and a multidisciplinary evaluation in a referral center is suggested. In this review, we present a clinical case to demonstrate the diagnostic work-up of ACTH-dependent CS. We describe the most commonly used dynamic tests, as well as the applications of conventional or nuclear imaging and invasive procedures.
Collapse
Affiliation(s)
- Silvia Pinelli
- Endocrinology Unit, Department of Medicine (DIMED), University-Hospital of Padova, Padova, Italy
| | - Mattia Barbot
- Endocrinology Unit, Department of Medicine (DIMED), University-Hospital of Padova, Padova, Italy
| | - Carla Scaroni
- Endocrinology Unit, Department of Medicine (DIMED), University-Hospital of Padova, Padova, Italy
| | - Filippo Ceccato
- Endocrinology Unit, Department of Medicine (DIMED), University-Hospital of Padova, Padova, Italy.,Department of Neuroscience DNS, University of Padova, Padova, Italy
| |
Collapse
|
12
|
Mareš Š, Filipovský J, Vlková K, Pešta M, Černá V, Hrabák J, Mlíková Seidlerová J, Mayer O. A novel nonsense mutation in the β-subunit of the epithelial sodium channel causing Liddle syndrome. Blood Press 2021; 30:291-299. [PMID: 34223773 DOI: 10.1080/08037051.2021.1942785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Liddle syndrome is a hereditary form of arterial hypertension caused by mutations in the genes coding of the epithelial sodium channel - SCNN1A, SCNN1B and SCNN1G. It is characterised by early onset of hypertension and variable biochemical features such as hypokalaemia and low plasma concentrations of renin and aldosterone. Phenotypic variability is large and, therefore, LS is probably underdiagnosed. Our objective was to examine a family suspected from Liddle syndrome including genetic testing and evaluate clinical and biochemical features of affected family members. MATERIALS AND METHODS Thirteen probands from the Czech family, related by blood, underwent physical examination, laboratory tests, and genetic testing. Alleles of SCNN1B and SCNN1G genes were examined by PCR amplification and Sanger sequencing of amplicons. RESULTS We identified a novel mutation in the β-subunit of an epithelial sodium channel coded by the SCNN1B gene, causing the nonsense mutation in the protein sequence p.Tyr604*. This mutation was detected in 7 members of the family. The mutation carriers differed in the severity of hypertension and hypokalaemia which appeared only after diuretics in most of them; low aldosterone level (< 0.12 nmol/l) was, however, present in all. CONCLUSIONS This finding expands the spectrum of known mutations causing Liddle syndrome. Hypoaldosteronemia was 100% sensitive sign in the mutation carriers. Low levels are observed especially in the Caucasian population reaching 96% sensitivity. Assessment of plasma aldosterone concentration is helpful for differential diagnosis of arterial hypertension. CONDENSED ABSTRACT Liddle syndrome is a hereditary form of arterial hypertension caused by mutations in the genes encoding the epithelial sodium channel's α-, β- and γ-subunit. It is usually manifested by early onset of hypertension accompanied by low potassium and aldosterone levels. We performed a physical examination, laboratory tests and genetic screening in 13 members of a Czech family. We found a new mutation of the SCNN1B gene which encodes the β-subunit of the epithelial sodium channel. We describe the variability of each family member phenotype and point out the relevance of using aldosterone levels as a high sensitivity marker of Liddle syndrome in Caucasians.
Collapse
Affiliation(s)
- Štěpán Mareš
- Second Department of Internal Medicine, University Hospital, Pilsen, Czech Republic.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jan Filipovský
- Second Department of Internal Medicine, University Hospital, Pilsen, Czech Republic.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Kateřina Vlková
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Microbiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Martin Pešta
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Institute of Biology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Václava Černá
- Institute of Biology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jaroslav Hrabák
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Microbiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jitka Mlíková Seidlerová
- Second Department of Internal Medicine, University Hospital, Pilsen, Czech Republic.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Otto Mayer
- Second Department of Internal Medicine, University Hospital, Pilsen, Czech Republic.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
13
|
Abstract
The known genetic architecture of blood pressure now comprises >30 genes, with rare variants resulting in monogenic forms of hypertension or hypotension and >1,477 common single-nucleotide polymorphisms (SNPs) being associated with the blood pressure phenotype. Monogenic blood pressure syndromes predominantly involve the renin-angiotensin-aldosterone system and the adrenal glucocorticoid pathway, with a smaller fraction caused by neuroendocrine tumours of the sympathetic and parasympathetic nervous systems. The SNPs identified in genome-wide association studies (GWAS) as being associated with the blood pressure phenotype explain only approximately 27% of the 30-50% estimated heritability of blood pressure, and the effect of each SNP on the blood pressure phenotype is small. A paucity of SNPs from GWAS are mapped to known genes causing monogenic blood pressure syndromes. For example, a GWAS signal mapped to the gene encoding uromodulin has been shown to affect blood pressure by influencing sodium homeostasis, and the effects of another GWAS signal were mediated by endothelin. However, the majority of blood pressure-associated SNPs show pleiotropic associations. Unravelling these associations can potentially help us to understand the underlying biological pathways. In this Review, we appraise the current knowledge of blood pressure genomics, explore the causal pathways for hypertension identified in Mendelian randomization studies and highlight the opportunities for drug repurposing and pharmacogenomics for the treatment of hypertension.
Collapse
Affiliation(s)
- Sandosh Padmanabhan
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Anna F Dominiczak
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
14
|
Posaconazole-Induced Hypertension Masquerading as Congenital Adrenal Hyperplasia in a Child with Cystic Fibrosis. Case Rep Med 2020; 2020:8153012. [PMID: 32908540 PMCID: PMC7474764 DOI: 10.1155/2020/8153012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/17/2020] [Indexed: 12/31/2022] Open
Abstract
Background Deficiency of 11β-hydroxylase is the second most common cause of congenital adrenal hyperplasia (CAH), presenting with hypertension, hypokalaemia, precocious puberty, and adrenal insufficiency. We report the case of a 6-year-old boy with cystic fibrosis (CF) found to have hypertension and cortisol insufficiency, which were initially suspected to be due to CAH, but were subsequently identified as being secondary to posaconazole therapy. Case Presentation. A 6-year-old boy with CF was noted to have developed hypertension after administration of two doses of Orkambi™ (ivacaftor/lumacaftor), which was subsequently discontinued, but the hypertension persisted. Further investigations, including echocardiogram, abdominal Doppler, thyroid function, and urinary catecholamine levels, were normal. A urine steroid profile analysis raised the possibility of CAH due to 11β-hydroxylase deficiency, and a standard short synacthen test (SST) revealed suboptimal cortisol response. Clinically, there were no features of androgen excess. Detailed evaluation of the medical history revealed exposure to posaconazole for more than 2 months, and the hypertension had been noted to develop two weeks after the initiation of posaconazole. Hence, posaconazole was discontinued, following which the blood pressure, cortisol response to the SST, and urine steroid profile were normalized. Conclusion Posaconazole can induce a clinical and biochemical picture similar to CAH due to 11β-hydroxylase deficiency, which is reversible. It is prudent to monitor patients on posaconazole for cortisol insufficiency, hypertension, and electrolyte abnormalities.
Collapse
|
15
|
Fan P, Pan XC, Zhang D, Yang KQ, Zhang Y, Tian T, Luo F, Ma WJ, Liu YX, Wang LP, Zhang HM, Song L, Cai J, Zhou XL. Pediatric Liddle Syndrome Caused by a Novel SCNN1G Variant in a Chinese Family and Characterized by Early-Onset Hypertension. Am J Hypertens 2020; 33:670-675. [PMID: 32161960 PMCID: PMC7368168 DOI: 10.1093/ajh/hpaa037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Liddle syndrome (LS), an autosomal dominant disorder, is a common monogenic hypertension in pediatrics. In this study, we reported a novel SCNN1G variant in a Chinese family with pediatric LS, and conduct a systematic review of epithelial sodium channel (ENaC)-gene-positive LS cases to conclude the clinical genetic features of LS in childhood. METHODS Next-generation sequencing and in silico analysis were performed in the proband to discover candidate variants. Sanger sequencing was used to identify the predicted likely pathogenic variant. LS patients in this family were treated with amiloride. The Medline database was searched to summarize clinical features of pediatric LS cases whose age at genetic diagnosis was not more than 18 years. RESULTS Genetic analysis identified a novel SCNN1G missense variant (c.1874C>T, p.Pro625Leu) in the proband with LS in childhood. In silico analysis revealed this heterozygous variant was highly conserved and deleterious. A total of 38 publications described pediatric LS associated with 25 pathogenic variants in SCNN1B and SCNN1G in 54 children. Despite the phenotypic heterogeneity, early-onset hypertension is the most common feature. All LS patients in this family or the reviewed cases showed significantly improvements in hypertension and hypokalemia after treatment with ENaC inhibitors. CONCLUSIONS This study identified a novel SCNN1G missense variant in a patient with pediatric LS, expanding the genetic spectrum of SCNN1G and demonstrating the PY motif of γ-ENaC as a potential mutant region. Early identification and specific management of LS in children and adolescents are important to prevent the development of hypertensive end-organ disease.
Collapse
Affiliation(s)
- Peng Fan
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Cheng Pan
- Department of Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Di Zhang
- Department of Emergency and Critical Care, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kun-Qi Yang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Tian
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Luo
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen-Jun Ma
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ya-Xin Liu
- Department of Emergency and Critical Care, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin-Ping Wang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui-Min Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Song
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Cai
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xian-Liang Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|