1
|
Jessl L, Oehlmann J. No effects of the antiandrogens cyproterone acetate (CPA), flutamide and p,p'-DDE on early sexual differentiation but CPA-induced retardation of embryonic development in the domestic fowl ( Gallus gallus domesticus). PeerJ 2023; 11:e16249. [PMID: 37901474 PMCID: PMC10601917 DOI: 10.7717/peerj.16249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Because a wide range of environmental contaminants are known to cause endocrine disorders in humans and animals, in vivo tests are needed to identify such endocrine disrupting chemicals (EDCs) and to assess their biological effects. Despite the lack of a standardized guideline, the avian embryo has been shown to be a promising model system which responds sensitively to EDCs. After previous studies on the effects of estrogenic, antiestrogenic and androgenic substances, the present work focuses on the effects of in ovo exposure to p,p'-DDE, flutamide and cyproterone acetate (CPA) as antiandrogenic model compounds regarding gonadal sex differentiation and embryonic development of the domestic fowl (Gallus gallus domesticus). The substances were injected into the yolk of fertilized eggs on embryonic day one. On embryonic day 19 sex genotype and phenotype were determined, followed by gross morphological and histological examination of the gonads. Treatment with flutamide (0.5, 5, 50 µg/g egg), p,p'-DDE (0.5, 5, 50 µg/g egg) or CPA (0.2, 2, 20 µg/g egg) did not affect male or female gonad development, assessed by gonad surface area and cortex thickness in both sexes and by the percentage of seminiferous tubules in males as endpoints. This leads to the conclusion that antiandrogens do not affect sexual differentiation during embryonic development of G. gallus domesticus, reflecting that gonads are not target organs for androgens in birds. In ovo exposure to 2 and 20 µg CPA/g egg, however, resulted in significantly smaller embryos as displayed by shortened lengths of skull, ulna and tarsometatarsus. Although gonadal endpoints were not affected by antiandrogens, the embryo of G. gallus domesticus is shown to be a suitable test system for the identification of substance-related mortality and developmental delays.
Collapse
Affiliation(s)
- Luzie Jessl
- Aquatic Ecotoxicology, Goethe University Frankfurt, Frankfurt am Main, Hesse, Germany
- R-Biopharm AG, Darmstadt, Hesse, Germany
| | - Jörg Oehlmann
- Aquatic Ecotoxicology, Goethe University Frankfurt, Frankfurt am Main, Hesse, Germany
| |
Collapse
|
2
|
Ravele T, Fuku XG, Hlongwa NW, Nkambule TTI, Gumbi NN, Sekhosana KE. Advances in Electrochemical Systems for Detection of Anti‐Androgens in Water Bodies. ChemistrySelect 2023. [DOI: 10.1002/slct.202203768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Thompho Ravele
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science Engineering and Technology (CSET) University of South Africa Cnr Christiaan De Wet and Pioneer Avenue, Florida Roodepoort 1709 South Africa
| | - Xolile G. Fuku
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science Engineering and Technology (CSET) University of South Africa Cnr Christiaan De Wet and Pioneer Avenue, Florida Roodepoort 1709 South Africa
| | - Ntuthuko W. Hlongwa
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science Engineering and Technology (CSET) University of South Africa Cnr Christiaan De Wet and Pioneer Avenue, Florida Roodepoort 1709 South Africa
| | - Thabo T. I. Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science Engineering and Technology (CSET) University of South Africa Cnr Christiaan De Wet and Pioneer Avenue, Florida Roodepoort 1709 South Africa
| | - Nozipho N. Gumbi
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science Engineering and Technology (CSET) University of South Africa Cnr Christiaan De Wet and Pioneer Avenue, Florida Roodepoort 1709 South Africa
| | - Kutloano E. Sekhosana
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science Engineering and Technology (CSET) University of South Africa Cnr Christiaan De Wet and Pioneer Avenue, Florida Roodepoort 1709 South Africa
| |
Collapse
|
3
|
Nassour C, Nabhani-Gebara S, Barton SJ, Barker J. Aquatic ecotoxicology of anticancer drugs: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149598. [PMID: 34426323 DOI: 10.1016/j.scitotenv.2021.149598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Anticancer drugs in the aquatic environment have drawn a lot of attention in the last decade. Since wastewater treatment plants are inefficient at fully eliminating trace concentrations of anticancer drugs, these compounds are continuously discharged into the aquatic environment. Subsequently, non-target organisms such as the aquatic biota are directly exposed to a variety of anticancer drugs. To understand the potential impact on the aquatic organisms, a systematic review was conducted in compliance with the PRISMA guidelines. The results acquired from the 152 included studies were analysed and sorted into four categories: the impact of each included anticancer drug, the effect of metabolites, the effect of a mixture of drugs, and risk assessment. Findings showed that risk to the aquatic biota was unlikely to occur as the concentrations needed to induce effects were much higher than those detected in the environment. However, these data were based on acute toxicity and included only basic toxicity endpoints. The concentrations that produced significant effects were much lower when tested in the long-term or in multi-generational studies. Heterogeneity in results was also observed; this depended on the organism tested, the assessment adopted, and the endpoints selected. In this systematic review, an overall view of the research studies was generated by which all the variability factors to be considered were reported and recommendations to guide future studies were proposed.
Collapse
Affiliation(s)
- Carla Nassour
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston Upon Thames KT1 2EE, UK.
| | - Shereen Nabhani-Gebara
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston Upon Thames KT1 2EE, UK
| | - Stephen J Barton
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston Upon Thames KT1 2EE, UK
| | - James Barker
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston Upon Thames KT1 2EE, UK
| |
Collapse
|
4
|
Lopes C, Malhão F, Guimarães C, Pinheiro I, Gonçalves JF, Castro LFC, Rocha E, Madureira TV. Testosterone-induced modulation of peroxisomal morphology and peroxisome-related gene expression in brown trout (Salmo trutta f. fario) primary hepatocytes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 193:30-39. [PMID: 29032351 DOI: 10.1016/j.aquatox.2017.09.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 09/17/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
Disruption of androgenic signaling has been linked to possible cross-modulation with other hormone-mediated pathways. Therefore, our objective was to explore effects caused by testosterone - T (1, 10 and 50μM) in peroxisomal signaling of brown trout hepatocytes. To study the underlying paths involved, several co-exposure conditions were tested, with flutamide - F (anti-androgen) and ICI 182,780 - ICI (anti-estrogen). Molecular and morphological approaches were both evaluated. Peroxisome proliferator-activated receptor alpha (PPARα), catalase and urate oxidase were the selected targets for gene expression analysis. The vitellogenin A gene was also included as a biomarker of estrogenicity. Peroxisome relative volumes were estimated by immunofluorescence, and transmission electron microscopy was used for qualitative morphological control. The single exposures of T caused a significant down-regulation of urate oxidase (10 and 50μM) and a general up-regulation of vitellogenin. A significant reduction of peroxisome relative volumes and smaller peroxisome profiles were observed at 50μM. Co-administration of T and ICI reversed the morphological modifications and vitellogenin levels. The simultaneous exposure of T and F caused a significant and concentration-dependent diminishing in vitellogenin expression. Together, the findings suggest that in the tested model, T acted via both androgen and estrogen receptors to shape the peroxisomal related targets.
Collapse
Affiliation(s)
- Célia Lopes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U.Porto - University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), U.Porto - University of Porto, Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313, Porto, Portugal
| | - Fernanda Malhão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U.Porto - University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), U.Porto - University of Porto, Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313, Porto, Portugal
| | - Cláudia Guimarães
- Institute of Biomedical Sciences Abel Salazar (ICBAS), U.Porto - University of Porto, Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313, Porto, Portugal
| | - Ivone Pinheiro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U.Porto - University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), U.Porto - University of Porto, Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313, Porto, Portugal
| | - José F Gonçalves
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U.Porto - University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), U.Porto - University of Porto, Department of Aquatic Production, Rua Jorge Viterbo Ferreira 228, P 4050-313, Porto, Portugal
| | - L Filipe C Castro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U.Porto - University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Faculty of Sciences (FCUP), U.Porto - University of Porto, Department of Biology, Rua do Campo Alegre, P 4169-007, Porto, Portugal
| | - Eduardo Rocha
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U.Porto - University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), U.Porto - University of Porto, Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313, Porto, Portugal.
| | - Tânia V Madureira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U.Porto - University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), U.Porto - University of Porto, Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313, Porto, Portugal
| |
Collapse
|
5
|
Yin P, Li YW, Chen QL, Liu ZH. Diethylstilbestrol, flutamide and their combination impaired the spermatogenesis of male adult zebrafish through disrupting HPG axis, meiosis and apoptosis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 185:129-137. [PMID: 28213303 DOI: 10.1016/j.aquatox.2017.02.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/30/2016] [Accepted: 02/08/2017] [Indexed: 06/06/2023]
Abstract
Both diethylstilbestrol (DES, an environmental estrogen) and flutamide (FLU, an anti-androgen) are found to impair spermatogenesis by disrupting hypothalamic-pituitary-gonadal (HPG) axis and altering androgen levels through different mechanisms/modes of action in fish with poorly understood underlying mechanisms. Furthermore, it is not known whether and how a combined exposure of DES and FLU has a stronger effect than the compounds alone. In this study, male zebrafish adults were exposed to DES, FLU and their combination (DES+FLU) for 30days, and their effects on histological structure and sperm count in testis, androgen level in plasma, as well as the mRNA levels of genes involved in HPG axis, meiotic regulation and apoptosis were analyzed. After exposure, DES and FLU disrupted spermatogenesis in zebrafish, and their combination resulted in even more severe impairment, indicating the inhibitory roles of these chemicals on spermatogenesis and their additive effects on zebrafish. The different regulation of vtg1 expression in the liver in response to DES and FLU further confirmed the different modes of action of these drugs. Gene expression and plasma steroid level analyses demonstrated the suppressed mRNA levels of the key genes (such as gnrh3, fshβ and lhβ in brain and dmrt1, sf1, cyp17a1 and cyp11b2 in testis) in HPG axis and decreased 11-ketotestosterone (11-KT) levels in plasma. The declined level of 11-KT was thus supposed to be closely related to the down-regulation of cyp26a1 (encoding the catabolic enzyme of retinoic acid) and suppression of genes involved in meiotic regulation (nanos1, dmc1 and sycp3). In fish exposed to DES and DES+FLU, enhanced apoptosis (elevated bax/bcl-2 expression ratio) was also observed. The suppression of meiotic regulation in response to all the exposures and enhanced apoptosis in response to DES were thus supposed to result in the spermatogenic impairment in zebrafish. The present study greatly extends our understanding on the mechanisms underlying of reproductive toxicity of environment estrogens and anti-androgens in fish.
Collapse
Affiliation(s)
- Pan Yin
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Ying-Wen Li
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qi-Liang Chen
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Zhi-Hao Liu
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
6
|
Milsk R, Cavallin JE, Durhan EJ, Jensen KM, Kahl MD, Makynen EA, Martinović-Weigelt D, Mueller N, Schroeder A, Villeneuve DL, Ankley GT. A study of temporal effects of the model anti-androgen flutamide on components of the hypothalamic-pituitary-gonadal axis in adult fathead minnows. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 180:164-172. [PMID: 27716581 DOI: 10.1016/j.aquatox.2016.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to investigate temporal changes in the hypothalamic-pituitary-gonadal (HPG) axis of fathead minnows (Pimephales promelas) treated with the model androgen receptor (AR) antagonist flutamide. Reproductively-mature fish were exposed in a flow-through test to analytically-confirmed concentrations of either 50 or 500μg flutamide/L for 8 d, followed by an 8-d recovery period in clean water. Fish were sampled at 1, 2, 4 and 8days during each phase of the experiment. Flutamide (500μg/L) caused significant reductions in relative gonad size of the females on day 8 of the exposure and day 1 of the recovery, and reduced expression of secondary sex characteristics in males during the exposure phase of the experiment. Ex vivo gonadal synthesis of testosterone in both sexes (and 17β-estradiol in females) was reduced in the 500μg/L treatment within 2 d of exposure; however, steroid synthesis returned to levels comparable to controls by the end of the exposure portion of the test. Ex vivo testosterone synthesis in males exposed to 50μg flutamide/L was greater than in controls on days 4 and 8 of the exposure. Both the enhanced steroid production in the low treatment males, and return to control levels in the high treatment males and females during chemical exposure are indicative of a compensatory HPG response. One contributor to this response could be increased expression of genes responsible for enzymes involved in steroid synthesis; for example, transcripts for both cytochrome P450 side- chain cleavage and 11β-hydroxysteroid dehydrogenase were significantly elevated in flutamide-exposed males. Overall, responses of the HPG axis in adult male and female fathead minnows exposed to flutamide were both dynamic and comparatively rapid during exposure and recovery. These observations have ramifications both for the development of short-term fish assays to detect endocrine-active chemicals, and the derivation of robust adverse outcome pathways for AR antagonists in fish.
Collapse
Affiliation(s)
- Rebecca Milsk
- Oak Ridge Institute for Science Education Research Participation Program, Midcontinent Ecology Division, Duluth, MN, USA
| | - Jenna E Cavallin
- Badger Technical Services, Midcontinent Ecology Division, Duluth, MN, USA
| | - Elizabeth J Durhan
- US Environmental Protection Agency, Midcontinent Ecology Division, Duluth, MN, USA
| | - Kathleen M Jensen
- US Environmental Protection Agency, Midcontinent Ecology Division, Duluth, MN, USA
| | - Michael D Kahl
- US Environmental Protection Agency, Midcontinent Ecology Division, Duluth, MN, USA
| | - Elizabeth A Makynen
- US Environmental Protection Agency, Midcontinent Ecology Division, Duluth, MN, USA
| | | | - Nathan Mueller
- Harvard University, Organismic and Evolutionary Biology, Cambridge, MA, USA
| | - Anthony Schroeder
- University of Minnesota-Crookston, Department of Biology, Crookston, MN, USA
| | - Daniel L Villeneuve
- US Environmental Protection Agency, Midcontinent Ecology Division, Duluth, MN, USA
| | - Gerald T Ankley
- US Environmental Protection Agency, Midcontinent Ecology Division, Duluth, MN, USA.
| |
Collapse
|
7
|
Zheng Y, Chen J, Liu Y, Gao J, Yang Y, Zhang Y, Bing X, Gao Z, Liang H, Wang Z. Molecular mechanism of endocrine system impairment by 17α-methyltestosterone in gynogenic Pengze crucian carp offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 128:143-152. [PMID: 26938152 DOI: 10.1016/j.ecoenv.2015.11.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 11/23/2015] [Accepted: 11/27/2015] [Indexed: 06/05/2023]
Abstract
The effects of synthetic androgen 17α-methyltestosterone (MT) on endocrine impairment were examined in crucian carp. Immature 7-month old mono-female Pengze crucian carp (Pcc) F2 offspring were exposed to 50 and 100 μg/L of MT (week 2, 4, and 8). Gonadosomatic index, hepatosomatic index and intestine weight altered considerably and oocyte development was repressed. In the treatment groups, ovarian 11-ketotestosterone decreased, whereas 17β-estradiol and testosterone increased, and ovarian aromatase activities increased at week 4. However, in the brain tissue, those values significantly decreased. Quantitative RT-PCR analysis demonstrated changes in steroid receptor genes and upregulation of steroidogenic genes (Pcc-3bhsd, Pcc-11bhsd2 Pcc-cyp11a1), while the other three steroidogenic genes (Pcc-cyp17a1, Pcc-cyp19a1a and Pcc-star) decreased from week 4 to week 8. Ovarian, hepatic Pcc-vtg B and vitellogenin concentration increased in both 50 and 100 μg/L of MT exposure groups. This study adds further information regarding the effects of androgens on the development of previtellogenic oocytes, which suggests that MT could directly target estrogen signaling pathway, or indirectly affect steroidogenesis and vitellogenesis.
Collapse
Affiliation(s)
- Yao Zheng
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China; Freshwater Fisheries Research Center, Key Open Laboratory of Ecological Environment and Resources of Inland Fisheries, Chinese Academy of Fishery Sciences, China; Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, HZAU, Wuhan 430070, China
| | - Jiazhang Chen
- Freshwater Fisheries Research Center, Key Open Laboratory of Ecological Environment and Resources of Inland Fisheries, Chinese Academy of Fishery Sciences, China; Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Yan Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Jiancao Gao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Yanping Yang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China; Freshwater Fisheries Research Center, Key Open Laboratory of Ecological Environment and Resources of Inland Fisheries, Chinese Academy of Fishery Sciences, China; Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Yingying Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Xuwen Bing
- Freshwater Fisheries Research Center, Key Open Laboratory of Ecological Environment and Resources of Inland Fisheries, Chinese Academy of Fishery Sciences, China; Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Zexia Gao
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, HZAU, Wuhan 430070, China
| | - Hongwei Liang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
8
|
Bhatia H, Kumar A. Does anti-androgen, flutamide cancel out the in vivo effects of the androgen, dihydrotestosterone on sexual development in juvenile Murray rainbowfish (Melanotaenia fluviatilis)? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 170:72-80. [PMID: 26638141 DOI: 10.1016/j.aquatox.2015.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 06/05/2023]
Abstract
The aim of the present study was to investigate if the effects of the androgen, dihydrotestosterone (DHT) on the sexual development in juvenile Murray rainbowfish (Melanotaenia fluviatilis) are canceled out by the anti-androgen, flutamide. Fish (60 days post hatch) were exposed to 250ng/L of DHT, 25μg/L of flutamide (Flu-low), 250μg/L of flutamide (Flu-high), DHT+Flu low and DHT+Flu high. After 35 days of exposure, lengths and weights of the fish were measured and the condition factor (CF) calculated; vitellogenin (VTG) concentrations were measured in tail tissue; sex steroid hormones (17β-estradiol [E2] and 11-keto testosterone [11-KT]) were measured in the head tissue and abdominal regions were used in histological investigation of the gonads. Treatment with DHT reduced the body-length of both male and female fish, an effect which was canceled out by low and high concentrations of flutamide. However, flutamide (low or high) could not nullify the DHT-induced reduction in the CF in either sex. The E2 levels were reduced only in female fish after exposure to DHT but returned to normal after treatment with Flu-high. DHT increased the levels of 11-KT and decreased the E2/11-KT ratio in both sexes. Flu-high, but not Flu-low, could nullify these effects. Both DHT and flutamide (low or high) induced VTG production and this effect persisted when both chemicals were co-administered. Treatment with DHT did not affect gonadal cell development in the testes. However, the female fish treated with DHT contained ovaries in early-vitellogenic stage in comparison to the pre-vitellogenic ovaries in control fish. Co-treatment with flutamide (low or high) resulted in oocyte atresia. The results from the present study suggest that treatment with Flu-high could cancel out DHT-induced effects only on the hormonal profile and body-length in both male and female fish. Juvenile fish co-treated with DHT and flutamide (low or high) had high VTG levels and low CF. In addition, the ovaries in female fish were atretic. These data represent potential adverse effects on the ability of the fish to reproduce successfully.
Collapse
Affiliation(s)
- Harpreet Bhatia
- Commonwealth Scientific and Industrial Research Organisation (Land and Water), PMB 2, Glen Osmond, Adelaide, SA 5064, Australia.
| | - Anupama Kumar
- Commonwealth Scientific and Industrial Research Organisation (Land and Water), PMB 2, Glen Osmond, Adelaide, SA 5064, Australia
| |
Collapse
|
9
|
Bhatia H, Kumar A, Du J, Chapman JC, McLaughlin MJ. Co-treatment with the non-steroidal anti-androgen drug, flutamide and the natural estrogen, 17β-estradiol does not lead to additive reproductive impairment in juvenile Murray rainbowfish (Melanotaenia fluviatilis). J Appl Toxicol 2015; 35:1241-53. [DOI: 10.1002/jat.3135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/06/2015] [Accepted: 01/25/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Harpreet Bhatia
- Commonwealth Scientific and Industrial Research Organisation (Land and Water); PMB 2, Glen Osmond Adelaide SA 5064 Australia
- School of Agriculture, Food and Wine, Waite Research Institute; The University of Adelaide; Adelaide SA 5064 Australia
| | - Anupama Kumar
- Commonwealth Scientific and Industrial Research Organisation (Land and Water); PMB 2, Glen Osmond Adelaide SA 5064 Australia
| | - Jun Du
- Commonwealth Scientific and Industrial Research Organisation (Land and Water); PMB 2, Glen Osmond Adelaide SA 5064 Australia
| | - John C. Chapman
- Office of Environment and Heritage; PMB 29 Lidcombe NSW 1825 Australia
| | - Mike J. McLaughlin
- Commonwealth Scientific and Industrial Research Organisation (Land and Water); PMB 2, Glen Osmond Adelaide SA 5064 Australia
- School of Agriculture, Food and Wine, Waite Research Institute; The University of Adelaide; Adelaide SA 5064 Australia
| |
Collapse
|
10
|
Bhatia H, Kumar A, Chapman JC, McLaughlin MJ. Long-term exposures to di-n-butyl phthalate inhibit body growth and impair gonad development in juvenile Murray rainbowfish (Melanotaenia fluviatilis). J Appl Toxicol 2014; 35:806-16. [DOI: 10.1002/jat.3076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 08/30/2014] [Accepted: 08/30/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Harpreet Bhatia
- Commonwealth Scientific and Industrial Research Organisation; PMB 2, Glen Osmond Adelaide SA 5064 Australia
- School of Agriculture, Food and Wine, Waite Research Institute, PMB 1; The University of Adelaide; Adelaide SA 5064 Australia
| | - Anupama Kumar
- Commonwealth Scientific and Industrial Research Organisation; PMB 2, Glen Osmond Adelaide SA 5064 Australia
| | - John C. Chapman
- Office of Environment and Heritage; PMB 29 Lidcombe NSW 1825 Australia
| | - Mike J. McLaughlin
- Commonwealth Scientific and Industrial Research Organisation; PMB 2, Glen Osmond Adelaide SA 5064 Australia
- School of Agriculture, Food and Wine, Waite Research Institute, PMB 1; The University of Adelaide; Adelaide SA 5064 Australia
| |
Collapse
|