1
|
Hetta HF, Ramadan YN, Rashed ZI, Alharbi AA, Alsharef S, Alkindy TT, Alkhamali A, Albalawi AS, Battah B, Donadu MG. Quorum Sensing Inhibitors: An Alternative Strategy to Win the Battle against Multidrug-Resistant (MDR) Bacteria. Molecules 2024; 29:3466. [PMID: 39124871 PMCID: PMC11313800 DOI: 10.3390/molecules29153466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/29/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Antibiotic resistance is a major problem and a major global health concern. In total, there are 16 million deaths yearly from infectious diseases, and at least 65% of infectious diseases are caused by microbial communities that proliferate through the formation of biofilms. Antibiotic overuse has resulted in the evolution of multidrug-resistant (MDR) microbial strains. As a result, there is now much more interest in non-antibiotic therapies for bacterial infections. Among these revolutionary, non-traditional medications is quorum sensing inhibitors (QSIs). Bacterial cell-to-cell communication is known as quorum sensing (QS), and it is mediated by tiny diffusible signaling molecules known as autoinducers (AIs). QS is dependent on the density of the bacterial population. QS is used by Gram-negative and Gram-positive bacteria to control a wide range of processes; in both scenarios, QS entails the synthesis, identification, and reaction to signaling chemicals, also known as auto-inducers. Since the usual processes regulated by QS are the expression of virulence factors and the creation of biofilms, QS is being investigated as an alternative solution to antibiotic resistance. Consequently, the use of QS-inhibiting agents, such as QSIs and quorum quenching (QQ) enzymes, to interfere with QS seems like a good strategy to prevent bacterial infections. This review sheds light on QS inhibition strategy and mechanisms and discusses how using this approach can aid in winning the battle against resistant bacteria.
Collapse
Affiliation(s)
- Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.A.); (S.A.); (T.T.A.)
| | - Yasmin N. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt; (Y.N.R.); (Z.I.R.)
| | - Zainab I. Rashed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt; (Y.N.R.); (Z.I.R.)
| | - Ahmad A. Alharbi
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.A.); (S.A.); (T.T.A.)
| | - Shomokh Alsharef
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.A.); (S.A.); (T.T.A.)
| | - Tala T. Alkindy
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.A.); (S.A.); (T.T.A.)
| | - Alanoud Alkhamali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.); (A.S.A.)
| | - Abdullah S. Albalawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.); (A.S.A.)
| | - Basem Battah
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Antioch Syrian Private University, Maaret Siadnaya 22734, Syria
| | - Matthew G. Donadu
- Hospital Pharmacy, Giovanni Paolo II Hospital, ASL Gallura, 07026 Olbia, Italy;
- Department of Medicine, Surgery and Pharmacy, Scuola di Specializzazione in Farmacia Ospedaliera, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
2
|
Krutyakov YA, Khina AG. Bacterial Resistance to Nanosilver: Molecular Mechanisms and Possible Ways to Overcome them. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822050106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Wang F, Yu G, Yang Q, Yi X, Fu L, Wang Y. Antibacterial Gelidium amansii polysaccharide-based edible films containing cyclic adenosine monophosphate for bioactive packaging. Int J Biol Macromol 2022; 212:324-336. [PMID: 35577189 DOI: 10.1016/j.ijbiomac.2022.05.090] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 01/13/2023]
Abstract
A homogeneous polysaccharide (GAP), with a molecular weight of 51.8 kDa, was isolated from edible red seaweed Gelidium amansii. Composition analysis suggested GAP contained 5.31% sulfate and 17.33% 3,6-anhydro-galactose and was mainly composed of galactose. Furthermore, GAP, as a biopolymer matrix, was used to form the composite films with the small biological molecules cytidine-5'-monophosphate (CMP), adenosine-5'-monophosphate (AMP), and cyclic adenosine monophosphate (cAMP). Scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectrum, and X-ray diffraction (XRD) results showed that CMP, AMP, and cAMP interacted with the film substrates and might made films more complex. Notably, the addition of CMP, AMP, and cAMP promoted the light, water vapor, and oxygen barrier ability, surface wettability, mechanical strength, and antimicrobial activity against Gram-negative and -positive bacteria. Finally, GAP-based films composited with cAMP (cAMPF) exhibited the best characteristics were applied to fish packaging and preservation at 4 °C and extended the fish shelf life. All these data suggested the potential value of cAMPF as a functional edible polysaccharide film applied in food industries.
Collapse
Affiliation(s)
- Feifei Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Gang Yu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Qing Yang
- Ministry of Agriculture Key Laboratory of Frozen Prepared Marine Foods Processing, Taixiang Group, Rongcheng Taixiang Food Products Co., Ltd, PR China
| | - Xiao Yi
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| |
Collapse
|
4
|
Gao YX, Li X, Fan XY, Zhao JR, Zhang ZX. The dissimilarity of antibiotic and quorum sensing inhibitor on activated sludge nitrification system: Microbial communities and antibiotic resistance genes. BIORESOURCE TECHNOLOGY 2022; 351:127016. [PMID: 35306131 DOI: 10.1016/j.biortech.2022.127016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Effects of antibiotics (azithromycin, AZM, 1-40 mg/L) and quorum sensing inhibitor (QSI, 2(5H)-furanone, 1-40 mg/L) combined pollution with environmental concentration of copper on bacterial/archaeal community and antibiotic resistance genes (ARGs) in activated sludge system were explored. QSI inhibited nitrification more obviously than AZM. AZM and QSI were synergistic inhibitions on bacterial diversity, and AZM inhibited bacterial compositions more than QSI. While, QSI had more impacts on archaeal diversity/compositions. Less interactions among bacteria and archaea communities with Aquimonas as keystone genus. Functional differences in bacteria/archaea communities were little, and AZM had more effects on metabolism. AZM mainly affected nitrifying bacteria (Candidatus Nitrospira nitrificans and Nitrosomonas). Specific denitrifying bacteria were enriched by AZM (Brevundimonas, 1.76-31.69%) and QSI (Comamonas, 0.61-9.61%), respectively. AZM enriched ARGs more easily than QSI and they were antagonistic to proliferation of ARGs. Bacteria were main hosts of ARGs (macrolide-lincosamide-streptogramin B, other/efflux, etc.) and archaea (Methanosphaerula, Methanolobus) carried multiple ARGs.
Collapse
Affiliation(s)
- Yu-Xi Gao
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Xing Li
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Xiao-Yan Fan
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Jun-Ru Zhao
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Zhong-Xing Zhang
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
5
|
Swolana D, Wojtyczka RD. Activity of Silver Nanoparticles against Staphylococcus spp. Int J Mol Sci 2022; 23:ijms23084298. [PMID: 35457115 PMCID: PMC9028791 DOI: 10.3390/ijms23084298] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus epidermidis is a bacterium that is part of the human microbiota. It is most abundant on the skin, in the respiratory system and in the human digestive tract. Also, Staphylococcus aureus contributes to human infections and has a high mortality rate. Both of these bacterial species produce biofilm, a pathogenic factor increasing their resistance to antibiotics. For this reason, we are looking for new substances that can neutralize bacterial cells. One of the best-known substances with such effects are silver nanoparticles. They exhibited antibacterial and antibiofilm formation activity that depended on their size, shape and the concentration used. In this review, we presented the data related to the use of silver nanoparticles in counteracting bacterial growth and biofilm formation published in scientific papers between 2017 and 2021. Based on the review of experimental results, the properties of nanoparticles prompt the expansion of research on their activity.
Collapse
|
6
|
Shen H, Liu Y, Liu Y, Duan Z, Wu P, Lin Z, Sun H. Hormetic dose-responses for silver antibacterial compounds, quorum sensing inhibitors, and their binary mixtures on bacterial resistance of Escherichia coli. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147464. [PMID: 33965827 DOI: 10.1016/j.scitotenv.2021.147464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Silver antibacterial compounds (SACs) and quorum sensing inhibitors (QSIs), as the potential antibiotic substitutes, have been recommended to prevent and treat microbial infections for the purpose of controlling the increasingly serious bacterial resistance induced by the abuse of antibiotics. However, there is little information regarding the resistance risk of these compounds, especially their mixtures. In this study, bacterial mutation and RP4 plasmid conjugative transfer among bacteria were used to characterize the bacterial endogenous and exogenous resistance, respectively. The effects of SACs (including silver nitrate (AgNO3) and silver nanoparticle (AgNP)), QSIs, and their binary mixtures on the bacterial resistance were investigated via setting the frequency of mutation and conjugative transfer in Escherichia coli (E. coli) as the test endpoints. The results indicated that these two endpoints exhibited hormetic dose-responses to each treatment. Furthermore, the joint resistance actions between SACs and QSIs were all judged to be antagonism. Correlation analysis suggested that the promotion of the bacterial resistance in each treatment was closely related to its toxicity. It was speculated that AgNO3 and AgNP might both release Ag+ ions to facilitate the E. coli resistance, while QSIs probably acted on LsrR and SdiA proteins to stimulate the bacterial mutation and accelerate the RP4 plasmid conjugative transfer, respectively. These findings imply that the bacteria may generate targeted stress response to the survival pressure from environmental compounds, displaying hormetic phenomenon in resistance-related test endpoints. This study provides a new insight into the resistance risk induced by SACs and QSIs, benefiting the environmental risk assessment of these compounds from the perspective of bacterial resistance.
Collapse
Affiliation(s)
- Hongyan Shen
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yingying Liu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
| | - Yinan Liu
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Zemeng Duan
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Pengpeng Wu
- Huaxin College of Hebei Geo University, Shijiazhuang 050700, China
| | - Zhifen Lin
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Key Lab of Chemical Assessment and Sustainability, Shanghai, China
| | - Haoyu Sun
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Key Lab of Chemical Assessment and Sustainability, Shanghai, China; Post-doctoral Research Station, College of Civil Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
7
|
Zhu M, Yang Y, Wang M, Li X, Han R, Chen Q, Shen D, Shentu J. A deep insight into the suppression mechanism of Sedum alfredii root exudates on Pseudomonas aeruginosa based on quorum sensing. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112240. [PMID: 33901783 DOI: 10.1016/j.ecoenv.2021.112240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/28/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Quorum sensing (QS) plays an important role in the intensive communication between plants and microbes in the rhizosphere during the phytoremediation. This study explored the influence of the root exudates of hyperaccumulator Sedum alfredii on Pseudomonas aeruginosa based on QS. The effects of the components of root exudates, genes expression and transcription regulation of QS system (especially the las system) in Pseudomonas aeruginosa wild-type strain (WT) and rhl system mutant strain (ΔrhlI) were systematically analyzed and discussed. The WT and ΔrhlI exposed to gradient root exudates (0×, 1×, 2×, 5× and 10×) showed a concentration-corrective inhibition on protease production, with the inhibition rates of 51.4-74.5% and 31.2-50.0%, respectively. Among the components of the root exudates of Sedum alfredii, only thymol had an inhibition effects to the root exudates on the activity of protease and elastase. The inhibition rates of 50 μmol/L thymol on protease and elastase in WT were 44.7% and 24.3%, respectively, which was consistent with the variation in ΔrhlI. The gene expression of lasB declined 36.0% under the 1× root exudate treatment and 73.0% under the 50 μmol/L thymol treatment. Meanwhile, there was no significant impact on N-3-oxo-dodecanoyl-L-homoserine lactone signal production and the gene expression of lasI and lasR. Therefore, thymol from Sedum alfredii root exudates could inhibit the formation of protease and elastase in Pseudomonas aeruginosa by suppressing the expression of lasB, without any significant influence on the main las system as a potential natural QS inhibitor.
Collapse
Affiliation(s)
- Min Zhu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Yusheng Yang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China
| | - Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Xiaoxiao Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China
| | - Ruifang Han
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China
| | - Qianqian Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China
| | - Dongsheng Shen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Jiali Shentu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310012, PR China.
| |
Collapse
|
8
|
Salas-Orozco MF, Niño-Martínez N, Martínez-Castañón GA, Méndez FT, Morán GMM, Bendaña-Piñeiro AE, Ruiz F, Bach H. Proteomic analysis of an Enterococcus faecalis mutant generated against the exposure to silver nanoparticles. J Appl Microbiol 2021; 132:244-255. [PMID: 34134177 DOI: 10.1111/jam.15182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/27/2021] [Accepted: 06/05/2021] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Nanoparticles (NPs) have been widely studied as an alternative to antibiotic use due to their antimicrobial properties at lower concentrations. Enterococcus faecalis is a facultative Gram-positive microorganism inhabiting the gastrointestinal tract of humans and animals. It can also be present in other environments such as the oral cavity, water, sewage, soil and food. AIMS We evaluated whether E. faecalis could develop resistance to silver NPs (AgNPs) after exposure to sublethal concentrations of the NPs. METHODS AND RESULTS Proteomic analyses revealed that different pathways were activated during the acquired resistance under sublethal concentrations, and selected genes were validated by qPCR. CONCLUSIONS The results of this study showed that E. faecalis is capable of generating resistance to AgNPs. SIGNIFICANCE AND IMPACT OF THE STUDY To avoid the generation of resistance against AgNPs, future use of these NPs should be combined with other NPs prepared with different metals to prevent the dissemination of resistant strains.
Collapse
Affiliation(s)
| | - Nereyda Niño-Martínez
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | | - Fernando Torres Méndez
- Facultad de Estomatología, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | | - Aranza Eliana Bendaña-Piñeiro
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Facundo Ruiz
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Horacio Bach
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
|