1
|
Paege N, Feustel S, Marx-Stoelting P. Toxicological evaluation of microbial secondary metabolites in the context of European active substance approval for plant protection products. Environ Health 2024; 23:52. [PMID: 38835048 DOI: 10.1186/s12940-024-01092-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/19/2024] [Indexed: 06/06/2024]
Abstract
Risk assessment (RA) of microbial secondary metabolites (SM) is part of the EU approval process for microbial active substances (AS) used in plant protection products (PPP). As the number of potentially produced microbial SM may be high for a certain microbial strain and existing information on the metabolites often are low, data gaps are frequently identified during the RA. Often, RA cannot conclusively clarify the toxicological relevance of the individual substances. This work presents data and RA conclusions on four metabolites, Beauvericin, 2,3-deepoxy-2,3-didehydro-rhizoxin (DDR), Leucinostatin A and Swainsonin in detail as examples for the challenging process of RA. To overcome the problem of incomplete assessment reports, RA of microbial AS for PPP is in need of new approaches. In view of the Next Generation Risk Assessment (NGRA), the combination of literature data, omic-methods, in vitro and in silico methods combined in adverse outcome pathways (AOPs) can be used for an efficient and targeted identification and assessment of metabolites of concern (MoC).
Collapse
Affiliation(s)
- Norman Paege
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
| | - Sabrina Feustel
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | |
Collapse
|
2
|
Schabo DC, Freire L, Sant'Ana AS, Schaffner DW, Magnani M. Mycotoxins in artisanal beers: An overview of relevant aspects of the raw material, manufacturing steps and regulatory issues involved. Food Res Int 2021; 141:110114. [PMID: 33641981 DOI: 10.1016/j.foodres.2021.110114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/29/2020] [Accepted: 12/30/2020] [Indexed: 10/22/2022]
Abstract
The consumption of artisanal beer has increased worldwide. Artisanal beers can include malted or unmalted wheat, maize, rice and sorghum, in addition to the basic ingredients. These grains can be infected by toxigenic fungi in the field or during storage and mycotoxins can be produced if they find favorable conditions. Mycotoxins may not be eliminated throughout the beer brewing and be detected in the final product. In addition, modified mycotoxins may also be formed during beer brewing. This review compiles relevant information about mycotoxins produced by Aspergillus, Fusarium and Penicillium in raw material of artisanal beer, as well as updates information about the production and fate of mycotoxins during the beer brewing process. Findings highlight that malting conditions favor the production of mycotoxins by the fungi contaminating cereals. Therefore, good agricultural and postharvest mitigation strategies are the most effective options for preventing the growth of toxigenic fungi and the production of mycotoxins in cereals. However, the final concentration of mycotoxin in artisanal beer is difficult to predict as it depends on the initial concentration contained in the raw material and the processing conditions. The current lack of limits of mycotoxins in artisanal beer underestimates possible risks to human health. In addition, modified mycotoxins, not detected by conventional methods, may be formed in artisanal beers. Maximum tolerated limits for these contaminants must be urgently established based on scientific data about transfer of mycotoxins throughout the artisanal beer brewery process.
Collapse
Affiliation(s)
- Danieli C Schabo
- Federal Institute of Education, Science and Technology of Rondônia, Campus Colorado do Oeste, BR 435, Km 63, Colorado do Oeste, RO 76993-000, Brazil; Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, Campus I, João Pessoa, PB 58051-900, Brazil
| | - Luísa Freire
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP 3083-862, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP 3083-862, Brazil
| | - Donald W Schaffner
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, Campus I, João Pessoa, PB 58051-900, Brazil.
| |
Collapse
|
3
|
Lin X, Zhang Q, Zhang Y, Li J, Zhang M, Hu X, Li F. Further data on the levels of emerging Fusarium mycotoxins in cereals collected from Tianjin, China. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2021; 14:74-80. [PMID: 33522441 DOI: 10.1080/19393210.2021.1873425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A number of 344 samples were collected from Tianjin, China and were analysed for the occurrence of emerging Fusarium mycotoxins including enniatin A (ENN A), enniatin A1 (ENN A1), enniatin B (ENN B), enniatin B1 (ENN B1) and beauvericin (BEA) by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The frequencies of mycotoxins studied were 69.0% (40/58), 69.8% (37/53), 85.9% (67/78), 78.9% (75/95), and 30.0% (18/60) for rice, wheat, corn, wheat flour, and corn flour, respectively. BEA was the predominant toxin in rice (average = 37.2 μg/kg) and wheat (average = 58.4 μg/kg), followed by ENN B and ENN B1, while less ENN A and ENN A1 were detected. ENN A was most common in corns with an average level of 28.1 μg/kg, while BEA had a higher average of 62.8 μg/kg. The levels of ENNs and BEA significantly decreased in wheat flours and corn flours, presumably due to the production process. The co-occurrences of ENNs and BEA in cereal samples were common in the combination of two and three mycotoxins and the significant positive correlations in concentrations were also obtained among them. Besides, agroclimate was considered as an important factor for Fusarium production and the mycotoxin contamination was found more serious in Jizhou district, which had more rainfall and less sunshine, than the other agriculture regions. These results suggested the necessity of carrying out in-depth and large-scale monitoring of mycotoxins in cereals and their products nationwide.
Collapse
Affiliation(s)
- Xiaohui Lin
- Sanitary Inspection Institute, Tianjin Centers for Disease Control and Prevention , Tianjin, PR China
| | - Qian Zhang
- Sanitary Inspection Institute, Tianjin Centers for Disease Control and Prevention , Tianjin, PR China
| | - Yi Zhang
- Sanitary Inspection Institute, Tianjin Centers for Disease Control and Prevention , Tianjin, PR China
| | - Jianping Li
- Sanitary Inspection Institute, Tianjin Centers for Disease Control and Prevention , Tianjin, PR China
| | - Mingyue Zhang
- Sanitary Inspection Institute, Tianjin Centers for Disease Control and Prevention , Tianjin, PR China
| | - Xiao Hu
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental Hazard, Logistics College of Chinese People's Armed Police Forces , Tianjin, China
| | - Fengqin Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment , Beijing, PR China
| |
Collapse
|
4
|
Beauvericin and Enniatins: In Vitro Intestinal Effects. Toxins (Basel) 2020; 12:toxins12110686. [PMID: 33138307 PMCID: PMC7693699 DOI: 10.3390/toxins12110686] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 01/05/2023] Open
Abstract
Food and feed contamination by emerging mycotoxins beauvericin and enniatins is a worldwide health problem and a matter of great concern nowadays, and data on their toxicological behavior are still scarce. As ingestion is the major route of exposure to mycotoxins in food and feed, the gastrointestinal tract represents the first barrier encountered by these natural contaminants and the first structure that could be affected by their potential detrimental effects. In order to perform a complete and reliable toxicological evaluation, this fundamental site cannot be disregarded. Several in vitro intestinal models able to recreate the different traits of the intestinal environment have been applied to investigate the various aspects related to the intestinal toxicity of emerging mycotoxins. This review aims to depict an overall and comprehensive representation of the in vitro intestinal effects of beauvericin and enniatins in humans from a species-specific perspective. Moreover, information on the occurrence in food and feed and notions on the regulatory aspects will be provided.
Collapse
|
5
|
Ekwomadu TI, Dada TA, Nleya N, Gopane R, Sulyok M, Mwanza M. Variation of Fusarium Free, Masked, and Emerging Mycotoxin Metabolites in Maize from Agriculture Regions of South Africa. Toxins (Basel) 2020; 12:E149. [PMID: 32121210 PMCID: PMC7150761 DOI: 10.3390/toxins12030149] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/09/2019] [Accepted: 01/08/2020] [Indexed: 02/05/2023] Open
Abstract
The presence of mycotoxins in cereal grain is a very important food safety issue with the occurrence of masked mycotoxins extensively investigated in recent years. This study investigated the variation of different Fusarium metabolites (including the related regulated, masked, and emerging mycotoxin) in maize from various agriculture regions of South Africa. The relationship between the maize producing regions, the maize type, as well as the mycotoxins was established. A total of 123 maize samples was analyzed by a LC-MS/MS multi-mycotoxin method. The results revealed that all maize types exhibited a mixture of free, masked, and emerging mycotoxins contamination across the regions with an average of 5 and up to 24 out of 42 investigated Fusarium mycotoxins, including 1 to 3 masked forms at the same time. Data obtained show that fumonisin B1, B2, B3, B4, and A1 were the most prevalent mycotoxins and had maximum contamination levels of 8908, 3383, 990, 1014, and 51.5 µg/kg, respectively. Deoxynivalenol occurred in 50% of the samples with a mean concentration of 152 µg/kg (max 1380 µg/kg). Thirty-three percent of the samples were contaminated with zearalenone at a mean concentration of 13.6 µg/kg (max 146 µg/kg). Of the masked mycotoxins, DON-3-glucoside occurred at a high incidence level of 53%. Among emerging toxins, moniliformin, fusarinolic acid, and beauvericin showed high occurrences at 98%, 98%, and 83%, and had maximum contamination levels of 1130, 3422, and 142 µg/kg, respectively. Significant differences in the contamination pattern were observed between the agricultural regions and maize types.
Collapse
Affiliation(s)
- Theodora Ijeoma Ekwomadu
- Department of Biological Sciences, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Mmabatho 2735, South Africa;
| | - Toluwase Adeseye Dada
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Mmabatho 2735, South Africa; (T.A.D.); (N.N.); (M.M.)
| | - Nancy Nleya
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Mmabatho 2735, South Africa; (T.A.D.); (N.N.); (M.M.)
| | - Ramokone Gopane
- Department of Biological Sciences, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Mmabatho 2735, South Africa;
| | - Michael Sulyok
- Department of Agro Biotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), A-3430 Tulln, Austria;
| | - Mulunda Mwanza
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Mmabatho 2735, South Africa; (T.A.D.); (N.N.); (M.M.)
| |
Collapse
|
6
|
Mastrorocco A, Martino NA, Marzano G, Lacalandra GM, Ciani E, Roelen BAJ, Dell'Aquila ME, Minervini F. The mycotoxin beauvericin induces oocyte mitochondrial dysfunction and affects embryo development in the juvenile sheep. Mol Reprod Dev 2019; 86:1430-1443. [PMID: 31410935 DOI: 10.1002/mrd.23256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/29/2019] [Indexed: 12/31/2022]
Abstract
Beauvericin (BEA) is a mycotoxin produced by Beauveria bassiana and Fusarium species recently reported as toxic on porcine oocyte maturation and embryo development. The aim of this study was to assess, in the juvenile sheep, whether its effects are due to alterations of oocyte and/or embryo bioenergetic/oxidative status. Cumulus-oocyte-complexes (COCs) were exposed to BEA during in vitro maturation (IVM), evaluated for cumulus cell (CC) apoptosis, oocyte maturation and bioenergetic/oxidative status or subjected to in vitro fertilization (IVF) and embryo culture (IVEC). Oocyte nuclear maturation and embryo development were assessed after Hoechst staining and CC apoptosis was analysed by terminal deoxynucleotidyl transferase-mediated dUTP nick-End labeling assay and chromatin morphology after Hoechst staining by epifluorescence microscopy. Oocyte and blastocyst bioenergetic/oxidative status were assessed by confocal microscopy after mitochondria and reactive oxygen species labelling with specific probes. BEA showed various toxic effects, that is, short-term effects on somatic and germinal compartment of the COC (CCs and the oocyte) and long-term carry-over effects on developing embryos. In detail, at 5 µM, it significantly reduced oocyte maturation and immature oocytes showed increased late-stage (Type C) CC apoptosis and DNA fragmentation while matured oocytes showed unaffected CC viability but abnormal mitochondrial distribution patterns. At lower tested concentrations (3-0.5 µM), BEA did not affect oocyte maturation, but matured oocytes showed reduced mitochondrial activity. At low concentrations, BEA impaired embryo developmental capacity and blastocyst quality after IVF and IVEC. In conclusion, in the juvenile sheep, COC exposure to BEA induces CC apoptosis and oocyte mitochondrial dysfunction with negative impact on embryo development.
Collapse
Affiliation(s)
- Antonella Mastrorocco
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Valenzano, Bari, Italy
| | - Nicola Antonio Martino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Valenzano, Bari, Italy
| | - Giuseppina Marzano
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Valenzano, Bari, Italy
| | | | - Elena Ciani
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Valenzano, Bari, Italy
| | - Bernard A J Roelen
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Maria Elena Dell'Aquila
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Valenzano, Bari, Italy
| | - Fiorenza Minervini
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Bari, Italy
| |
Collapse
|
7
|
Juan-García A, Tolosa J, Juan C, Ruiz MJ. Cytotoxicity, Genotoxicity and Disturbance of Cell Cycle in HepG2 Cells Exposed to OTA and BEA: Single and Combined Actions. Toxins (Basel) 2019; 11:toxins11060341. [PMID: 31208011 PMCID: PMC6628395 DOI: 10.3390/toxins11060341] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/13/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022] Open
Abstract
Mycotoxins are produced by a number of fungal genera spp., for example, Aspergillus, Penicillium, Alternaria, Fusarium, and Claviceps. Beauvericin (BEA) and Ochratoxin A (OTA) are present in various cereal crops and processed grains. This goal of this study was to determine their combination effect in HepG2 cells, presented for the first time. In this study, the type of interaction among BEA and OTA through an isobologram method, cell cycle disturbance by flow cytometry, and genotoxic potential by in vitro micronucleus (MN) assay following the TG 487 (OECD, 2016) of BEA and OTA individually and combined in HepG2 cells are presented. Cytotoxic concentration ranges studied by the MTT assay over 24, 48, and 72 h were from 0 to 25 µM for BEA and from 0 to 100 µM for OTA, while BEA + OTA combinations were at a 1:10 ratio from 3.4 to 27.5 µM. The toxicity observed for BEA was higher than for OTA at all times assayed; additive and synergistic effects were detected for their mixtures. Cell cycle arrest in the G0/G1 phase was detected for OTA and BEA + OTA treatments in HepG2 cells. Genotoxicity revealed significant effects for BEA, OTA, and in combinations underlining the importance of studying real exposure scenarios of chronic exposure to mycotoxins.
Collapse
Affiliation(s)
- Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain.
| | - Josefa Tolosa
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain.
- ProtoQSAR, CEEI, Avda. Benjamin Franklin 12, Paterna, 46980 Valencia, Spain.
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain.
| | - María-José Ruiz
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain.
| |
Collapse
|
8
|
Abstract
A total of 470 edible vegetable oil samples including peanut, soybean, rapeseed, sesame seed, corn, blend, and others collected from eight provinces of China were analyzed for the concentrations of beauvericin (BEA), enniatin A (ENA), A1 (ENA1), B (ENB), and B1 (ENB1) by ultraperformance liquid chromatography/electrospray ionization tandem mass spectrometry (UPLC/ESI-MS/MS). Concentrations of BEA, ENB, and ENB1 (average = 5.59 μg/kg, 5.16 μg/kg, and 4.61 μg/kg) in all positive samples were higher than those for ENA and ENA1 (average = 0.85 μg/kg and 1.88 μg/kg). Frequencies of BEA and ENNs in all analyzed samples were all higher than 50% with the exception of ENA1 (36.6%, 172/470). Levels of BEA and ENNs in all analyzed samples varied based on their sample types and geographical distributions (Kruskal–Wallis test, p < 0.05). The soybean and peanut oil samples were found to be more easily contaminated by BEA and ENNs than other oil samples. Concentrations of BEA and ENNs in samples obtained from Heilongjiang, Shandong and Guizhou were higher than those found in samples from other provinces. Besides, frequencies of mycotoxin co-contaminations were high and their co-contamination types also varied by oil types. BEA-ENA-ENA1-ENB-ENB1 was the most commonly found toxin combination type, almost in one third of the analyzed samples (30%, 141/470). Overall, these results indicate that co-occurrence of BEA and ENNs in analyzed Chinese edible vegetable oil samples is highly common, and it is vital to monitor them, both simultaneously and on a widespread level.
Collapse
|
9
|
Wu Q, Patocka J, Nepovimova E, Kuca K. A Review on the Synthesis and Bioactivity Aspects of Beauvericin, a Fusarium Mycotoxin. Front Pharmacol 2018; 9:1338. [PMID: 30515098 PMCID: PMC6256083 DOI: 10.3389/fphar.2018.01338] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 10/30/2018] [Indexed: 11/30/2022] Open
Abstract
Beauvericin (BEA) is an emerging Fusarium mycotoxin that contaminates food and feeds globally. BEA biosynthesis is rapidly catalyzed by BEA synthetase through a nonribosomal, thiol-templated mechanism. This mycotoxin has cytotoxicity and is capable of increasing oxidative stress to induce cell apoptosis. Recently, large evidence further shows that this mycotoxin has a variety of biological activities and is being considered a potential candidate for medicinal and pesticide research. It is noteworthy that BEA is a potential anticancer agent since it can increase the intracellular Ca2+ levels and induce the cancer cell death through oxidative stress and apoptosis. BEA has exhibited effective antibacterial activities against both pathogenic Gram-positive and Gram-negative bacteria. Importantly, BEA exhibits an effective capacity to inhibit the human immunodeficiency virus type-1 integrase. Moreover, BEA can simultaneously target drug resistance and morphogenesis which provides a promising strategy to combat life-threatening fungal infections. Thus, in this review, the synthesis and the biological activities of BEA, as well as, the underlying mechanisms, are fully analyzed. The risk assessment of BEA in food and feed are also discussed. We hope this review will help to further understand the biological activities of BEA and cast some new light on drug discovery.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Jiri Patocka
- Toxicology and Civil Protection, Faculty of Health and Social Studies, Institute of Radiology, University of South Bohemia České Budějovice, České Budějovice, Czechia.,Biomedical Research Centre, University Hospital, Hradec Kralove, Czechia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| |
Collapse
|
10
|
Alonso-Garrido M, Escrivá L, Manyes L, Font G. Enniatin B induces expression changes in the electron transport chain pathway related genes in lymphoblastic T-cell line. Food Chem Toxicol 2018; 121:437-443. [PMID: 30227181 DOI: 10.1016/j.fct.2018.09.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023]
Abstract
Enniatin B is a ionophoric and lipophilic mycotoxin which reaches the bloodstream and has the ability to penetrate into cellular membranes. The purpose of this study was to reveal changes in the gene expression profile caused by enniatin B in human Jurkat lymphoblastic T-cells after 24 h of exposure at 1.5, 3 and 5 μM by next generation sequencing. It was found that up to 27% of human genome expression levels were significantly altered (5750 genes for both down-regulation and up-regulation). In the three enniatin B concentrations studied 245 differentially expressed genes were found to be overlapped, 83 were down and 162 up-regulated. ConsensusPathDB analysis of over-representation of differentially expressed genes provided a list of gene ontology terms in which several biological processes related to nucleoside monophosphate metabolic process, respiratory chain complex, electron transport chain, oxidative phosphorylation and cellular respiration were the most altered. Also, an interesting correlation was found between enniatin B toxicity and the up-regulation of the UCP protein complex. In summary, the transcriptomic analysis revealed that mitochondria are the organelles showing more related differentially expressed genes. Consequently, differentially expressed genes involved in biological processes, molecular functions and pathways related to mitochondrial metabolism and respiration were significantly changed.
Collapse
Affiliation(s)
- M Alonso-Garrido
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Burjassot, Spain
| | - L Escrivá
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Burjassot, Spain
| | - L Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Burjassot, Spain.
| | - G Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Burjassot, Spain
| |
Collapse
|
11
|
Mamur S, Ünal F, Yılmaz S, Erikel E, Yüzbaşıoğlu D. Evaluation of the cytotoxic and genotoxic effects of mycotoxin fusaric acid. Drug Chem Toxicol 2018; 43:149-157. [PMID: 30204001 DOI: 10.1080/01480545.2018.1499772] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Fusaric acid (FA) is produced by several Fusarium species and is commonly found in grains. This investigation was performed to evaluate the cytotoxic and genotoxic effects of FA either in human cervix carcinoma (HeLa) cell line using 3-(4,5-dimethylthiazolyl-2)-2,5 diphenyltetrazolium bromide (MTT) assay and in human lymphocytes using chromosome aberrations (CAs), sister chromatid exchanges (SCEs), micronuclei (MN) as well as comet assay in vitro. The cells were treated with 0.78, 1.56, 3.125, 6.25, 12.50, 25, 50, 100, 200, and 400 µg/mL concentrations of FA. It has potent cytotoxic effect on HeLa cell line measured by MTT assay especially at higher concentrations (200, 400 µg/mL). The half of inhibitory concentration (IC50) evidenced by FA in the HeLa cells was 200 μg/mL at 24 h and between 200 and 400 μg/mL at 48 h. It was also observed that FA produced a significant decrease in mitotic index (MI) at 12.50 µg/mL compared to solvent control. Furthermore, it indicated a cytotoxic effect at the concentrations ranging from 25 to 400 μg/mL in human lymphocytes. The results of this research point out that being exposed to FA at high concentrations show cytotoxicity. Besides FA induced comet tail intensity at 3.125, 6.25, and 12.50 µg/mL concentrations in isolated human lymphocytes. On the other hand, no genotoxic effects were seen in human lymphocytes in vitro using CA, SCE and MN assays.
Collapse
Affiliation(s)
- Sevcan Mamur
- Life Sciences Application and Research Center, Gazi University, Ankara, Turkey
| | - Fatma Ünal
- Faculty of Science, Department of Biology, Gazi University, Ankara, Turkey
| | - Serkan Yılmaz
- Faculty of Health Sciences, Department of Midwifery, Ankara University, Ankara, Turkey
| | - Esra Erikel
- Faculty of Science, Department of Biology, Gazi University, Ankara, Turkey
| | - Deniz Yüzbaşıoğlu
- Faculty of Science, Department of Biology, Gazi University, Ankara, Turkey
| |
Collapse
|
12
|
Mamur S, Yuzbasioglu D, Yılmaz S, Erikel E, Unal F. Assessment of cytotoxic and genotoxic effects of enniatin-A in vitro. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:1633-1644. [PMID: 29889654 DOI: 10.1080/19440049.2018.1486513] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Enniatin A (EN-A) is a Fusarium mycotoxin which is a common contaminant in grains and especially in maize and it causes serious loss of product. The aim of this study was to investigate the cytotoxic effects using 3-(4,5-dimethylthiazolyl-2)-2,5 diphenyltetrazolium bromide (MTT) assay in human cervix carcinoma (HeLa) cell line, and genotoxic effects of EN-A using chromosome aberrations (CAs), sister chromatid exchanges (SCEs), micronuclei (MN) and comet assays in human lymphocytes. The cells were treated with 0.07, 0.14, 0.29, 0.57, 1.15, 2.29, 4.59 and 9.17 μM concentrations of EN-A. It exhibited cytotoxic effects in HeLa cell lines especially when the concentrations were increased. The half-inhibitory value (IC50) was determined as 1.15 μM concentration for 24 h and 0.57 μM concentration for 48 h. However, EN-A failed to affect the frequency of CAs, SCEs and MN in human lymphocytes. Only a slight increase was observed in the frequency of SCEs at 0.57 μM concentration over 48 h. The replication (RI) and nuclear division (NDI) indices were not affected. On the contrary, EN-A decreased the mitotic index (MI) significantly at all concentrations compared to the negative control and solvent control (except at 0.29 μM for 24 h, and except at 0.14, 0.29 and 0.57 μM for 48 h). Treatments over 2.29 μM showed toxic effects in human lymphocytes. EN-A significantly increased comet tail intensity (except at 0.07 and 0.57 μM) in isolated human lymphocytes. The results of this study demonstrate that EN-A has an obvious cytotoxic effect especially when the EN-A concentration was increased. In addition, EN-A could exhibit a mild genotoxic effect.
Collapse
Affiliation(s)
- Sevcan Mamur
- a Life Sciences Application and Research Center , Gazi University , Ankara , Turkey
| | - Deniz Yuzbasioglu
- b Science Faculty, Department of Biology , Gazi University , Ankara , Turkey
| | - Serkan Yılmaz
- c Faculty of Health Sciences, Department of Midwifery , Ankara University , Ankara , Turkey
| | - Esra Erikel
- b Science Faculty, Department of Biology , Gazi University , Ankara , Turkey
| | - Fatma Unal
- b Science Faculty, Department of Biology , Gazi University , Ankara , Turkey
| |
Collapse
|
13
|
Juan-García A, Taroncher M, Font G, Ruiz MJ. Micronucleus induction and cell cycle alterations produced by deoxynivalenol and its acetylated derivatives in individual and combined exposure on HepG2 cells. Food Chem Toxicol 2018; 118:719-725. [PMID: 29908960 DOI: 10.1016/j.fct.2018.06.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/23/2018] [Accepted: 06/13/2018] [Indexed: 01/23/2023]
Abstract
Mycotoxins are produced by a number of fungal genera spp as e.g. Aspergillus, Penicillium, Alternaria, Fusarium and Claviceps. 3-Acetyl-Deoxynivalenol (3-A-DON) and 15-Acetyl-Deoxynivalenol (15-ADON) which are produced by Fusarium, chemically belong to trichothecenes and occur in significant amounts as modified forms of deoxynivalenol (DON) in various cereal crops and processed grains. This study aims to determine the cytotoxicity, cell cycle and genotoxicity of the mycotoxins DON, 3-A-DON and 15-A-DON on HepG2 cells. Cytotoxic concentration range studied was from 100 to 3.1 μM for DON and 12.5 to 0.04 μM for 3-A-DON and 15-A-DON by the Neutral Red (NR) assay, over 24, 48 and 72 h. Potential of toxicity of 3-ADON in HepG2 cells was the highest at all times assayed. Cell cycle arrest in G0/G1 and G2/M phase was detected for all mycotoxins either in individually or in combined treatment in HepG2 cells. Genotoxicity was performed through micronuclei (MN) induction (TG 487) revealing significant effects for 3-ADON mycotoxin and in several combinations. It was evidenced that cell cycle alterations detected were associated to MN induction at all doses assayed, reaching the highest induction in tertiary combinations and in the binary combination 3-ADON + 15-ADON.
Collapse
Affiliation(s)
- Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain.
| | - Mercedes Taroncher
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain
| | - Guillermina Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain
| | - María-José Ruiz
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain
| |
Collapse
|
14
|
Maranghi F, Tassinari R, Narciso L, Tait S, Rocca CL, Felice GD, Butteroni C, Corinti S, Barletta B, Cordelli E, Pacchierotti F, Eleuteri P, Villani P, Hegarat LL, Fessard V, Reale O. In vivo toxicity and genotoxicity of beauvericin and enniatins. Combined approach to study in vivo toxicity and genotoxicity of mycotoxins beauvericin (BEA) and enniatin B (ENNB). ACTA ACUST UNITED AC 2018. [DOI: 10.2903/sp.efsa.2018.en-1406] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Eugenia Cordelli
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) Italy
| | - Francesca Pacchierotti
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) Italy
| | - Patrizia Eleuteri
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) Italy
| | - Paola Villani
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) Italy
| | - Ludovic Le Hegarat
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES) France
| | - Valérie Fessard
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES) France
| | - Océane Reale
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES) France
| |
Collapse
|
15
|
Escrivá L, Jennen D, Caiment F, Manyes L. Transcriptomic study of the toxic mechanism triggered by beauvericin in Jurkat cells. Toxicol Lett 2017; 284:213-221. [PMID: 29203277 DOI: 10.1016/j.toxlet.2017.11.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/10/2017] [Accepted: 11/27/2017] [Indexed: 01/28/2023]
Abstract
Beauvericin (BEA), an ionophoric cyclic hexadepsipeptide mycotoxin, is able to increase oxidative stress by altering membrane ion permeability and uncoupling oxidative phosphorylation. A toxicogenomic study was performed to investigate gene expression changes triggered by BEA exposure (1.5, 3 and 5 μM; 24 h) in Jurkat cells through RNA-sequencing and differential gene expression analysis. Perturbed gene expression was observed in a concentration dependent manner, with 43 differentially expressed genes (DEGs) overlapped in the three studied concentrations. Gene ontology (GO) analysis showed several biological processes related to electron transport chain, oxidative phosphorylation, and cellular respiration significantly altered. Molecular functions linked to mitochondrial respiratory chain and oxidoreductase activity were over-represented (q-value < 0.01). Pathway analysis revealed oxidative phosphorylation and electron transport chain as the most significantly altered pathways in all studied doses (z-score > 1.96; adj p-value < 0.05). 77 genes involved in the respiratory chain were significantly down-regulated at least at one dose. Moreover, 21 genes related to apoptosis and programmed cell death, and 12 genes related to caspase activity were significantly altered, mainly affecting initiator caspases 8, 9 and 10. The results demonstrated BEA-induced mitochondrial damage affecting the respiratory chain, and pointing to apoptosis through the caspase cascade in human lymphoblastic T cells.
Collapse
Affiliation(s)
- L Escrivá
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain.
| | - D Jennen
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, The Netherlands
| | - F Caiment
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, The Netherlands
| | - L Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| |
Collapse
|
16
|
Fraeyman S, Croubels S, Devreese M, Antonissen G. Emerging Fusarium and Alternaria Mycotoxins: Occurrence, Toxicity and Toxicokinetics. Toxins (Basel) 2017; 9:toxins9070228. [PMID: 28718805 PMCID: PMC5535175 DOI: 10.3390/toxins9070228] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/15/2017] [Indexed: 12/20/2022] Open
Abstract
Emerging Fusarium and Alternaria mycotoxins gain more and more interest due to their frequent contamination of food and feed, although in vivo toxicity and toxicokinetic data are limited. Whereas the Fusarium mycotoxins beauvericin, moniliformin and enniatins particularly contaminate grain and grain-based products, Alternaria mycotoxins are also detected in fruits, vegetables and wines. Although contamination levels are usually low (µg/kg range), higher contamination levels of enniatins and tenuazonic acid may occasionally occur. In vitro studies suggest genotoxic effects of enniatins A, A1 and B1, beauvericin, moniliformin, alternariol, alternariol monomethyl ether, altertoxins and stemphyltoxin-III. Furthermore, in vitro studies suggest immunomodulating effects of most emerging toxins and a reproductive health hazard of alternariol, beauvericin and enniatin B. More in vivo toxicity data on the individual and combined effects of these contaminants on reproductive and immune system in both humans and animals is needed to update the risk evaluation by the European Food Safety Authority. Taking into account new occurrence data for tenuazonic acid, the complete oral bioavailability, the low total body clearance in pigs and broiler chickens and the limited toxicity data, a health risk cannot be completely excluded. Besides, some less known Alternaria toxins, especially the genotoxic altertoxins and stemphyltoxin III, should be incorporated in risk evaluation as well.
Collapse
Affiliation(s)
- Sophie Fraeyman
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Mathias Devreese
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Gunther Antonissen
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| |
Collapse
|
17
|
Enniatin and Beauvericin Biosynthesis in Fusarium Species: Production Profiles and Structural Determinant Prediction. Toxins (Basel) 2017; 9:toxins9020045. [PMID: 28125067 PMCID: PMC5331425 DOI: 10.3390/toxins9020045] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 11/17/2022] Open
Abstract
Members of the fungal genus Fusarium can produce numerous secondary metabolites, including the nonribosomal mycotoxins beauvericin (BEA) and enniatins (ENNs). Both mycotoxins are synthesized by the multifunctional enzyme enniatin synthetase (ESYN1) that contains both peptide synthetase and S-adenosyl-l-methionine-dependent N-methyltransferase activities. Several Fusarium species can produce ENNs, BEA or both, but the mechanism(s) enabling these differential metabolic profiles is unknown. In this study, we analyzed the primary structure of ESYN1 by sequencing esyn1 transcripts from different Fusarium species. We measured ENNs and BEA production by ultra-performance liquid chromatography coupled with photodiode array and Acquity QDa mass detector (UPLC-PDA-QDa) analyses. We predicted protein structures, compared the predictions by multivariate analysis methods and found a striking correlation between BEA/ENN-producing profiles and ESYN1 three-dimensional structures. Structural differences in the β strand's Asn789-Ala793 and His797-Asp802 portions of the amino acid adenylation domain can be used to distinguish BEA/ENN-producing Fusarium isolates from those that produce only ENN.
Collapse
|
18
|
Bektaş İ, Karaman Ş, Dıraz E, Çelik M. The role of natural indigo dye in alleviation of genotoxicity of sodium dithionite as a reducing agent. Cytotechnology 2016; 68:2245-2255. [PMID: 27757710 DOI: 10.1007/s10616-016-0018-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/19/2016] [Indexed: 11/25/2022] Open
Abstract
Indigo blue is a natural dye used for thousands of years by civilizations to dye fabric blue and it is naturally obtained from Isatis tinctoria. I. tinctoria is not only used for extraction of indigo blue color but also used medicinally in Traditional Chinese Medicine because of its active compounds. Sodium dithionite (Na2S2O4) is used in dye bath for indigo blue extraction, but this reducing agent and its derivatives are major pollutants of textile industry and subsequently have hazardous influences on public health. Herein, the present study was designed to obtain the high yield of natural indigo dye but with low possible toxic effect. In this context, genotoxic effects of particular combinations of natural dye solutions obtained from Isatis tinctoria subsp. tomentolla with Na2S2O4 as reducing agent were investigated. Dye solutions were obtained using two different pH levels (pH 9 and 11) and three different concentrations of Na2S2O4 (2.5, 5 and 10 mg/ml). In addition to the dye solutions and reducing agent, aqueous extracts of I. tinctoria were assessed for their genotoxicity on human lymphocytes. For in vitro testing of genotoxicity, chromosomal aberrations (CAs), sister chromatid exchanges (SCEs) and mitotic indexes (MI) assays were used. Accordingly, Na2S2O4 caused significant increases in CA and SCE as well decrease in MI but the genotoxic effects of sodium dithionite were reduced with natural indigo dye. As a result, aqueous extracts of Isatis leaves removed the toxic effects of sodium dithionite and showed anti-genotoxic effect. For the optimal and desired quality but with less toxic effects of natural dye, 2.5 mg/ml (for wool yarn) and 5 mg/ml (for cotton yarn) of Na2S2O4 doses were found to be the best doses for reduction in the dye bath at Ph 9.
Collapse
Affiliation(s)
- İdris Bektaş
- Medicinal and Aromatic Plants Department, Suluova Vocational School, Amasya University, Amasya, 05000, Turkey
| | - Şengül Karaman
- Department of Biology, Faculty of Science and Letters, University of KSU, Kahramanmaraş, 46100, Turkey.
| | - Emel Dıraz
- Department of Biology, Faculty of Science and Letters, University of KSU, Kahramanmaraş, 46100, Turkey
| | - Mustafa Çelik
- Department of Medical Genetics, Faculty of Medicine, University of KSU, Kahramanmaraş, 46100, Turkey
| |
Collapse
|
19
|
Abdus-Salaam R, Atanda O, Fanelli F, Sulyok M, Cozzi G, Bavaro S, Krska R, Logrieco AF, Ezekiel CN, Salami WA. Fungal isolates and metabolites in locally processed rice from five agro-ecological zones of Nigeria. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2016; 9:281-289. [PMID: 27595168 DOI: 10.1080/19393210.2016.1215354] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This study reports the distribution of fungal isolates and fungal metabolites that naturally contaminate locally processed rice from five agro-ecological zones of Nigeria. The fungal species were isolated by the dilution plate technique and identified by appropriate diagnostics, while metabolites were determined by a liquid chromatographic tandem mass spectrometric method. Aspergillus and Penicillium species were the predominant isolates found in the rice samples while Fusarium spp. were not isolated. The mean fungal count differed significantly (p < 0.05) across the zones and ranged from 9.98 × 102 cfu g-1 in the Southern Guinea Savannah to 96.97 × 102 cfu g-1 in the Derived Savannah. For 16 fungal metabolites, selected from 63 positively identified fungal metabolites based on their concentration and spread across the zones, an occurrence map was constructed. The Northern Guinea Savannah recorded the highest contamination of fungal metabolites while the Sudan Savannah zone recorded the least.
Collapse
Affiliation(s)
- Rofiat Abdus-Salaam
- a Department of Food Technology , Lagos State Polytechnic , Ikorodu , Nigeria
| | - Olusegun Atanda
- b Department of Biological Sciences , McPherson University , Seriki Sotayo , Nigeria
| | - Francesca Fanelli
- c Institute of Sciences of Food Production , National Research Council , Bari , Italy
| | - Micheal Sulyok
- d Department for Agrobiotechnology (IFA-Tulln) , University of Natural Resources and Life Sciences (BOKU) , Vienna , Austria
| | - Giuseppe Cozzi
- c Institute of Sciences of Food Production , National Research Council , Bari , Italy
| | - Simona Bavaro
- c Institute of Sciences of Food Production , National Research Council , Bari , Italy
| | - Rudolf Krska
- d Department for Agrobiotechnology (IFA-Tulln) , University of Natural Resources and Life Sciences (BOKU) , Vienna , Austria
| | - Antonio F Logrieco
- c Institute of Sciences of Food Production , National Research Council , Bari , Italy
| | - Chibundu N Ezekiel
- e Department of Biosciences and Biotechnology , Babcock University , Ilishan-Remo , Nigeria
| | - Waheed A Salami
- f Institute of Food security, Environmental Resources and Agricultural Research (IFSERAR) , Federal University of Agriculture , Abeokuta , Nigeria
| |
Collapse
|
20
|
Blood-brain barrier transport kinetics of the cyclic depsipeptide mycotoxins beauvericin and enniatins. Toxicol Lett 2016; 258:175-184. [DOI: 10.1016/j.toxlet.2016.06.1741] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 11/20/2022]
|
21
|
Schoevers EJ, Santos RR, Fink-Gremmels J, Roelen BAJ. Toxicity of beauvericin on porcine oocyte maturation and preimplantation embryo development. Reprod Toxicol 2016; 65:159-169. [PMID: 27474255 DOI: 10.1016/j.reprotox.2016.07.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/01/2016] [Accepted: 07/25/2016] [Indexed: 11/30/2022]
Abstract
Beauvericin (BEA) is one of many toxins produced by Fusarium species that contaminate feed materials. The aim of this study was to assess its effects on porcine oocyte maturation and preimplantation embryo development. Cumulus-oocyte-complexes and developing embryos were exposed to BEA and cultured until the blastocyst stage. Cumulus cells, oocytes and embryos were examined for viability, progesterone synthesis, multidrug resistance protein (MDR1), ATP content and gene expression related to MDR1 function, oxidative phosphorylation, steroidogenesis and apoptosis. BEA was toxic in embryos, oocytes and cumulus cells at concentrations exceeding 0.5μM, and embryos were most vulnerable after the four-cell stage. Since BEA exerted different effects in embryos, oocytes and cumulus cells, the toxic mechanism is suggested to involve different pathways. Currently there are no consistent data on adverse effects of BEA in pig farms.
Collapse
Affiliation(s)
- Eric J Schoevers
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands.
| | - Regiane R Santos
- Institute for Risk Assessment Sciences, Division Veterinary Pharmacology, Pharmacotherapy and Toxicology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| | - Johanna Fink-Gremmels
- Institute for Risk Assessment Sciences, Division Veterinary Pharmacology, Pharmacotherapy and Toxicology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| | - Bernard A J Roelen
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
22
|
Taevernier L, Veryser L, Roche N, Peremans K, Burvenich C, Delesalle C, De Spiegeleer B. Human skin permeation of emerging mycotoxins (beauvericin and enniatins). JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2016; 26:277-287. [PMID: 25757886 DOI: 10.1038/jes.2015.10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/23/2014] [Accepted: 01/05/2015] [Indexed: 06/04/2023]
Abstract
Currently, dermal exposure data of cyclic depsipeptide mycotoxins are completely absent. There is a lack of understanding about the local skin and systemic kinetics and effects, despite their widespread skin contact and intrinsic hazard. Therefore, we provide a quantitative characterisation of their dermal kinetics. The emerging mycotoxins enniatins (ENNs) and beauvericin (BEA) were used as model compounds and their transdermal kinetics were quantitatively evaluated, using intact and damaged human skin in an in vitro Franz diffusion cell set-up and ultra high-performance liquid chromatography (UHPLC)-MS analytics. We demonstrated that all investigated mycotoxins are able to penetrate through the skin. ENN B showed the highest permeation (kp,v=9.44 × 10(-6) cm/h), whereas BEA showed the lowest (kp,v=2.35 × 10(-6) cm/h) and the other ENNs ranging in between. Combining these values with experimentally determined solubility data, Jmax values ranging from 0.02 to 0.35 μg/(cm(2) h) for intact skin and from 0.07 to 1.11 μg/(cm(2) h) for damaged skin were obtained. These were used to determine the daily dermal exposure (DDE) in a worst-case scenario. On the other hand, DDE's for a typical occupational scenario were calculated based on real-life mycotoxin concentrations for the industrial exposure of food-related workers. In the latter case, for contact with intact human skin, DDE's up to 0.0870 ng/(kg BW × day) for ENN A were calculated, whereas for impaired skin barrier this can even rise up to 0.3209 ng/(kg BW × day) for ENN B1. This knowledge is needed for the risk assessment after skin exposure of contaminated food, feed, indoor surfaces and airborne particles with mycotoxins.
Collapse
Affiliation(s)
- Lien Taevernier
- Drug Quality and Registration (DruQuaR) Group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent, Belgium
| | - Lieselotte Veryser
- Drug Quality and Registration (DruQuaR) Group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent, Belgium
| | - Nathalie Roche
- Department of Plastic and Reconstructive Surgery, University Hospital Ghent, De Pintelaan 185, Ghent, Belgium
| | - Kathelijne Peremans
- Department of Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
| | - Christian Burvenich
- Department of Comparative Physiology and Biometrics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
| | - Catherine Delesalle
- Department of Comparative Physiology and Biometrics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) Group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent, Belgium
| |
Collapse
|
23
|
Cytoprotective effect of resveratrol diastereomers in CHO-K1 cells exposed to beauvericin. Food Chem Toxicol 2015; 80:319-327. [DOI: 10.1016/j.fct.2015.03.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/13/2015] [Accepted: 03/30/2015] [Indexed: 11/24/2022]
|
24
|
Rofiat AS, Fanelli F, Atanda O, Sulyok M, Cozzi G, Bavaro S, Krska R, Logrieco AF, Ezekiel CN. Fungal and bacterial metabolites associated with natural contamination of locally processed rice (Oryza sativaL.) in Nigeria. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32:950-9. [DOI: 10.1080/19440049.2015.1027880] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Taevernier L, Veryser L, Vandercruyssen K, D’Hondt M, Vansteelandt S, De Saeger S, De Spiegeleer B. UHPLC-MS/MS method for the determination of the cyclic depsipeptide mycotoxins beauvericin and enniatins in in vitro transdermal experiments. J Pharm Biomed Anal 2014; 100:50-57. [DOI: 10.1016/j.jpba.2014.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/16/2014] [Accepted: 07/19/2014] [Indexed: 01/20/2023]
|
26
|
Tolomeotti D, Castro-Prado MAAD, Sant’Anna JRD, Martins ABT, Della-Rosa VA. Genotoxic evaluation of terbinafine in human lymphocytesin vitro. Drug Chem Toxicol 2014; 38:306-11. [DOI: 10.3109/01480545.2014.959174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Scientific Opinion on the risks to human and animal health related to the presence of beauvericin and enniatins in food and feed. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3802] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
28
|
Fungal and bacterial metabolites of stored maize (Zea mays, L.) from five agro-ecological zones of Nigeria. Mycotoxin Res 2014; 30:89-102. [PMID: 24643458 DOI: 10.1007/s12550-014-0194-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 11/27/2022]
Abstract
Seventy composite samples of maize grains stored in five agro-ecological zones (AEZs) of Nigeria where maize is predominantly produced were evaluated for the presence of microbial metabolites with the LC-MS/MS technique. The possible relationships between the storage structures and levels of mycotoxin contamination were also evaluated. Sixty-two fungal and four bacterial metabolites were extracted from the grains, 54 of which have not been documented for maize in Nigeria. Aflatoxin B1 and fumonisin B1 were quantified in 67.1 and 92.9% of the grains, while 64.1 and 57.1% exceeded the European Union Commission maximum acceptable limit (MAL) for aflatoxin B1 and fumonisins, respectively. The concentration of deoxynivalenol was, however, below the MAL with occurrence levels of 100 and 10% for its masked metabolite, deoxynivalenol glucoside. The bacterial metabolites had low concentrations and were not a source of concern. The storage structures significantly correlated positively or negatively (p < 0.01 and p < 0.05), respectively with the levels of grain contamination. Consumption of maize grains, a staple Nigerian diet, may therefore expose the population to mycotoxin contamination. There is need for an immediate action plan for mycotoxin mitigation in Nigeria, especially in the Derived Savannah zone, in view of the economic and public health importance of the toxins.
Collapse
|
29
|
Kayode O, Sulyok M, Fapohunda S, Ezekiel C, Krska R, Oguntona C. Mycotoxins and fungal metabolites in groundnut- and maize-based snacks from Nigeria. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2013; 6:294-300. [DOI: 10.1080/19393210.2013.823626] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Beauvericin-induced cytotoxicity via ROS production and mitochondrial damage in Caco-2 cells. Toxicol Lett 2013; 222:204-11. [PMID: 23850777 DOI: 10.1016/j.toxlet.2013.07.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/28/2013] [Accepted: 07/01/2013] [Indexed: 11/21/2022]
Abstract
The cytotoxicity of beauvericin (BEA) on human colon adenocarcinoma (Caco-2) cells was studied as a function of time. Moreover, the oxidative damage and cell death endpoints were monitored after 24, 48 and 72 h. After BEA exposure, the IC₅₀ values ranged from 1.9 ± 0.7 to 20.6 ± 6.9 μM. A decrease in reduced glutathione (GSH; 31%) levels, as well as an increase in oxidized glutathione (GSSG, 20%) was observed. In the presence of BEA, reactive oxygen species (ROS) level was highly increased at an early stage with the highest production of 2.0-fold higher than the control that was observed at 120 min. BEA induced cell death by mitochondria-dependent apoptotic process with loss of the mitochondrial membrane potential (ΔΨm; 9% compared to the control), increase in LPO level (from 120% to 207% compared to the control) and reduced G0/G1 phase, with an arrest in G2/M, in a dose and time-dependent manner. Cell proliferation, apoptosis and ΔΨm determined, were in a dose- time-dependent manner. Moreover, DNA damage was observed after 12.0 μM concentration. This study demonstrated that oxidative stress is one of the mechanism involved in BEA toxicity, moreover apoptosis induction and loss of ΔΨm contribute to its cytotoxicity in Caco-2 cells.
Collapse
|
31
|
Blesa J, Marín R, Lino C, Mañes J. Evaluation of enniatins A, A1, B, B1 and beauvericin in Portuguese cereal-based foods. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2012; 29:1727-35. [DOI: 10.1080/19440049.2012.702929] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
32
|
Ezekiel C, Sulyok M, Warth B, Odebode A, Krska R. Natural occurrence of mycotoxins in peanut cake from Nigeria. Food Control 2012. [DOI: 10.1016/j.foodcont.2012.04.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
33
|
Ezekiel CN, Bandyopadhyay R, Sulyok M, Warth B, Krska R. Fungal and bacterial metabolites in commercial poultry feed from Nigeria. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2012; 29:1288-99. [PMID: 22725671 DOI: 10.1080/19440049.2012.688878] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Metabolites of toxigenic fungi and bacteria occur as natural contaminants (e.g. mycotoxins) in feedstuffs making them unsafe to animals. The multi-toxin profiles in 58 commercial poultry feed samples collected from 19 districts in 17 states of Nigeria were determined by LC/ESI-MS/MS with a single extraction step and no clean-up. Sixty-three (56 fungal and seven bacterial) metabolites were detected with concentrations ranging up to 10,200 µg kg⁻¹ in the case of aurofusarin. Fusarium toxins were the most prevalent group of fungal metabolites, whereas valinomycin occurred in more than 50% of the samples. Twelve non-regulatory fungal and seven bacterial metabolites detected and quantified in this study have never been reported previously in naturally contaminated stored grains or finished feed. Among the regulatory toxins in poultry feed, aflatoxin concentrations in 62% of samples were above 20 µg kg⁻¹, demonstrating high prevalence of unsafe levels of aflatoxins in Nigeria. Deoxynivalenol concentrations exceeded 1000 µg kg⁻¹ in 10.3% of samples. Actions are required to reduce the consequences from regulatory mycotoxins and understand the risks of the single or co-occurrence of non-regulatory metabolites for the benefit of the poultry industry.
Collapse
Affiliation(s)
- C N Ezekiel
- Pathology/Mycotoxin Laboratory, International Institute of Tropical Agriculture (IITA), PMB 5320, Ibadan, Nigeria
| | | | | | | | | |
Collapse
|
34
|
Qadri SM, Kucherenko Y, Lang F. Beauvericin induced erythrocyte cell membrane scrambling. Toxicology 2011; 283:24-31. [PMID: 21296643 DOI: 10.1016/j.tox.2011.01.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 01/27/2011] [Accepted: 01/28/2011] [Indexed: 12/26/2022]
Abstract
Beauvericin is a mycotoxin with antiviral, antibacterial, nematicidal, insecticidal, cytotoxic, and apoptotic activity. Similar to nucleated cells erythrocytes may undergo suicidal death or eryptosis, which is characterized by cell shrinkage and phosphatidylserine exposure at the erythrocyte surface. Eryptosis may be triggered by energy depletion leading to increase of cytosolic Ca²+ activity. The present study thus explored whether beauvericin is able to trigger eryptosis and influence eryptosis following energy depletion. Cell membrane scrambling was estimated from binding of annexin V to phosphatidylserine at the erythrocyte surface, cell volume from forward scatter in FACS analysis, cytosolic Ca²+ concentration from Fluo3 fluorescence, cytosolic ATP concentration from a luciferase-assay and ion channel activity with whole cell patch clamp. Exposure to beauvericin (≥ 5 μM) significantly decreased erythrocyte ATP concentration and increased cytosolic Ca²+ concentration as well as annexin V-binding. The effect of beauvericin on annexin V binding was significantly blunted by removal of extracellular Ca²+. Glucose depletion (48 h) was followed by, increase of Fluo3 fluorescence, decrease of forward scatter and increase of annexin V-binding. Beauvericin (≥ 1 μM) augmented the effect of glucose withdrawal on Fluo3 fluorescence and annexin V-binding, but significantly blunted the effect of glucose withdrawal on forward scatter, an effect paralleled by inhibition of Ca²+ activated K+ channels. The present observations disclose novel effects of beauvericin, i.e. stimulation of Ca²+ entry with subsequent cell membrane scrambling and inhibition of Ca²+ activated K+ channels with blunting of cell shrinkage.
Collapse
Affiliation(s)
- Syed M Qadri
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany
| | | | | |
Collapse
|