1
|
Liu Y, Wang S, Han M, Luo S, Chu P, Tang X, Zhao C, Han S, Yin S, Wang T. 17α-methyltestosterone exposure disrupted growth, liver physiology and intestinal microbial on fish: A case study on migratory bony fishes (Takifugu fasciatus). MARINE POLLUTION BULLETIN 2025; 212:117533. [PMID: 39778389 DOI: 10.1016/j.marpolbul.2025.117533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
17α-methyltestosterone (17α-MT) is prevalent in the aqueous environment, but its toxicological profile remains incomplete. This study analyzed the effects of different 17α-MT concentrations on the growth performance, mortality, sex ratio, liver physiological metabolism, and intestinal microorganisms of Takifugu fasciatus, and on the microorganisms composition of its culture environment. Results showed that 17α-MT increased the male ratio and mortality but inhibited the growth of T. fasciatus. Meanwhile, 17α-MT induced oxidative stress and mitochondrial autophagy, changed lipid metabolism and inhibited triglyceride (TG) accumulation in the liver. 17α-MT altered the composition of the intestinal microorganisms, notably increasing the number of pathogenic bacteria. Additionally, the Firmicutes to the Bacteroidetes (F/B) ratio, associated with lipid metabolism, decreased with increasing 17α-MT concentration. Furthermore, 17α-MT disrupted the connection between the intestine microorganisms in T. fasciatus and the water column. This study enhances understanding of the effect of 17α-MT on T. fasciatus and the toxicological profile of 17α-MT.
Collapse
Affiliation(s)
- Yuxi Liu
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Sijin Wang
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Mengbo Han
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Sheng Luo
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Peng Chu
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Xiaodong Tang
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Cheng Zhao
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China.
| | - Shiqun Han
- Institution of Agricultural Resource and Environmental Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Tao Wang
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China.
| |
Collapse
|
2
|
Huang GY, Fang GZ, Shi WJ, Li XP, Wang CS, Chen HX, Xie L, Ying GG. Interaction of 17α-ethinylestradiol and methyltestosterone in western mosquitofish (Gambusia affinis) across two generations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106854. [PMID: 38309221 DOI: 10.1016/j.aquatox.2024.106854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
The interactions between estrogen and androgen in aquatic animals remain largely unknown. In this study, two generations (F0 and F1) of western mosquitofish (Gambusia affinis) were continuously exposed to 17α-ethinylestradiol (EE2, 10 ng/L), methyltestosterone (MT, 10 ng/L (MTL); 50 ng/L (MTH)), and mixtures (EE2+MTL and EE2+MTH). Various endpoints, including sex ratio (phenotypic and genetic), secondary sex characteristics, gonadal histology, and transcriptional profile of genes, were examined. The results showed that G. affinis exposed to MTH and EE2+MTH had a > 89.7 % of phenotypic males in F1 generation, with 34.5 and 50.0 % of these males originated from genetic females, respectively. Moreover, females from F0 and F1 generations exposed to MTH and EE2+MTH exhibited masculinized anal fins and skeletons. The combined effect of MT and EE2 on most endpoints was dependent on MT. Furthermore, significant transcriptional alterations in certain target genes were observed in both the F0 and F1 generations by EE2 and MT alone and by mixtures, showing some degree of interactions. These findings that the effects of EE2+MTH were primarily on the phenotypic sex of G. affinis in offspring generation suggest that G. affinis under chronic exposure to the binary mixture contaminated water could have sex-biased populations.
Collapse
Affiliation(s)
- Guo-Yong Huang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Gui-Zhen Fang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wen-Jun Shi
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao-Pei Li
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Chen-Si Wang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hong-Xing Chen
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Lingtian Xie
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
3
|
Li M, Zhang N, Huang Y, Pan CG, Dong Z, Lin Z, Li C, Jiang YX, Liang YQ. The effects of 17α-methyltestosterone on gonadal histology and gene expression along hypothalamic-pituitary-gonadal axis, germ cells, sex determination, and hypothalamus-pituitary-thyroid axis in zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY 2024; 39:1494-1504. [PMID: 37994244 DOI: 10.1002/tox.24044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 07/22/2023] [Accepted: 11/05/2023] [Indexed: 11/24/2023]
Abstract
As a synthetic androgen, 17α-methyltestosterone (MT) is widely used in aquaculture to induce sex reversal and may pose a potential risk to aquatic organisms. This ecological risk has attracted the attention of many scholars, but it is not comprehensive enough. Thus, the adverse effects of MT on zebrafish (Danio rerio) were comprehensively evaluated from gonadal histology, as well as the mRNA expression levels of 47 genes related to hypothalamic-pituitary-gonadal (HPG) axis, germ cell differentiation, sex determination, and hypothalamus-pituitary-thyroid (HPT) axis. Adult zebrafish with a female/male ratio of 5:7 were exposed to a solvent control (0.001% dimethyl sulfoxide) and three measured concentrations of MT (5, 51 and 583 ng/L) for 50 days. The results showed that MT had no significant histological effects on the ovaries of females, but the frequency of late-mature oocytes (LMO) showed a downward trend, indicating that MT could induce ovarian suppression to a certain extent. The transcriptional expression of activating transcription factor 4b1 (atf4b1), activating transcription factor 4b2 (atf4b2), calcium/calmodulin-dependent protein kinase II delta 1 (camk2d1), calcium/calmodulin-dependent protein kinase II delta 2 (camk2d2) and calcium/calmodulin-dependent protein kinase II inhibitor 2 (camk2n2) genes in the brain of females increased significantly at all treatment groups of MT, and the mRNA expression of forkhead box L2a (foxl2) and ovarian cytochrome P450 aromatase (cyp19a1a) genes in the ovaries were down-regulated by 5 and 583 ng/L group, which would translate into inhibition of oocyte development. As compared to females, MT had relatively little effects on the reproductive system of males, and only the transcriptional alterations of synaptonemal complex protein 3 (sycp3) and 17-alpha-hydroxylase/17,20-lyase (cyp17) genes were observed in the testes, not enough to affect testicular histology. In addition, MT at all treatments strongly increased corticotropin-releasing hormone (crh) transcript in the brain of females, as well as deiodinase 2 (dio2) transcript in the brain of males. The paired box protein 8 (pax8) gene was significantly decreased at 51 or 583 ng/L of MT in both female and male brains. The above results suggest that MT can pose potential adverse effects on the reproductive and thyroid endocrine system of fish.
Collapse
Affiliation(s)
- Minchun Li
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, People's Republic of China
| | - Ning Zhang
- College of Fishery, Guangdong Ocean University, Zhanjiang, People's Republic of China
| | - Yiting Huang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, People's Republic of China
| | - Chang-Gui Pan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, People's Republic of China
| | - Zhongdian Dong
- College of Fishery, Guangdong Ocean University, Zhanjiang, People's Republic of China
| | - Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, People's Republic of China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, People's Republic of China
| | - Chengyong Li
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, People's Republic of China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, People's Republic of China
| | - Yu-Xia Jiang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China
| | - Yan-Qiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, People's Republic of China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, People's Republic of China
| |
Collapse
|
4
|
Qiao Y, He J, Han P, Qu J, Wang X, Wang J. Long-term exposure to environmental relevant triclosan induces reproductive toxicity on adult zebrafish and its potential mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154026. [PMID: 35219675 DOI: 10.1016/j.scitotenv.2022.154026] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Triclosan (TCS) is widely used in personal care products and has become a contaminant ubiquitously found in the aquatic environment. It is reported exposure to triclosan can cause serious toxic effects on aquatic animals. However, the molecular mechanisms about long-term exposure to TCS-induced reproductive toxicity are not well elucidated. In the present study, adult zebrafish were exposed to TCS (2, 20 and 200 μg/L) for 150 days, and then the reproductive capacity assessment, steroid hormone and VTG quantitative measurement, histopathology observation and RNA sequencing analysis were performed to investigate the effects of TCS on its reproduction. The results indicated that long-term exposure to TCS causes the regulation disorder of the endocrine system, resulting in a reduction of the number of normal germ cells, and ultimately a decrease in the hatching rate and survival rate of offspring. This study revealed the toxic effects and contributed to our deep understanding about the potential disease of TCS exposure in the aquatic environment.
Collapse
Affiliation(s)
- Yingjie Qiao
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| | - Jiayi He
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| | - Ping Han
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| | - Jiangbo Qu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| | - Xubo Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China.
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China.
| |
Collapse
|
5
|
Liu S, Yang Q, Chen Y, Liu Q, Wang W, Song J, Zheng Y, Liu W. Integrated Analysis of mRNA- and miRNA-Seq in the Ovary of Rare Minnow Gobiocypris rarus in Response to 17α-Methyltestosterone. Front Genet 2021; 12:695699. [PMID: 34421998 PMCID: PMC8375321 DOI: 10.3389/fgene.2021.695699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
17α-Methyltestosterone (MT) is a synthetic androgen. The objective of this study was to explore the effects of exogenous MT on the growth and gonadal development of female rare minnow Gobiocypris rarus. Female G. rarus groups were exposed to 25–100 ng/L of MT for 7 days. After exposure for 7 days, the total weight and body length were significantly decreased in the 50-ng/L MT groups. The major oocytes in the ovaries of the control group were vitellogenic oocytes (Voc) and cortical alveolus stage oocytes (Coc). In the MT exposure groups, some fish had mature ovaries with a relatively lower proportion of mature oocytes, and the diameter of the perinucleolar oocytes (Poc) was decreased compared with those of the control group. Ovarian VTG, FSH, LH, 11-KT, E2, and T were significantly increased after exposure to 50 ng/L of MT for 7 days. Unigenes (73,449), 24 known mature microRNAs (miRNAs), and 897 novel miRNAs in the gonads of G. rarus were found using high-throughput sequencing. Six mature miRNAs (miR-19, miR-183, miR-203, miR-204, miR-205, and miR-96) as well as six differentially expressed genes (fabp3, mfap4, abca1, foxo3, tgfb1, and zfp36l1) that may be associated with ovarian development and innate immune response were assayed using qPCR. Furthermore, the miR-183 cluster and miR-203 were differentially expressed in MT-exposed ovaries of the different G. rarus groups. This study provides some information about the role of miRNA–mRNA pairs in the regulation of ovarian development and innate immune system, which will facilitate future studies of the miRNA–RNA-associated regulation of teleost reproduction.
Collapse
Affiliation(s)
- Shaozhen Liu
- College of Animal Science, Shanxi Agriculture University, Jinzhong, China
| | - Qiong Yang
- College of Animal Science, Shanxi Agriculture University, Jinzhong, China
| | - Yue Chen
- College of Animal Science, Shanxi Agriculture University, Jinzhong, China
| | - Qing Liu
- College of Animal Science, Shanxi Agriculture University, Jinzhong, China
| | - Weiwei Wang
- College of Animal Science, Shanxi Agriculture University, Jinzhong, China
| | - Jing Song
- College of Animal Science, Shanxi Agriculture University, Jinzhong, China
| | - Yao Zheng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Wenzhong Liu
- College of Animal Science, Shanxi Agriculture University, Jinzhong, China
| |
Collapse
|
6
|
Lopes C, Rocha E, Pereira IL, Madureira TV. Deciphering influences of testosterone and dihydrotestosterone on lipid metabolism genes using brown trout primary hepatocytes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 235:105819. [PMID: 33873058 DOI: 10.1016/j.aquatox.2021.105819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/12/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Despite of physiological and toxicological relevance, the potential of androgens to influence fish lipid metabolism remains poorly explored. Here, brown trout primary hepatocytes were exposed to six concentrations (1 nM to 100 μM) of dihydrotestosterone (DHT) and testosterone (T), to assess changes in the mRNA levels of genes covering diverse lipid metabolic pathways. Acsl1, essential for fatty acid activation, was up-regulated by T and DHT, whereas the lipogenic enzymes FAS and ACC were up-regulated by the highest (100 μM) concentration of T and DHT, respectively. ApoA1, the major component of high-density lipoprotein (HDL), was down-regulated by both androgens. PPARγ, linked to adipogenesis and peroxisomal β-oxidation, was down-regulated by T and DHT, while Acox1-3I, rate-limiting in peroxisomal β-oxidation, was down-regulated by T. Fabp1, StAR and LPL were not altered. Our findings suggest that androgens may impact on lipid transport, adipogenesis and fatty acid β-oxidation and promote lipogenesis in fish liver.
Collapse
Affiliation(s)
- Célia Lopes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, P 4450-208 Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U.Porto), Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313 Porto, Portugal
| | - Eduardo Rocha
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, P 4450-208 Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U.Porto), Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313 Porto, Portugal.
| | - Inês L Pereira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, P 4450-208 Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U.Porto), Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313 Porto, Portugal
| | - Tânia V Madureira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, P 4450-208 Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U.Porto), Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313 Porto, Portugal
| |
Collapse
|
7
|
Fang GZ, Huang GY, Ying GG, Qiu SQ, Shi WJ, Xie L, Yang YY, Ma DD. Endocrine disrupting effects of binary mixtures of 17β-estradiol and testosterone in adult female western mosquitofish (Gambusia affinis). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111566. [PMID: 33396095 DOI: 10.1016/j.ecoenv.2020.111566] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 06/12/2023]
Abstract
Androgens and estrogens often co-exist in aquatic environments and pose potential risks to fish populations. However, little is known about the endocrine disrupting effects of the mixture of androgens and estrogens in fish. In this study, transcriptional level of target genes related to the hypothalamic-pituitary-gonadal-liver (HPGL) axis, sex hormone level, VTG protein concentration, histology and secondary sex characteristic were assessed in the ovaries and livers of adult female western mosquitofish (Gambusia affinis) exposed to 17β-estradiol (E2), testosterone (T), and mixtures of E2 and T for 91 days. The results showed that the transcriptional expression of cytochrome P450, family 19, subfamily A, polypeptide 1a (Cyp19a1a) was suppressed in the 200 ng/L T treatment and the 50 ng/L E2 + 200 ng/L T treatment in the ovaries. Steroidogenic acute regulatory protein (Star) and Cyp11a1 showed a similar expression pattern in the T treatment to its corresponding T + E2 mixtures. In the ovaries, the concentrations of 17β-estradiol and testosterone were decreased in most treatments compared with the solvent control. VTG protein was induced in all steroid treatment. However, exposure to T or E2 + T mixture did not cause the abnormal cells of the ovaries and livers and an extension of the anal fins in female G. affinis. This study demonstrates that chronic exposure to E2, T and their mixtures affects the transcripts of genes in the HPGL axis, steroid hormone level and VTG protein concentration in the ovaries and livers, but fails to cause the histopathological effect of the ovaries and livers and alter the morphology of the anal fins in G. affinis.
Collapse
Affiliation(s)
- Gui-Zhen Fang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guo-Yong Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Shu-Qing Qiu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yuan-Yuan Yang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dong-Dong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
8
|
Lopes C, Madureira TV, Gonçalves JF, Rocha E. Disruption of classical estrogenic targets in brown trout primary hepatocytes by the model androgens testosterone and dihydrotestosterone. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 227:105586. [PMID: 32882451 DOI: 10.1016/j.aquatox.2020.105586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/13/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Estrogenic effects triggered by androgens have been previously shown in a few studies. Aromatization and direct binding to estrogen receptors (ERs) are the most proposed mechanisms. For example, previously, a modulation of vitellogenin A (VtgA) by testosterone (T), an aromatizable androgen, was reported in brown trout primary hepatocytes. The effect was reversed by an ER antagonist. In this study, using the same model the disruption caused by T and by the non-aromatizable androgen - dihydrotestosterone (DHT), was assessed in selected estrogenic targets. Hepatocytes were exposed (96 h) to six concentrations of each androgen. The estrogenic targets were VtgA, ERα, ERβ1 and two zona pellucida genes, ZP2.5 and ZP3a.2. The aromatase CYP19a1 gene and the androgen receptor (AR) were also included. Modulation of estrogenic targets was studied by quantitative real-time PCR and immunohistochemistry, using an HScore system. VtgA and ERα were up-regulated by DHT (1, 10, 100 μM) and T (10, 100 μM). In contrast, ERβ1 was down-regulated by DHT (10, 100 μM), and T (100 μM). ZP2.5 mRNA levels were increased by DHT and T (1, 10, 100 μM), while ZP3a.2 was up-regulated by DHT (100 μM) and T (10, 100 μM). Positive correlations were found between VtgA and ERα mRNA levels and ZPs and ERα, after exposure to both androgens. The mRNA levels of CYP19a1 were not changed, while AR expression tended to increase after micromolar DHT exposures. HScores for Vtg and ZPs corroborated the molecular findings. Both androgens triggered estrogen signaling through direct binding to ERs, most probably ERα.
Collapse
Affiliation(s)
- Célia Lopes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, P 4450-208 Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U.Porto), Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313 Porto, Portugal
| | - Tânia V Madureira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, P 4450-208 Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U.Porto), Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313 Porto, Portugal.
| | - José F Gonçalves
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, P 4450-208 Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U.Porto), Department of Aquatic Production, Rua Jorge Viterbo Ferreira 228, P 4050-313 Porto, Portugal
| | - Eduardo Rocha
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, P 4450-208 Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U.Porto), Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313 Porto, Portugal
| |
Collapse
|
9
|
Wang J, Zhou J, Yang Q, Wang W, Liu Q, Liu W, Liu S. Effects of 17 α-methyltestosterone on the transcriptome, gonadal histology and sex steroid hormones in Pseudorasbora parva. Theriogenology 2020; 155:88-97. [PMID: 32645508 DOI: 10.1016/j.theriogenology.2020.05.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 11/18/2022]
Abstract
In recent years, the increasing use of environmental endocrine disruptors has caused serious environmental pollution and hurt aquatic organisms. It is still risky for aquatic species and humans exposed to 17α-methyltestosterone (MT), however, the harmful effect of MT on fish is still poorly understood. The main purpose of this study is to evaluate the influence of MT on Pseudorasbora parva at multi-levels. We analyzed gonadal histology, the sex steroid hormones, steroidogenic genes expression, and transcriptome profiling of gonads in response to MT in adult P. parva. Through this study, we found MT could inhibit the gonadal development of P. parva, and the growth and development of fish could be delayed by exposure to MT at 200 ng/L. MT could produce disruption effects on fish from multiple pathways, while its interference to the HPGL axis happens primarily through the steroidogenic pathway, e.g., disturbing the expression of crucial genes and sex steroids synthesis. Besides, we constructed 4 RNAseq libraries and obtained 7758 and 11,543 DEGs in females and males, respectively. Interestingly, we found MT had more obvious disruption effects on males than the females, mainly reflected in the immune system. Interestingly, we found three common pathways in both sexes after MT exposure, i.e., cell adhesion molecules, cytokine-cytokine receptor interaction, and neuroactive ligand-receptor interaction. These results confirm the suitability of P. parva as a model fish for aquatic toxicological study and provide us a multidimensional sight for the disruption effects of MT on fish.
Collapse
Affiliation(s)
- Ju Wang
- College of Animal Science and Technology, Shanxi Agricultural University, No. 1 Mingxiannan Road, Taigu, Jinzhong, Shanxi, 030801, China
| | - Junliang Zhou
- College of Animal Science and Technology, Shanxi Agricultural University, No. 1 Mingxiannan Road, Taigu, Jinzhong, Shanxi, 030801, China
| | - Qiong Yang
- College of Animal Science and Technology, Shanxi Agricultural University, No. 1 Mingxiannan Road, Taigu, Jinzhong, Shanxi, 030801, China
| | - Weiwei Wang
- College of Animal Science and Technology, Shanxi Agricultural University, No. 1 Mingxiannan Road, Taigu, Jinzhong, Shanxi, 030801, China
| | - Qing Liu
- College of Animal Science and Technology, Shanxi Agricultural University, No. 1 Mingxiannan Road, Taigu, Jinzhong, Shanxi, 030801, China
| | - Wenzhong Liu
- College of Animal Science and Technology, Shanxi Agricultural University, No. 1 Mingxiannan Road, Taigu, Jinzhong, Shanxi, 030801, China
| | - Shaozhen Liu
- College of Animal Science and Technology, Shanxi Agricultural University, No. 1 Mingxiannan Road, Taigu, Jinzhong, Shanxi, 030801, China.
| |
Collapse
|
10
|
Zheng Y, Yuan J, Gu Z, Yang G, Li T, Chen J. Transcriptome alterations in female Daphnia (Daphnia magna) exposed to 17β-estradiol. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114208. [PMID: 32097791 DOI: 10.1016/j.envpol.2020.114208] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/08/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
The molecular mechanism of evaluating 17β-estradiol (E2)-induced toxicity in female Daphnia magna has not been determined. In this study, the transcriptome of D. magna was analyzed after exposure to three different concentrations (0, 10, and 100 ng L-1) of E2 at 3, 6, and 12 h. The results showed 351-17,221 significantly up-regulated and 505-10,282 significantly down-regulated genes (P < 0.05). Overall, the selected largest 10,282 (10 ng L-1vs control at 12 h) down-regulated and 17,221 (100 vs 10 ng L-1) up-regulated genes were identified; following annotation, pathways in cancer and RNA transport were found to be enriched according to the interaction network. Among all completed comparisons, KEGG pathways related to the immune system, cancer, disease infection, and active compound metabolism were identified by short time series expression miner analysis. A different set of genes fluctuated in a "U"-shaped pattern over time and at different concentrations of E2, whereas some genes associated with disintoxication showed a reverse "U"-shaped response as E2 administration was increased. These results suggest that E2 exposure caused transcriptional changes in the immune system, disintoxication, disease prevention, and the protein degradation pathway.
Collapse
Affiliation(s)
- Yao Zheng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River/Wuxi Fishery College, Nanjing Agricultural University, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu, 214081, China
| | - Julin Yuan
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Zhimin Gu
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Guang Yang
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing, 100000, PR China
| | - Tian Li
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing, 100000, PR China
| | - Jiazhang Chen
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River/Wuxi Fishery College, Nanjing Agricultural University, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu, 214081, China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, 100039, PR China.
| |
Collapse
|
11
|
Rutherford RJ, Lister AL, MacLatchy DL. Physiological effects of 5α-dihydrotestosterone in male mummichog (Fundulus heteroclitus) are dose and time dependent. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 217:105327. [PMID: 31703940 DOI: 10.1016/j.aquatox.2019.105327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Numerous anthropogenic sources, such as pulp mill and sewage treatment effluents, contain androgenic endocrine disrupting compounds that alter the reproductive status of aquatic organisms. The current study injected adult male mummichog (Fundulus heteroclitus) with 0 (control), 1 pg/g, 1 ng/g or 1 μg/g body weight of the model androgen 5α-dihydrotestosterone (DHT) with the intent to induce a period of plasma sex hormone depression, a previously-observed effect of DHT in fish. A suite of gonadal steroidogenic genes were assessed during sex hormone depression and recovery. Fish were sampled 6, 12, 16, 18, 24, 30 and 36 h post-injection, and sections of testis tissue were either snap frozen immediately or incubated for 24 h at 18 °C to determine in vitro gonadal hormone production and then frozen. Plasma testosterone (T) and 11-ketotestosterone (11KT) were depressed beginning 24 h post-injection. At 36 h post-injection plasma T remained depressed while plasma 11KT had recovered. In snap frozen tissue there was a correlation between plasma sex hormone depression and downregulation of key steroidogenic genes including steroidogenic acute regulatory protein (star), cytochrome P450 17a1 (cyp17a1), 3β-hydroxysteroid dehydrogenase (3βhsd), 11β-hydroxysteroid dehydrogenase (11βhsd) and 17β-hydroxysteroid dehydrogenase (17βhsd). Similar to previous studies, 3βhsd was the first and most responsive gene during DHT exposure. Gene responses from in vitro tissue were more variable and included the upregulation of 3βhsd, 11βhsd and star during the period of hormone depression. The differential expression of steroidogenic genes from the in vitro testes compared to the snap frozen tissues may be due to the lack of regulators from the hypothalamo-pituitary-gonadal axis present in whole-animal systems. Due to these findings it is recommended to use snap frozen tissue, not post-incubation tissue from in vitro analysis, for gonadal steroidogenic gene expression to more accurately reflect in vivo responses.
Collapse
Affiliation(s)
- Robert J Rutherford
- Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada.
| | - Andrea L Lister
- Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada
| | - Deborah L MacLatchy
- Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada
| |
Collapse
|
12
|
Fu C, Li F, Wang L, Li T. Molecular insights into ovary degeneration induced by environmental factors in female oriental river prawns Macrobrachium nipponense. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:882-888. [PMID: 31349197 DOI: 10.1016/j.envpol.2019.07.085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/17/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
The oriental river prawn, Macrobrachium nipponense, is an important breeding species in China. The ovary development of this prawn is regulated by the genetic factors and external environmental factors and has obvious seasonal regularity. However, the molecular mechanism of regulating ovary degradation in M. nipponense remains unclear. To address this issue, we performed transcriptome sequencing and gene expression analyses of eyestalks, cerebral ganglia (CG) and thoracic ganglia (TG) of female M. nipponense between the full ovary stage and degenerate ovary stage. Differentially expressed genes enrichment analysis results identified several important pathways such as "phototransduction-fly," "circadian rhythm-fly" and "steroid hormone biosynthesis secretion." In the period of ovarian degeneration, the expressions of Tim, Per2 and red pigment concentration hormone (RPCH) were significantly decreased in the eyestalk, CG and TG. And expression of 7 genes in the steroid synthesis pathway, including steryl-sulfatase, cytochrome P450 family 1 subfamily A polypeptide 1, estradiol 17β-dehydrogenase 2, glucuronosyltransferase, 3-oxo-5-alpha-steroid 4-dehydrogenase 1, estradiol 17-dehydrogenase 1 and estrone sulfotransferase was significantly decreased in the CG. Food and light signals affect the expression of clock genes and thereby decrease the expression of RPCH and the estradiol synthesis-related genes in the nervous system, which may be the main cause of ovarian degeneration in M. nipponense. The results will contribute to a better understanding of the molecular mechanisms of ovarian development regulation in crustaceans.
Collapse
Affiliation(s)
- Chunpeng Fu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, China.
| | - Fajun Li
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, China
| | - Lifang Wang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, China
| | - Tingting Li
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, China
| |
Collapse
|
13
|
Zheng Y, Yuan J, Meng S, Chen J, Gu Z. Testicular transcriptome alterations in zebrafish (Danio rerio) exposure to 17β-estradiol. CHEMOSPHERE 2019; 218:14-25. [PMID: 30465971 DOI: 10.1016/j.chemosphere.2018.11.092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/11/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
The hormone 17β-estradiol (E2) can be found in rivers, effluents, and even drinking water. Researches have demonstrated that E2 affects various metabolic pathways through gene activation and may cause reproductive toxicity in fish. Therefore, the aim of this study was to evaluate E2-induced toxicity via testicular transcriptome of zebrafish (Danio rerio) exposed to different concentrations (10 ng L-1, and 100 ng L-1) of E2. A total of >600 significant differentially expressed genes (DEGs) were enriched among the three treatments. Short time-series expression miner analysis revealed five KEGG pathways including drug metabolism, other enzymes, calcium signaling pathway, ECM-receptor interaction, gap junction, and cell adhesion molecules. Twenty genes were selected to verify the accuracy of RNA-Seq. Other reported genes related to sex differentiation, development, energy metabolism, and other processes were found. One set of genes significantly increased/decreased/fluctuated over time, especially 12 h after E2 exposure. Genes associated with ovaries (zp3c), and development (bmp15, gdf9, and sycp2l) were significantly upregulated with increasing E2 concentration. E2 and testosterone was significantly decreased by 10 (except for T) and 100 ng L-1 E2 exposure at 12 h. The current study demonstrated that sex differentiation, development, energy metabolism, immunity, and ribosome biogenesis in male zebrafish were all significantly affected by 17β-estradiol exposure through transcriptional alterations.
Collapse
Affiliation(s)
- Yao Zheng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River/Wuxi Fishery College, Nanjing Agricultural University, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu, 214081, China
| | - Julin Yuan
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Shunlong Meng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River/Wuxi Fishery College, Nanjing Agricultural University, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu, 214081, China
| | - Jiazhang Chen
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River/Wuxi Fishery College, Nanjing Agricultural University, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu, 214081, China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, 100039, China.
| | - Zhimin Gu
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China.
| |
Collapse
|
14
|
Campbell DEK, Langlois VS. Thyroid hormones and androgens differentially regulate gene expression in testes and ovaries of sexually mature Silurana tropicalis. Gen Comp Endocrinol 2018; 267:172-182. [PMID: 29990494 DOI: 10.1016/j.ygcen.2018.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 05/05/2018] [Accepted: 07/03/2018] [Indexed: 02/04/2023]
Abstract
A series of ex vivo exposures using testicular and ovarian tissues of sexually mature Western clawed frogs (Silurana tropicalis) were designed to examine molecular mechanisms of thyroid hormone (TH) and androgen crosstalk sans hypophyseal feedback as well as investigate potential sex-specific differences. Tissues were exposed ex vivo to either triiodothyronine (T3), iopanoic acid (IOP), one co-treatment of IOP + 5α-dihydrotestosterone (5α-DHT), 5α-DHT, 5β-dihydrotestosterone (5β-DHT), or testosterone (T). Direct exposure to different androgens led to androgen specific increases in thyroid receptor and deiodinase transcripts in testes (trβ and dio1) but a decrease in expression in ovaries (trβ and dio3), suggesting that male and female frogs can be differently affected by androgenic compounds. Moreover, exposure to select androgens differentially increased estrogen-related transcription (estrogen receptor alpha (erα) and aromatase (cyp19)) and production (estradiol) in ovaries and testes indicating the activation of alternate metabolic pathways yielding estrogenic metabolites. Sex-steroid-related transcription (i.e., steroid 5α-reductase type 2 (srd5α2) and erα) and production (i.e., 5α-DHT) were also differentially regulated by THs. The presence and frequency of transcription factor binding sites in the putative promoter regions of TH- and sex steroid-related genes were also examined in S. tropicalis, rodent, and fish models using in silico analysis. In summary, this study provides an improved mechanistic understanding of TH- and androgen-mediated actions and reveals differential transcriptional effects as a function of sex in frogs.
Collapse
Affiliation(s)
- D E K Campbell
- Biology Department, Queen's University, Kingston, ON, Canada
| | - V S Langlois
- Biology Department, Queen's University, Kingston, ON, Canada; Institut national de la recherche scientifique (INRS) - Centre Eau Terre Environnement, Quebec City, QC, Canada; Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada.
| |
Collapse
|
15
|
Rutherford R, Lister A, MacLatchy D. Comparison of steroidogenic gene expression in mummichog (Fundulus heteroclitus) testis tissue following exposure to aromatizable or non-aromatizable androgens. Comp Biochem Physiol B Biochem Mol Biol 2018; 227:39-49. [PMID: 30218714 DOI: 10.1016/j.cbpb.2018.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 09/06/2018] [Indexed: 02/08/2023]
Abstract
Androgens are a recognized class of endocrine disrupting compounds with the ability to impact reproductive status in aquatic organisms. The current study utilized in vitro exposure of mummichog (Fundulus heteroclitus) testis tissue to either the aromatizable androgen 17α-methyltestosterone (MT) or the non-aromatizable androgen 5α-dihydrotestosterone (DHT) over the course of 24 h to determine if there were differential effects on steroidogenic gene expression. Testis tissue was exposed to androgen concentrations of 10-12 M, 10-9 M and 10-6 M for 6, 12, 18 or 24 h, after which a suite of steroidogenic genes, including steroidogenic acute regulatory protein, 3β-hydroxysteroid dehydrogenase (3βhsd) and cytochrome P450 17A1 (cyp17a1), were quantified using real-time polymerase chain reaction. Both androgens affected steroidogenic gene expression, with most alterations occurring at the 24-hour time point. The gene with the highest fold-change, and shortest interval to expression alteration, was 3βhsd for both androgens. Potential differences between the two model androgens were observed in increased expression of cyp17a1 and 11β-hydroxysteroid dehydrogenase (11βhsd), which were only altered after exposure to DHT and in expression levels of cytochrome P450 11A1 (cyp11a1), which was upregulated by MT but not altered by DHT. Results from this study show both androgens interact at the gonadal level of the hypothalamus-pituitary-gonadal axis and may possess some distinct gene expression impacts. These data strengthen the current research initiatives of establishing in vitro test systems that allow toxic potential of untested chemicals to be predicted from molecular perturbations.
Collapse
Affiliation(s)
- Robert Rutherford
- Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2L 3C5, Canada.
| | - Andrea Lister
- Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2L 3C5, Canada
| | - Deborah MacLatchy
- Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2L 3C5, Canada
| |
Collapse
|
16
|
Campbell DEK, Langlois VS. Expression of sf1 and dax-1 are regulated by thyroid hormones and androgens during Silurana tropicalis early development. Gen Comp Endocrinol 2018; 259:34-44. [PMID: 29107601 DOI: 10.1016/j.ygcen.2017.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 11/27/2022]
Abstract
Thyroid hormones (THs) and androgens have been shown to be extensively involved in sexual development; however, relatively little is known with regard to TH-related and androgenic actions in sex determination. We first established expression profiles of three sex-determining genes (sf1, dax-1, and sox9) during the embryonic development of Western clawed frogs (Silurana tropicalis). Transcripts of sf1 and sox9 were detected in embryos before the period in which embryonic transcription commences indicating maternal transfer, whereas dax-1 transcripts were not detected until later in development. To examine whether TH status affects sex-determining gene expression in embryonic S. tropicalis, embryos were exposed to co-treatments of iopanoic acid (IOP), thyroxine (T4), or triiodothyronine (T3) for 96 h. Expression profiles of TH receptors and deiodinases reflect inhibition of peripheral deiodinase activity by IOP and recovery by T3. Relevantly, elevated TH levels significantly increased the expression of sf1 and dax-1 in embryonic S. tropicalis. Further supporting TH-mediated regulation, examination of the presence and frequency of transcription factor binding sites in the putative promoter regions of sex-determining genes in S. tropicalis and rodent and fish models using in silico analysis also identified TH motifs in the putative promoter regions of sf1 and dax-1. Together these findings advocate that TH actions as early as the period of embryogenesis may affect gonadal fate in frogs. Mechanisms of TH and androgenic crosstalk in relation to the regulation of steroid-related gene expression were also investigated.
Collapse
Affiliation(s)
| | - Valerie S Langlois
- Biology Department, Queen's University, Kingston, ON Canada; Institut National de la recherche scientifique (INRS) - Centre Eau Terre Environnement (ETE), Quebec, QC, Canada; Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON Canada.
| |
Collapse
|
17
|
Lopes C, Malhão F, Guimarães C, Pinheiro I, Gonçalves JF, Castro LFC, Rocha E, Madureira TV. Testosterone-induced modulation of peroxisomal morphology and peroxisome-related gene expression in brown trout (Salmo trutta f. fario) primary hepatocytes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 193:30-39. [PMID: 29032351 DOI: 10.1016/j.aquatox.2017.09.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 09/17/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
Disruption of androgenic signaling has been linked to possible cross-modulation with other hormone-mediated pathways. Therefore, our objective was to explore effects caused by testosterone - T (1, 10 and 50μM) in peroxisomal signaling of brown trout hepatocytes. To study the underlying paths involved, several co-exposure conditions were tested, with flutamide - F (anti-androgen) and ICI 182,780 - ICI (anti-estrogen). Molecular and morphological approaches were both evaluated. Peroxisome proliferator-activated receptor alpha (PPARα), catalase and urate oxidase were the selected targets for gene expression analysis. The vitellogenin A gene was also included as a biomarker of estrogenicity. Peroxisome relative volumes were estimated by immunofluorescence, and transmission electron microscopy was used for qualitative morphological control. The single exposures of T caused a significant down-regulation of urate oxidase (10 and 50μM) and a general up-regulation of vitellogenin. A significant reduction of peroxisome relative volumes and smaller peroxisome profiles were observed at 50μM. Co-administration of T and ICI reversed the morphological modifications and vitellogenin levels. The simultaneous exposure of T and F caused a significant and concentration-dependent diminishing in vitellogenin expression. Together, the findings suggest that in the tested model, T acted via both androgen and estrogen receptors to shape the peroxisomal related targets.
Collapse
Affiliation(s)
- Célia Lopes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U.Porto - University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), U.Porto - University of Porto, Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313, Porto, Portugal
| | - Fernanda Malhão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U.Porto - University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), U.Porto - University of Porto, Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313, Porto, Portugal
| | - Cláudia Guimarães
- Institute of Biomedical Sciences Abel Salazar (ICBAS), U.Porto - University of Porto, Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313, Porto, Portugal
| | - Ivone Pinheiro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U.Porto - University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), U.Porto - University of Porto, Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313, Porto, Portugal
| | - José F Gonçalves
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U.Porto - University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), U.Porto - University of Porto, Department of Aquatic Production, Rua Jorge Viterbo Ferreira 228, P 4050-313, Porto, Portugal
| | - L Filipe C Castro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U.Porto - University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Faculty of Sciences (FCUP), U.Porto - University of Porto, Department of Biology, Rua do Campo Alegre, P 4169-007, Porto, Portugal
| | - Eduardo Rocha
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U.Porto - University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), U.Porto - University of Porto, Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313, Porto, Portugal.
| | - Tânia V Madureira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U.Porto - University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), U.Porto - University of Porto, Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313, Porto, Portugal
| |
Collapse
|