1
|
Rajini SV, Sarjan HN, Shivabasavaiah. Ameliorative action of eugenol on nitrate induced reproductive toxicity in male rats. Toxicol Rep 2024; 13:101702. [PMID: 39211010 PMCID: PMC11357871 DOI: 10.1016/j.toxrep.2024.101702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
There is a great concern for studies to prevent nitrate (NO3) induced male reproductive toxicity as it might lead to infertility. Therefore, the study was aimed to investigate the ameliorative effects of eugenol on NO3 induced male reproductive toxicity in wistar rats. Adult male rats were randomly divided into five groups (n=5). The first group was served as control, the second and third group of rats were treated with 100 mg/kg bw of sodium nitrate (NaNO3) and NO3 contaminated ground water respectively. The fourth and fifth group of rats were orally intubated with eugenol (100 mg/kg bw) and then exposed to NaNO3 and NO3 contaminated ground water respectively. The treatment was continued for 52 days. Nitrate exposure significantly decreased the sperm motility, testicular 3-beta-hydroxysteroid dehydrogenase activity, serum concentration of testosterone, activities of superoxide dismutase and catalase in testis and spermatozoa and different categories of germ cells in stage VII of spermatogenesis. Further, there was significant increase in sperm abnormality and levels of nitrite (NO2) and malondialdehyde in testis and spermatozoa of NO3 treated rats. In addition, NO3 exposure distorted the histological architecture of seminiferous tubules of testis. It was established that NO3 induced high production of NO2 affected spermatogenesis, steroidogenesis and sperm motility. However, in the present study, pretreatment of eugenol prevented NO3 induced reproductive alterations by decreasing the level of NO2. These findings clearly showed the protective action of eugenol against NO3 induced oxidative stress in male reproductive system.
Collapse
Affiliation(s)
| | | | - Shivabasavaiah
- Department of Studies in Zoology, Manasagangotri, University of Mysore, Mysore, Karnataka, India
| |
Collapse
|
2
|
You W, An Q, Guo D, Huang Z, Guo L, Chen Z, Xu H, Wang G, Weng Y, Ma Z, Chen X, Hong F, Zhao R. Exploration of risk analysis and elimination methods for a Cr(VI)-removal recombinant strain through a biosafety assessment in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168743. [PMID: 38007124 DOI: 10.1016/j.scitotenv.2023.168743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/26/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
Though recombinant strains are increasingly recognized for their potential in heavy metal remediation, few studies have evaluated their safety. Moreover, biosafety assessments of fecal-oral pathway exposure at country as well as global level have seldom analyzed the health risks of exposure to microorganisms from a microscopic perspective. The present study aimed to predict the long-term toxic effects of recombinant strains by conducting a subacute toxicity test on the chromium-removal recombinant strain 3458 and analyzing the gut microbiome. The available disinfection methods were also evaluated. The results showed that strain 3458 induced liver damage and affected renal function and lipid metabolism at 1.0 × 1011 CFU/mL, which may be induced by its carrier strain, pET-28a. Strain 3458 poses the risk of increasing the number of pathogenic bacteria under prolonged exposure. When 500 mg L-1 chlorine-containing disinfectant or 250 mg L-1 chlorine dioxide disinfectant was added for 30 min, the sterilization rate exceeded 99.9 %. These findings suggest that existing wastewater disinfection methods can effectively sterilize strain 3458, ensuring its application value. The present study can serve a reference for the biosafety evaluation of the recombinant strain through exposure to the digestive tract and its feasibility for application in environmental pollution remediation.
Collapse
Affiliation(s)
- Wanting You
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, No. 4221-117 South Xiang'an Road, Xiang'an District, Xiamen 361102, Fujian, People's Republic of China
| | - Qiuying An
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, No. 4221-117 South Xiang'an Road, Xiang'an District, Xiamen 361102, Fujian, People's Republic of China
| | - Dongbei Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, No. 4221-117 South Xiang'an Road, Xiang'an District, Xiamen 361102, Fujian, People's Republic of China
| | - Zebo Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, No. 4221-117 South Xiang'an Road, Xiang'an District, Xiamen 361102, Fujian, People's Republic of China
| | - Lulu Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, No. 4221-117 South Xiang'an Road, Xiang'an District, Xiamen 361102, Fujian, People's Republic of China
| | - Zigui Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, No. 4221-117 South Xiang'an Road, Xiang'an District, Xiamen 361102, Fujian, People's Republic of China
| | - Hao Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, No. 4221-117 South Xiang'an Road, Xiang'an District, Xiamen 361102, Fujian, People's Republic of China
| | - Guangshun Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, No. 4221-117 South Xiang'an Road, Xiang'an District, Xiamen 361102, Fujian, People's Republic of China
| | - Yeting Weng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, No. 4221-117 South Xiang'an Road, Xiang'an District, Xiamen 361102, Fujian, People's Republic of China
| | - Zhangye Ma
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, No. 4221-117 South Xiang'an Road, Xiang'an District, Xiamen 361102, Fujian, People's Republic of China
| | - Xiaoxuan Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, No. 4221-117 South Xiang'an Road, Xiang'an District, Xiamen 361102, Fujian, People's Republic of China
| | - Feng Hong
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Ran Zhao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, No. 4221-117 South Xiang'an Road, Xiang'an District, Xiamen 361102, Fujian, People's Republic of China.
| |
Collapse
|
3
|
Production of a Yogurt Drink Enriched with Golden Berry (Physalispubescens L.) Juice and Its Therapeutic Effect on Hepatitis in Rats. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8030112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fermented dairy products have been associated with multiple health benefits. The present study aimed to produce a functional yogurt drink fortified with golden berry juice and assess its therapeutic effect on hepatitis rats. Thirty male albino rats were randomly divided into two major groups. The first group included the control (-) animals (six rats) and was fed a standard diet, whereas the second group included 24 rats that were fed a standard diet and injected with carbon tetrachloride (CCl4) for 2 weeks to trigger chronic damage of the liver (hepatitis); they were then divided into four groups (six rats/group): Group 2: hepatitis, fed on a standard diet as a positive control group; Group 3: received a basal diet with 5 mL of the yogurt drink; Group 4: received a basal diet with 5 mL of the yogurt drink fortified with 10% golden berry juice. Group 5: received a basal diet with 5 mL of the yogurt drink fortified with 20% golden berry juice. Various biological parameters were determined. Yogurt drink treatments were evaluated for their chemical, phytochemical, and sensory properties, as well as for their effects on hepatoprotective activity by determining various biochemical parameters. We found that the yogurt drinks containing golden berry juice exhibited no significant differences in fat, protein, and ash content compared with the control samples. Moreover, the yogurt drinks containing golden berry juice exhibited the highest content of total phenolic compounds, antioxidant activity, and organoleptic scores among all treatments. In addition, rats fed on a diet fortified with yogurt drinks containing golden berry juice for 8 weeks exhibited higher potential hepatoprotective effects compared with the liver injury control group. This improvement was partly observed in the group that received the yogurt drink containing golden berry juice. Therefore, we concluded that golden berry juice can be recommended as a natural additive in the manufacture of functional yogurt drinks, as it showed a potential hepatoprotective effect in rats with hepatitis.
Collapse
|
4
|
Ríos-Sánchez E, González-Zamora A, Gonsebatt Bonaparte ME, Meza Mata E, González-Delgado MF, Zámago Amaro A, Pérez-Morales R. Regulation of the Tpo, Tg, Duox2, Pds, and Mct8 genes involved in the synthesis of thyroid hormones after subchronic exposure to sodium nitrate in female Wistar rats. ENVIRONMENTAL TOXICOLOGY 2021; 36:2380-2391. [PMID: 34409734 DOI: 10.1002/tox.23351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Nitrates are natural compounds present in soil and water; however, the intense use of fertilizers has increased their presence in groundwater with deleterious effects on human health. There is evidence of nitrates acting as endocrine disruptors; however, the underlying molecular mechanisms have not been fully described. Here, we investigated the effect of subchronic exposure to different concentrations of sodium nitrate in female Wistar rats, evaluating thyroid hormonal parameters, such as Nis transporter (Na+ /I- symporter, Slc5a5) and Tsh-R receptor protein expression, as well as transcription of the Tpo (thyroperoxidase), Tg (tiroglobulin), Duox2 (dual oxidase 2), Pds (pendrin), and Mct8 (Mct8 transporter, Slc16a2) genes. Hematological and histochemical changes in the liver and thyroid were also explored. Significant differences were found in platelet and leukocyte counts; although a significant increase in the weight of the thyroid gland was observed, no differences were found in the levels of the hormones Tsh, T3, and T4, but a modulation of the mRNA expression of the Tg, Tpo, Duox2, Mct8, and Pds genes was observed. Morphological changes were also found in liver and thyroid tissue according to the exposure doses. In conclusion, subchronic exposure to sodium nitrate induces leukocytosis consistent with an inflammatory response and upregulation of Sod2 in the liver and increases the expression of genes involved in the synthesis of thyroid hormones, keeping thyroid hormone levels stable. Histological changes in the thyroid gland suggest a goitrogenic effect.
Collapse
Affiliation(s)
- Efraín Ríos-Sánchez
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Alberto González-Zamora
- Laboratorio de Biología Evolutiva. Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - María Eugenia Gonsebatt Bonaparte
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Elizabeth Meza Mata
- Departamento de Patología, Unidad Médica de Alta Especialidad #71. Instituto Mexicano del Seguro Social, Torreón, Mexico
| | - María Fernanda González-Delgado
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Alejandra Zámago Amaro
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Rebeca Pérez-Morales
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| |
Collapse
|
5
|
Ortiz-Chura A, Marcoppido G, Gere J, Depetris G, Stefañuk F, Trangoni MD, Cravero SL, Faverín C, Cataldi A, Cerón-Cucchi ME. Changes in hematological, biochemical, and blood gases parameters in response to progressive inclusion of nitrate in the diet of Holstein calves. Vet World 2021; 14:61-69. [PMID: 33642787 PMCID: PMC7896885 DOI: 10.14202/vetworld.2021.61-69] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/26/2020] [Indexed: 01/26/2023] Open
Abstract
Background and Aim: Nitrate (NO3-) reduces enteric methane emissions and could be a source of non-protein nitrogen in ruminant feeds. Nonetheless, it has a potential toxic effect that could compromise animal health and production. The purpose of this study was to determine the effects of progressive inclusion of NO3- in the diet on the hematological, biochemical, and blood gases parameters, in turn, the effects on feed intake and live weight gain (LWG) in Holstein calves. Materials and Methods: Eighteen Holstein heifers and steers (nine animals/treatment) were maintained in individual pens for 45 days. Animals were randomly allocated to either a control or nitrate diet (ND) (containing 15 g of NO3-/kg of dry matter [DM]). The biochemical parameters and blood gases were analyzed only in the NO3- group on days: -1, 1, 7, 13, 19, and 25 corresponding to 0, 20, 40, 60, 80, and 100% of the total inclusion of NO3- in the diet, respectively. In addition, DM intake (DMI) and LWG were evaluated among dietary treatments. Results: Feeding the ND did not influence DMI or LWG (p>0.05). Methemoglobin (MetHb) and deoxyhemoglobin increased according to the NO3- concentrations in the diet (p<0.05), while an opposite effect was observed for oxyhemoglobin and carboxyhemoglobin (p<0.05). Hematocrit levels decreased (p<0.05), while albumin, alanine aminotransferase, and gamma-glutamyl transpeptidase concentrations were not modified (p>0.05). However, glucose, urea, aspartate aminotransferase (AST), and retinol concentrations increased (p<0.05) according to the NO3- concentrations in the diet. Conclusion: This study confirmed that the progressive inclusion of 123 g of NO3-/animal/day in the diet could be safe without affecting DMI and LWG of Holstein calves. In turn, a dose-response effect of the MetHb, glucose, urea, AST, and retinol was observed, but these values did not exceed reference values. These results highlighted the importance of using a scheme of progressive inclusion of NO3- in the diet of calves to reduce the risks of NO3- toxicity.
Collapse
Affiliation(s)
- Abimael Ortiz-Chura
- Institute of Pathobiology, National Institute of Agricultural Technology, National Scientific and Technical Research Council, Hurlingham (C1686), Argentina
| | - Gisela Marcoppido
- Institute of Pathobiology, National Institute of Agricultural Technology, National Scientific and Technical Research Council, Hurlingham (C1686), Argentina
| | - José Gere
- Engineering Research and Development Division, National Technological University, National Scientific and Technical Research Council, Ciudad Autónoma de Buenos Aires (C1179), Argentina
| | - Gustavo Depetris
- Agricultural Experimental Station of Balcarce, National Institute of Agricultural Technology, Balcarce (B7620), Argentina
| | - Francisco Stefañuk
- Agricultural Experimental Station of Balcarce, National Institute of Agricultural Technology, Balcarce (B7620), Argentina
| | - Marcos D Trangoni
- Institute of Agrobiotechnology and Molecular Biology, National Institute of Agricultural Technology, National Scientific and Technical Research Council, Hurlingham (C1686), Argentina
| | - Silvio L Cravero
- Institute of Agrobiotechnology and Molecular Biology, National Institute of Agricultural Technology, National Scientific and Technical Research Council, Hurlingham (C1686), Argentina
| | - Claudia Faverín
- Agricultural Experimental Station of Balcarce, National Institute of Agricultural Technology, Balcarce (B7620), Argentina
| | - Angel Cataldi
- Institute of Agrobiotechnology and Molecular Biology, National Institute of Agricultural Technology, National Scientific and Technical Research Council, Hurlingham (C1686), Argentina
| | - María E Cerón-Cucchi
- Institute of Pathobiology, National Institute of Agricultural Technology, National Scientific and Technical Research Council, Hurlingham (C1686), Argentina
| |
Collapse
|