1
|
Xiong Y, Shi Q, Li J, Sy ND, Schlenk D, Gan J. Methylation and Demethylation of Emerging Contaminants in Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1998-2006. [PMID: 38240245 DOI: 10.1021/acs.est.3c03171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Many contaminants of emerging concern (CECs) have reactive functional groups and may readily undergo biotransformations, such as methylation and demethylation. These transformations have been reported to occur during human metabolism and wastewater treatment, leading to the propagation of CECs. When treated wastewater and biosolids are used in agriculture, CECs and their transformation products (TPs) are introduced into soil-plant systems. However, little is known about whether transformation cycles, such as methylation and demethylation, take place in higher plants and hence affect the fate of CECs in terrestrial ecosystems. In this study, we explored the interconversion between four common CECs (acetaminophen, diazepam, methylparaben, and naproxen) and their methylated or demethylated TPs in Arabidopsis thaliana cells and whole wheat seedlings. The methylation-demethylation cycle occurred in both plant models with demethylation generally taking place at a greater degree than methylation. The transformation rate of demethylation or methylation was dependent on the bond strength of R-CH3, with demethylation of methylparaben or methylation of acetaminophen being more pronounced. Although not explored in this study, these interconversions may exert influences on the behavior and biological activity of CECs, particularly in terrestrial ecosystems. The study findings demonstrated the prevalence of transformation cycles between CECs and their methylated or demethylated TPs in higher plants, contributing to a more complete understanding of risks of CECs in the human-wastewater-soil-plant continuum.
Collapse
Affiliation(s)
- Yaxin Xiong
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Qingyang Shi
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Jun Li
- School of the Earth Sciences and Resources, Chinese University of Geosciences, Beijing 100083, China
| | - Nathan Darlucio Sy
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| |
Collapse
|
2
|
Svobodníková L, Kummerová M, Zezulka Š, Martinka M, Klemš M, Čáslavský J. Pea root responses under naproxen stress: changes in the formation of structural barriers in the primary root in context with changes of auxin and abscisic acid levels. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:1-11. [PMID: 36542231 DOI: 10.1007/s10646-022-02613-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Pharmaceuticals belong to pseudo-persistent pollutants because of constant entry into the environment and hazardous potential for non-target organisms, including plants, in which they can influence biochemical and physiological processes. Detailed analysis of results obtained by microscopic observations using fluorescent dyes (berberine hemisulphate, Fluorol Yellow 088), detection of phytohormone levels (radioimmunoassay, enzyme-linked immune sorbent assay) and thermogravimetric analysis of lignin content proved that the drug naproxen (NPX) can stimulate the formation of root structural barriers. In the primary root of plants treated with 0.5, 1, and 10 mg/L NPX, earlier Casparian strip formation and development of the whole endodermis circle closer to its apex were found after five days of cultivation (by 9-20% as compared to control) and after ten days from 0.1 mg/L NPX (by 8-63%). Suberin lamellae (SL) were deposited in endodermal cells significantly closer to the apex under 10 mg/L NPX by up to 75%. Structural barrier formation under NPX treatment can be influenced indirectly by auxin-supported cell division and differentiation caused by its eight-times higher level under 10 mg/L NPX and directly by stimulated SL deposition induced by abscisic acid (higher from 0.5 mg/L NPX), as proved by the higher proportion of cells with SL in the primary root base (by 8-44%). The earlier modification of endodermis in plant roots can help to limit the drug transfer and maintain the homeostasis of the plant.
Collapse
Affiliation(s)
- Lucie Svobodníková
- Section of Experimental Plant Biology, Department of Experimental Biology, Faculty of Science, Masaryk University Brno, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Marie Kummerová
- Section of Experimental Plant Biology, Department of Experimental Biology, Faculty of Science, Masaryk University Brno, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Štěpán Zezulka
- Section of Experimental Plant Biology, Department of Experimental Biology, Faculty of Science, Masaryk University Brno, Kotlářská 2, 611 37, Brno, Czech Republic.
| | - Michal Martinka
- Department of Plant Physiology, Faculty of Natural Science, Comenius University in Bratislava, Mlynská dolina B2, 842 15, Bratislava, Slovakia
| | - Marek Klemš
- Institute of Plant Biology, Faculty of Agronomy, Mendel University Brno, Zemědělská 1, 613 00, Brno, Czech Republic
| | - Josef Čáslavský
- Laboratory of Metabolomics and Isotope Analyses, Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic
| |
Collapse
|
3
|
Norbury LJ, Shirakashi S, Power C, Nowak BF, Bott NJ. Praziquantel use in aquaculture - Current status and emerging issues. Int J Parasitol Drugs Drug Resist 2022; 18:87-102. [PMID: 35220160 PMCID: PMC8881684 DOI: 10.1016/j.ijpddr.2022.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 12/02/2022]
Abstract
Parasitic diseases are major constraints in fish mariculture. The anthelmintic praziquantel (PZQ) can effectively treat a range of flatworm parasites in a variety of fish species and has potential for broader application than its current use in the global aquaculture industry. In this review we report on PZQ's current use in the aquaculture industry and discuss its efficacy against various flatworm parasites of fish. Routes of PZQ administration are evaluated, along with issues related to palatability, pharmacokinetics and toxicity in fish, while PZQ's effects on non-target species, environmental impacts, and the development of drug-resistance are discussed.
Collapse
Affiliation(s)
- Luke J Norbury
- School of Science, STEM College, RMIT University, Bundoora, 3083, Victoria, Australia
| | - Sho Shirakashi
- Aquaculture Research Institute, Kindai University, Wakayama, 649-2211, Japan
| | - Cecilia Power
- School of Science, STEM College, RMIT University, Bundoora, 3083, Victoria, Australia
| | - Barbara F Nowak
- School of Science, STEM College, RMIT University, Bundoora, 3083, Victoria, Australia; Institute for Marine and Antarctic Studies, University of Tasmania, Launceston, 7250, Tasmania, Australia
| | - Nathan J Bott
- School of Science, STEM College, RMIT University, Bundoora, 3083, Victoria, Australia.
| |
Collapse
|
4
|
Madikizela LM, Botha TL, Kamika I, Msagati TAM. Uptake, Occurrence, and Effects of Nonsteroidal Anti-Inflammatory Drugs and Analgesics in Plants and Edible Crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:34-45. [PMID: 34967604 DOI: 10.1021/acs.jafc.1c06499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The plant uptake of pharmaceuticals that include nonsteroidal anti-inflammatory drugs (NSAIDs) and analgesics from contaminated environment has benefits and drawbacks. These pharmaceuticals enter plants mostly through irrigation with contaminated water and application of sewage sludge as soil fertilizer. Aquatic plants withdraw these pharmaceuticals from water through their roots. Numerous studies have observed the translocation of these pharmaceuticals from the roots into the aerial tissues. Furthermore, the occurrence of the metabolites of NSAIDs in plants has been observed. This article provides an in-depth critical review of the plant uptake of NSAIDs and analgesics, their translocation, and toxic effects on plant species. In addition, the occurrence of metabolites of NSAIDs in plants and the application of constructed wetlands using plants for remediation are reviewed. Factors that affect the plant uptake and translocation of these pharmaceuticals are examined. Gaps and future research are provided to guide forthcoming investigations on important aspects that worth explorations.
Collapse
Affiliation(s)
- Lawrence Mzukisi Madikizela
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Roodepoort 1710, South Africa
| | - Tarryn Lee Botha
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Roodepoort 1710, South Africa
| | - Ilunga Kamika
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Roodepoort 1710, South Africa
| | - Titus Alfred M Msagati
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Roodepoort 1710, South Africa
| |
Collapse
|
5
|
Svobodníková L, Kummerová M, Zezulka Š, Babula P, Sendecká K. Root response in Pisum sativum under naproxen stress: Morpho-anatomical, cytological, and biochemical traits. CHEMOSPHERE 2020; 258:127411. [PMID: 32947668 PMCID: PMC7308076 DOI: 10.1016/j.chemosphere.2020.127411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 05/04/2023]
Abstract
Non-steroidal anti-inflammatory drugs as an important group of emerging environmental contaminants in irrigation water and soils can influence biochemical and physiological processes essential for growth and development in plants as non-target organisms. Plants are able to take up, transport, transform, and accumulate drugs in the roots. Root biomass in ten-days old pea plants was lowered by 6% already under 0.1 mg/L naproxen (NPX) due to a lowered number of lateral roots, although 0.5 mg/L NPX stimulated the total root length by 30% as against control. Higher section area (by 40%) in root tip, area of xylem (by 150%) or stele-to-section ratio (by 10%) in zone of maturation, and lower section area in zone of lateral roots (by 18%) prove the changes in primary root anatomy and its earlier differentiation at 10 mg/L NPX. Accumulated NPX (up to 10 μg/g DW at 10 mg/L) and products of its metabolization in roots increased the amounts of hydrogen peroxide (by 33%), and superoxide (by 62%), which was reflected in elevated lipid peroxidation (by 32%), disruption of membrane integrity (by 89%) and lowering both oxidoreductase and dehydrogenase activities (by up to 40%). Elevated antioxidant capacity (SOD, APX, and other molecules) under low treatments decreased at 10 mg/L NPX (both by approx. 30%). Naproxen was proved to cause changes at both cellular and tissue levels in roots, which was also reflected in their anatomy and morphology. Higher environmental loading through drugs thus can influence even the root function.
Collapse
Affiliation(s)
- Lucie Svobodníková
- Section of Experimental Plant Biology, Dep. of Experimental Biology, Faculty of Science, Masaryk University Brno, Kotlářská 2, 611 37, Brno, Czech Republic.
| | - Marie Kummerová
- Section of Experimental Plant Biology, Dep. of Experimental Biology, Faculty of Science, Masaryk University Brno, Kotlářská 2, 611 37, Brno, Czech Republic.
| | - Štěpán Zezulka
- Section of Experimental Plant Biology, Dep. of Experimental Biology, Faculty of Science, Masaryk University Brno, Kotlářská 2, 611 37, Brno, Czech Republic.
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University Brno, Kamenice 753/5, 625 00, Brno, Czech Republic.
| | - Katarína Sendecká
- Laboratory of Metabolomics and Isotope Analyses, Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic.
| |
Collapse
|