1
|
Zhang Y, Luo X, Zhu M, Wu Y. Evaluation the role of insulin signaling pathway in reproductive toxicity of dispersed diesel particulate extract under environmental conditions. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109959. [PMID: 38866378 DOI: 10.1016/j.cbpc.2024.109959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/27/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
Diesel particulate extract (DPE), which is a significant constituent of airborne particle pollution, has a strong association with the development of cancer and respiratory diseases. Fulvic acid (FA), a plentiful organic macromolecule found in water, has the capability to modify particle surface charge and adsorption capacity when combined with minerals. Nevertheless, there is a scarcity of data regarding the influence of their interaction on DPE toxicity. To examine the impact of environmental factor on the toxic effects of DPE, we used the Caenorhabditis elegans (C. elegans) model to investigate the reproductive toxicity of DPE and FA on insulin signaling pathway. C. elegans were subjected to a semi-fluid medium (NGG) containing different concentrations of DPE or DPE + FA in order to assess germline apoptosis and the expression of important genes in the insulin signaling pathway. Through several mutant strains, we found that daf-2, age-1, pdk-1, akt-1 and daf-16 were involved in DPE-induced apoptosis. Furthermore, and the expression levels of these genes significantly altered. The ratio of daf-16 translocation to nucleation, as well as the amount of reactive oxygen species (ROS), exhibited a dose-response relationship, however, the presence of FA could altered these effects. The results revealed that the insulin signaling pathway plays a vital role in mediating the harmful effects caused by DPE, whereas environmental factors have a substantial impact on its toxicity. Moreover, it was noted that semi-fluid medium could effectively replicate three-dimensional exposure circumstances closely resembling those observed in actual situations.
Collapse
Affiliation(s)
- Yajun Zhang
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Health and Safety, Ministry of Education, Anhui University of Science & Technology, Huainan 232001, China; School of Public Health, Anhui University of Science & Technology, Hefei 231131, China.
| | - Xun Luo
- School of Biological Engineering, Huainan Normal University, Huainan 232038, China.
| | - Mengyun Zhu
- School of Biological Engineering, Huainan Normal University, Huainan 232038, China
| | - Yu Wu
- School of Biological Engineering, Huainan Normal University, Huainan 232038, China
| |
Collapse
|
2
|
Wu T, Xu H, Liang X, Tang M. Caenorhabditis elegans as a complete model organism for biosafety assessments of nanoparticles. CHEMOSPHERE 2019; 221:708-726. [PMID: 30677729 DOI: 10.1016/j.chemosphere.2019.01.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/24/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
The number of biosafety evaluation studies of nanoparticles (NPs) using different biological models is increasing with the rapid development of nanotechnology. Thus far, nematode Caenorhabditis elegans (C. elegans), as a complete model organism, has become an important in vivo alternative assay system to assess the risk of NPs, especially at the environmental level. According to results of qualitative and quantitative analyses, it can be concluded that studies of nanoscientific research using C. elegans is persistently growing. However, the comprehensive conclusion and analysis of toxic effects of NPs in C. elegans are limited and chaotic. This review focused on the effects, especially sublethal ones, induced by NPs in C. elegans, including the development, intestinal function, immune response, neuronal function, and reproduction, as well as the underlying mechanisms of NPs causing these effects, including oxidative stress and alterations of several signaling pathways. Furthermore, we presented some factors that influence the toxic effects of NPs in C. elegans. The advantages and limitations of using nematodes in the nanotoxicology study were also discussed. Finally, we predicted that the application of C. elegans to assess long-term impacts of metal oxide NPs in the ecosystem would become a vital part of the nanoscientific research field, which provided an insight for further study.
Collapse
Affiliation(s)
- Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China.
| | - Hongsheng Xu
- State Grid Electric Power Research Institute, NARI Group Corporation, Nanjing, 211000, China
| | - Xue Liang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
3
|
Vingskes AK, Spann N. The toxicity of a mixture of two antiseptics, triclosan and triclocarban, on reproduction and growth of the nematode Caenorhabditis elegans. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:420-429. [PMID: 29411206 DOI: 10.1007/s10646-018-1905-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/18/2018] [Indexed: 06/08/2023]
Abstract
Many widely used healthcare products contain antiseptics, whose persistence in aquatic environments, soils, and sediments leads to the contamination of ecosystems and adversely affects wildlife. Recently, the impact not only of high but also low doses of contaminants and mixtures of several chemicals has become a focus of concern. In this study, toxicity tests of the antiseptics triclosan (TCS) and triclocarban (TCC) were performed in an aquatic test medium using the nematode Caenorhabditis elegans. Nominal concentrations of TCS and TCC were tested in separate single-substance toxicity tests (96-h-exposure), focussing on growth and reproduction endpoints. Median effective concentrations (EC50s) from the single-substance tests were subsequently used to set up five different ratios of TCS:TCC mixtures leading to the same toxicity. Six dilutions of each mixture ratio were tested for effon reproduction of C. elegans. In the single-substance tests, TCC was about 30 times more toxic than TCS when considering effects on growth and concerning reproduction, TCC was about 50 times more toxic than TCS. For both substances, the toxic effect on reproduction was more pronounced than the one on growth. Low doses of TCS (1-10 µmol L-1) stimulated reproduction by up to 301% compared to the control, which might be due to endocrine disruption or other stress-related compensation responses (hormesis). Neither antiseptic stimulated growth. In the mixtures, increasing amounts of TCC inhibited the stimulatory effects of TCS on reproduction. In addition, the interactions of TCS and TCC were antagonistic, such that mixtures displayed lower toxicity than would have been expected when TCS and TCC mixtures adhered to the principle of concentration addition.
Collapse
Affiliation(s)
| | - Nicole Spann
- Department of Animal Ecology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
4
|
Licá ICL, Soares AMDS, de Mesquita LSS, Malik S. Biological properties and pharmacological potential of plant exudates. Food Res Int 2018; 105:1039-1053. [DOI: 10.1016/j.foodres.2017.11.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/16/2017] [Accepted: 11/19/2017] [Indexed: 01/27/2023]
|
5
|
New live screening of plant-nematode interactions in the rhizosphere. Sci Rep 2018; 8:1440. [PMID: 29362410 PMCID: PMC5780396 DOI: 10.1038/s41598-017-18797-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/12/2017] [Indexed: 12/19/2022] Open
Abstract
Free living nematodes (FLN) are microscopic worms found in all soils. While many FLN species are beneficial to crops, some species cause significant damage by feeding on roots and vectoring viruses. With the planned legislative removal of traditionally used chemical treatments, identification of new ways to manage FLN populations has become a high priority. For this, more powerful screening systems are required to rapidly assess threats to crops and identify treatments efficiently. Here, we have developed new live assays for testing nematode responses to treatment by combining transparent soil microcosms, a new light sheet imaging technique termed Biospeckle Selective Plane Illumination Microscopy (BSPIM) for fast nematode detection, and Confocal Laser Scanning Microscopy for high resolution imaging. We show that BSPIM increased signal to noise ratios by up to 60 fold and allowed the automatic detection of FLN in transparent soil samples of 1.5 mL. Growing plant root systems were rapidly scanned for nematode abundance and activity, and FLN feeding behaviour and responses to chemical compounds observed in soil-like conditions. This approach could be used for direct monitoring of FLN activity either to develop new compounds that target economically damaging herbivorous nematodes or ensuring that beneficial species are not negatively impacted.
Collapse
|
6
|
Mevenkamp L, Brown A, Hauton C, Kordas A, Thatje S, Vanreusel A. Hydrostatic pressure and temperature affect the tolerance of the free-living marine nematode Halomonhystera disjuncta to acute copper exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 192:178-183. [PMID: 28963926 DOI: 10.1016/j.aquatox.2017.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/13/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
Potential deep-sea mineral extraction poses new challenges for ecotoxicological research since little is known about effects of abiotic conditions present in the deep sea on the toxicity of heavy metals. Due to the difficulty of collecting and maintaining deep-sea organisms alive, a first step would be to understand the effects of high hydrostatic pressure and low temperatures on heavy metal toxicity using shallow-water relatives of deep-sea species. Here, we present the results of acute copper toxicity tests on the free-living shallow-water marine nematode Halomonhystera disjuncta, which has close phylogenetic and ecological links to the bathyal species Halomonhystera hermesi. Copper toxicity was assessed using a semi-liquid gellan gum medium at two levels of hydrostatic pressure (0.1MPa and 10MPa) and temperature (10°C and 20°C) in a fully crossed design. Mortality of nematodes in each treatment was assessed at 4 time intervals (24 and 48h for all experiments and additionally 72 and 96h for experiments run at 10°C). LC50 values ranged between 0.561 and 1.864mg Cu2+L-1 and showed a decreasing trend with incubation time. Exposure to high hydrostatic pressure significantly increased sensitivity of nematodes to copper, whereas lower temperature resulted in an apparently increased copper tolerance, possibly as a result of a slower metabolism under low temperatures. These results indicate that hydrostatic pressure and temperature significantly affect metal toxicity and therefore need to be considered in toxicity assessments for deep-sea species. Any application of pollution limits derived from studies of shallow-water species to the deep-sea mining context must be done cautiously, with consideration of the effects of both stressors.
Collapse
Affiliation(s)
- Lisa Mevenkamp
- Marine Biology Research Group, Ghent University, Krijgslaan 281 - S8, 9000 Ghent, Belgium.
| | - Alastair Brown
- University of Southampton, Ocean and Earth Science, National Oceanography Centre Southampton, European Way, Southampton, SO14 3ZH, UK
| | - Chris Hauton
- University of Southampton, Ocean and Earth Science, National Oceanography Centre Southampton, European Way, Southampton, SO14 3ZH, UK
| | - Anna Kordas
- Marine Biology Research Group, Ghent University, Krijgslaan 281 - S8, 9000 Ghent, Belgium
| | - Sven Thatje
- University of Southampton, Ocean and Earth Science, National Oceanography Centre Southampton, European Way, Southampton, SO14 3ZH, UK
| | - Ann Vanreusel
- Marine Biology Research Group, Ghent University, Krijgslaan 281 - S8, 9000 Ghent, Belgium
| |
Collapse
|
7
|
Luo X, Xu S, Yang Y, Zhang Y, Wang S, Chen S, Xu A, Wu L. A novel method for assessing the toxicity of silver nanoparticles in Caenorhabditis elegans. CHEMOSPHERE 2017; 168:648-657. [PMID: 27836269 DOI: 10.1016/j.chemosphere.2016.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/30/2016] [Accepted: 11/02/2016] [Indexed: 06/06/2023]
Abstract
At present, nanotechnology has been producing nanoscale materials with unprecedented speed. Nanomaterials could be inevitably released into the environment owing to their widespread use, and their potential toxicity has caused a great concern. With regard to assessment of nanomaterial toxicity, many studies probably don't truly reflect their toxicity, because the nanoparticles were not stable and uniformly dispersed in the medium. In the present study, the semi-fluid nematode growth gelrite medium (NGG) was used to achieve better distribution of silver nanoparticles (AgNPs). We aimed to evaluate the toxicity of AgNPs in three different culture methods, such as the NGG, nematode growth medium (NGM) and K-medium (KM). Our transmission electron microscopy, hydrodynamic diameter, and inductively coupled plasma-atomic emission spectrometry results demonstrated that AgNPs homogeneously and stably dispersed in NGG compared to that in liquid KM. Furthermore, the conventional toxicity end points, such as body length, fecundity, lifespan, population growth, germline cell apoptosis, reactive oxygen species, and mitochondrial membrane potential were used to assess the toxicity of AgNPs to Caenorhabditis elegans (C. elegans) in NGG, NGM and KM. Our results showed that the toxicity of AgNPs obtained in the NGG test medium was much higher than that in the standard NGM and KM. In addition to the improved dispersion of nanoparticles, NGG also offered advantages for long-term studies and likely provided a convenient nematode toxicity testing method. These results revealed that the NGG test medium was a suitable and sensitive culture method for the evaluation of AgNPs toxicity using C. elegans.
Collapse
Affiliation(s)
- Xun Luo
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; School of Bioengineering, Huainan Normal University, Huainan, Anhui 232038, China
| | - Shengmin Xu
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China.
| | - Yaning Yang
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China
| | - Yajun Zhang
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China
| | - Shunchang Wang
- School of Bioengineering, Huainan Normal University, Huainan, Anhui 232038, China
| | - Shaopeng Chen
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China
| | - An Xu
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China
| | - Lijun Wu
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China.
| |
Collapse
|
8
|
Kreuzinger-Janik B, Brinke M, Traunspurger W, Majdi N. Life history traits of the free-living nematode, Plectus acuminatus Bastian, 1865, and responses to cadmium exposure. NEMATOLOGY 2017. [DOI: 10.1163/15685411-00003077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Free-living nematodes are ubiquitous and play an essential role in ecosystems. However, little is known about their standard life history traits (LHTs), which limits their inclusion in estimations of energy flows and carrying capacities of ecosystems, as well as in modelling population-level responses to toxicants. Thus, we used the hanging-drop method to measure LHTs of Plectus acuminatus with and without exposure to cadmium (2 mg l−1). In controls, the mean lifespan was 68 days and the maximum 114 days. Individuals laid eggs on average 19 days after hatching, while production of offspring peaked at 37 days. Plectus acuminatus individuals were very fertile, producing on average 848 juveniles. Population growth rate of 0.19 was estimated for the control cohort leading to an average population doubling time of 3.65 days. Exposure to cadmium reduced mean lifespan by 62% and affected reproduction as only 22% of individuals produced offspring, leading to a total fertility rate 85% lower than in controls.
Collapse
Affiliation(s)
| | - Marvin Brinke
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Walter Traunspurger
- University of Bielefeld, Animal Ecology, Konsequenz 45, 33615 Bielefeld, Germany
| | - Nabil Majdi
- University of Bielefeld, Animal Ecology, Konsequenz 45, 33615 Bielefeld, Germany
| |
Collapse
|
9
|
Ristau K, Akgül Y, Bartel AS, Fremming J, Müller MT, Reiher L, Stapela F, Splett JP, Spann N. Toxicity in relation to mode of action for the nematode Caenorhabditis elegans: Acute-to-chronic ratios and quantitative structure-activity relationships. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:2347-2353. [PMID: 25994998 DOI: 10.1002/etc.3069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/27/2015] [Accepted: 05/14/2015] [Indexed: 06/04/2023]
Abstract
Acute-to-chronic ratios (ACRs) and quantitative structure-activity relationships (QSARs) are of particular interest in chemical risk assessment. Previous studies focusing on the relationship between the size or variation of ACRs to substance classes and QSAR models were often based on data for standard test organisms, such as daphnids and fish. In the present study, acute and chronic toxicity tests were performed with the nematode Caenorhabditis elegans for a total of 11 chemicals covering 3 substance classes (nonpolar narcotics: 1-propanol, ethanol, methanol, 2-butoxyethanol; metals: copper, cadmium, zinc; and carbamates: methomyl, oxamyl, aldicarb, dioxacarb). The ACRs were variable, especially for the carbamates and metals, although there was a trend toward small and less variable ACRs for nonpolar narcotic substances. The octanol-water partition coefficient was a good predictor for explaining acute and chronic toxicity of nonpolar narcotic substances to C. elegans, but not for carbamates. Metal toxicity could be related to the covalent index χm2r. Overall, the results support earlier results from ACR and QSAR studies with standard freshwater test animals. As such C. elegans as a representative of small soil/sediment invertebrates would probably be protected by risk assessment strategies already in use. To increase the predictive power of ACRs and QSARs, further research should be expanded to other species and compounds and should also consider the target sites and toxicokinetics of chemicals.
Collapse
Affiliation(s)
- Kai Ristau
- Department of Animal Ecology, Bielefeld University, Bielefeld, Germany
| | - Yeliz Akgül
- Department of Animal Ecology, Bielefeld University, Bielefeld, Germany
| | | | - Jana Fremming
- Department of Animal Ecology, Bielefeld University, Bielefeld, Germany
| | | | - Luise Reiher
- Department of Animal Ecology, Bielefeld University, Bielefeld, Germany
| | - Frederike Stapela
- Department of Animal Ecology, Bielefeld University, Bielefeld, Germany
| | - Jan-Paul Splett
- Department of Animal Ecology, Bielefeld University, Bielefeld, Germany
| | - Nicole Spann
- Department of Animal Ecology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
10
|
Meyer D, Williams PL. Toxicity testing of neurotoxic pesticides in Caenorhabditis elegans. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2014; 17:284-306. [PMID: 25205216 DOI: 10.1080/10937404.2014.933722] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The use of pesticides is ubiquitous worldwide, and these chemicals exert adverse effects on both target and nontarget species. Understanding the modes of action of pesticides, as well as quantifying exposure concentration and duration, is an important goal of clinicians and environmental health scientists. Some chemical exposures result in adverse effects on the nervous system. The nematode Caenorhabditis elegans (C. elegans) is a model lab organism well established for studying neurotoxicity, since the components of its nervous system are mapped and known, and most of its neurotransmitters correspond to human homologs. This review encompasses published studies in which C. elegans nematodes were exposed to pesticides with known neurotoxic actions. Endpoints measured include changes in locomotion, feeding behavior, brood size, growth, life span, and cell death. From data presented, evidence indicates that C. elegans can serve a role in assessing the effects of neurotoxic pesticides at the sublethal cellular level, thereby advancing our understanding of the mechanisms underlying toxicity induced by these chemicals. A proposed toxicity testing scheme for water-soluble chemicals is also included.
Collapse
Affiliation(s)
- Dean Meyer
- a Department of Environmental Health Science , College of Public Health, The University of Georgia , Athens , Georgia , USA
| | | |
Collapse
|
11
|
Vangheel M, Traunspurger W, Spann N. Effects of the antibiotic tetracycline on the reproduction, growth and population growth rate of the nematode Caenorhabditis elegans. NEMATOLOGY 2014. [DOI: 10.1163/15685411-00002740] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The antibiotic tetracycline (TC) has been reported in natural systems, a consequence of its abundant usage in farming. TCs are protein synthesis inhibitors that are effective against bacteria but adverse effects on non-target organisms, whilst less well understood, have also been demonstrated. This study is the first investigation into the effects of this common antibiotic on the growth, reproduction and population growth rate (PGR) of the nematode Caenorhabditis elegans. All toxicological endpoints were shown to be affected negatively. TC concentrations as low as 5 mg l−1 (5 ppm) significantly reduced growth and reproduction, and even lower concentrations (3 mg l−1 or 3 ppm) significantly decreased the PGR. These levels are much higher than the TC concentrations detected in surface waters, sediments and soils (0.005-300 ppb). However, although the antibiotic might not pose a direct significant risk to nematodes in the natural environment, its use in RNAi experiments involving C. elegans may cause unwanted effects that influence interpretations of the results.
Collapse
Affiliation(s)
- Matthew Vangheel
- 1Department of Biology, Laboratory for Aging Physiology and Molecular Evolution, Ghent University, Proeftuinstraat 86 N1, B-9000 Ghent, Belgium
- 2Department of Animal Ecology, Bielefeld University, Morgenbreede 45, 33615 Bielefeld, Germany
| | - Walter Traunspurger
- 2Department of Animal Ecology, Bielefeld University, Morgenbreede 45, 33615 Bielefeld, Germany
| | - Nicole Spann
- 2Department of Animal Ecology, Bielefeld University, Morgenbreede 45, 33615 Bielefeld, Germany
| |
Collapse
|
12
|
Brinke M, Heininger P, Traunspurger W. Effects of a bioassay-derived ivermectin lowest observed effect concentration on life-cycle traits of the nematode Caenorhabditis elegans. ECOTOXICOLOGY (LONDON, ENGLAND) 2013; 22:148-155. [PMID: 23161368 DOI: 10.1007/s10646-012-1011-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/23/2012] [Indexed: 06/01/2023]
Abstract
The pharmaceutical ivermectin is used to treat parasitic infections, such as those caused by nematodes. While several studies have demonstrated the severe effects of ivermectin on non-target organisms, little is known about the drug's impact on free-living nematodes. In the present work, a full life-cycle experiment was conducted to estimate how an ivermectin lowest observed effect concentration derived from a Caenorhabditis elegans bioassay (endpoint reproduction) might translate into effects at the population level of this free-living nematode. The results showed that fecundity decreased to levels similar to those determined in the bioassay after a time of corresponding duration (18.6 % inhibition compared to the control), but the impact then rather weakened until the end of the experiment, at which point the net reproductive rate (R(0)) was still, but not significantly, reduced by 12.4 %. Moreover, the average lifespan, length of the reproductive period, maximum daily reproduction rate, and intrinsic rate of increase (r(m)) were significantly reduced by 30.0, 25.9, 11.2, and 3.5 %, respectively. The experiment revealed that a 4-day bioassay is protective enough for C. elegans with respect to ivermectin's effects on fecundity. However, the pronounced effects of a low drug concentration on survival, a highly elastic trait, may better account for the observed population-level response, i.e., a decrease of r(m), than the effects on fecundity. These results emphasize that full life-cycle experiments are valuable for assessment of pollutants, because the effects on several life-cycle traits can be simultaneously measured and integrated into an ecologically relevant parameter, the population growth rate, that reflects a population's response to a specific pollutant.
Collapse
Affiliation(s)
- Marvin Brinke
- Department of Animal Ecology, University of Bielefeld, Morgenbreede 45, 33615, Bielefeld, Germany.
| | | | | |
Collapse
|