1
|
Paridar Z, Ghasemi-Fasaei R, Yasrebi J, Ronaghi A, Moosavi AA. Applicability of the sigmoid model to estimate heavy metal uptake in maize and sorghum as affected by organic acids. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3222-3238. [PMID: 38085482 DOI: 10.1007/s11356-023-31410-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024]
Abstract
Although assisted phytoremediation using chemical treatments is a suitable technique for the removal of heavy metals (HMs), the estimation of this process using simple models is also crucial. For this purpose, a greenhouse trial was designed to evaluate the effectiveness of citric, oxalic, and tartaric acid on Cd, Pb, Ni, and Zn phytoremediation by maize and sorghum and to estimate this process using sigmoid HMs uptake model. Results showed that mean values of root and shoot dry weight and metals uptake, translocation factor (TF) of Pb and Zn, and uptake efficiency (UE) of Cd in maize were higher than sorghum but the TF of Cd and the phytoextraction efficiency (PEE) and UE of Pb in sorghum were higher than maize. Citric, oxalic, and tartaric acid significantly increased the UE of Pb by 17.7%, 22.5%, and 32.5%, respectively. Tartaric acid significantly increased the mean values of shoot dry weight, shoot Cd, Pb, and Ni uptake, and PEE of Pb and Ni, but decreased TF of Zn. The R2, NRMSE, and KM values indicated the ability of sigmoid HM uptake model in estimating HMs uptake in maize and sorghum treated with organic acids. Thus, tartaric acid was more effective than citric and oxalic acids to enhance phytoremediation potential. Sigmoid HM uptake model is suitable to estimate the HMs uptake in plants treated with organic acids at different growth stages.
Collapse
Affiliation(s)
- Zeynab Paridar
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Reza Ghasemi-Fasaei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Jafar Yasrebi
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Abdolmajid Ronaghi
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Akbar Moosavi
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
2
|
Wang J, Aghajani Delavar M. Techno-economic analysis of phytoremediation: A strategic rethinking. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165949. [PMID: 37536595 DOI: 10.1016/j.scitotenv.2023.165949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Phytoremediation is a cost-effective and environmentally sound approach, which uses plants to immobilize/stabilize, extract, decay, or lessen toxicity and contaminants. Despite successful evidence of field application, such as natural attenuations, and self-purification, the main barriers remain from a "promising" to a "commercial" approach. Therefore, the ultimate goal of this paper is to examine factors that contribute to phytoremediation's underutilization and discuss the real costs of phytoremediation when the time and land values are considered. We revisit mechanisms and processes of phytoremediation. We synthesize existing information and understanding based on previous works done on phytoremediation and its applications to provide the technical assessment and perspective views in the commercial acceptance of phytoremediation. The results show that phytoremediation is the most suitable for remote regions with low land values. Since these regions allow a longer period to be restored, land vegetation covers can be established in more or less time like natural attenuation. Since the length of phytoremediation is an inherent limitation, this inherent disadvantage limits its adoption in developed business regions, such as growing urban areas. Because high land values could not be recovered in the short term, phytoremediation is not cost-effective in those regions. We examine the potential measures that can enhance the performance of phytoremediation, such as soil amendments, and agricultural practices. The results obtained through review can clarify where/what conditions phytoremediation can provide the most suitable solutions at a large scale. Finally, we identify the main barriers and knowledge gaps to establishing a vegetation cover in large-scale applications and highlight the research priorities for increased acceptance of phytoremediation.
Collapse
Affiliation(s)
- Junye Wang
- Faculty of Science and Technology, Athabasca University, 1 University Drive, Athabasca, Alberta T9S 3A3, Canada.
| | - Mojtaba Aghajani Delavar
- Faculty of Science and Technology, Athabasca University, 1 University Drive, Athabasca, Alberta T9S 3A3, Canada
| |
Collapse
|
3
|
Rostami S, Jaskulak M, Rostami M, Baghapour MA, Azhdarpoor A. Efficient Biodegradation of Polycyclic Aromatic Hydrocarbons in the Rhizosphere Using Plant Growth Regulators and Biological Agents. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2102663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Saeid Rostami
- Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marta Jaskulak
- Univ. Lille, IMT Lille Douai, Univ. Artois, Yncrea Hauts-de-France, ULR4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, Lille, France
- Department of Immunobiology and Environment Microbiology, Medical University of Gdańsk, Poland
| | - Majid Rostami
- Department of Agronomy, Faculty of Agriculture, Malayer University, Malayer, Iran
| | - Mohammad Ali Baghapour
- Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abooalfazl Azhdarpoor
- Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
- Research Center for Health Sciences, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Santos T, Sommaggio LRD, Marin-Morales MA. Phyto-genotoxicity assessment of different associations between sludges from Water and Sewage Treatment Plants, before and after the bioremediation process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40029-40040. [PMID: 35118590 DOI: 10.1007/s11356-022-18820-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Water Treatment Plants (WTP) and Sewage Treatment Plants (STP) generate residues known as sludge (WS and SS, respectively). SS and WS present some positive characteristics for reuse in agriculture. The aim of the present study was to evaluate, using the Allium cepa test, the effectiveness of the bioremediation process in the detoxification of SS and WS sludges. In this study, the phytotoxic, cytotoxic, genotoxic, and mutagenic potentials of pure sludge samples (WS and SS) were evaluated, as well as the association of these two sludges with soil (S), before and after the bioremediation process. In the T0 period (before undergoing bioremediation), the SS, SS + S, and SS + WS samples totally inhibited the germination of A. cepa, proving the high phytotoxic potential of these samples. For the T1 period (after 6 months of bioremediation), phytotoxicity was observed for the SS, SS + S, SS + WS, and SS + WS + S samples, but there was not a complete inhibition of germination and radicles growth, allowing the evaluation of the other parameters (cytogenotoxic and mutagenic potential). No cytotoxicity was observed for any sample, both in T0 and T1. As for the genotoxicity parameter, a significant result was observed for the pure WS sample in T0 and for all samples in T1, when compared to NC. The genotoxic alteration most found in meristematic cells exposed to treatments was of binucleated cells. Mutagenic potential was also observed for samples of WS and WS + S in T0. From this study, we can conclude that, after six months of bioremediation, despite the SS phytotoxicity being reduced, all samples were genotoxic to the A. cepa organism test.
Collapse
Affiliation(s)
- Tamara Santos
- Department of Biology, Institute of Biosciences, São Paulo State University (Unesp), Av. 24-A, Rio Claro, SP, 1515, 13506-900, Brazil
| | - Laís Roberta Deroldo Sommaggio
- Department of Biology, Institute of Biosciences, São Paulo State University (Unesp), Av. 24-A, Rio Claro, SP, 1515, 13506-900, Brazil
| | - Maria Aparecida Marin-Morales
- Department of Biology, Institute of Biosciences, São Paulo State University (Unesp), Av. 24-A, Rio Claro, SP, 1515, 13506-900, Brazil.
| |
Collapse
|
5
|
Frost H, Bond T, Sizmur T, Felipe-Sotelo M. A review of microplastic fibres: generation, transport, and vectors for metal(loid)s in terrestrial environments. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:504-524. [PMID: 35348562 DOI: 10.1039/d1em00541c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The laundering of synthetic fabrics has been identified as an important and diffuse source of microplastic (<5 mm) fibre contamination to wastewater systems. Home laundering can release up to 13 million fibres per kg of fabric, which end up in wastewater treatment plants. During treatment, 72-99% of microplastics are retained in the residual sewage sludge, which can contain upwards of 56 000 microplastics per kg. Sewage sludge is commonly disposed of by application to agricultural land as a soil amendment. In some European countries, application rates are up to 91%, representing an important pathway for microplastics to enter the terrestrial environment, which urgently requires quantification. Sewage sludge also often contains elevated concentrations of metals and metalloids, and some studies have quantified metal(loid) sorption onto various microplastics. The sorption of metals and metalloids is strongly influenced by the chemical properties of the sorbate, the solution chemistry, and the physicochemical properties of the microplastics themselves. Plastic-water partition coefficients for the sorption of cadmium, mercury and lead onto microplastics are up to 8, 32, and 217 mL g-1 respectively. Sorptive capacities of microplastics may increase over time, due to environmental degradation processes increasing the specific surface area and surface density of oxygen-containing functional groups. A range of metal(loid)s, including cadmium, chromium, and zinc, have been shown to readily desorb from microplastics under acidic conditions. Sorbed metal(loid)s may therefore become more bioavailable to soil organisms when the microplastics are ingested, due to the acidic gut conditions facilitating desorption. Polyester (polyethylene terephthalate) should be of particular focus for future research, as few quantitative sorption studies currently exist, it is potentially overlooked from density separation studies due to its high density, and it is by far the most widely used fibre in apparel textiles production.
Collapse
Affiliation(s)
- H Frost
- Department of Chemistry, University of Surrey, Guildford, Surrey GU2 7XH, UK.
| | - T Bond
- Department of Civil and Environmental Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | - T Sizmur
- Department of Geography and Environmental Science, University of Reading, Reading, RG6 6DW, UK
| | - M Felipe-Sotelo
- Department of Chemistry, University of Surrey, Guildford, Surrey GU2 7XH, UK.
| |
Collapse
|
6
|
Reyes-Calderón A, Pérez-Uribe S, Ramos-Delgado AG, Ramalingam S, Oza G, Parra-Saldívar R, Ramirez-Mendoza RA, Iqbal HMN, Sharma A. Analytical and regulatory considerations to mitigate highly hazardous toxins from environmental matrices. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127031. [PMID: 34479083 DOI: 10.1016/j.jhazmat.2021.127031] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/09/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023]
Abstract
The ubiquitous occurrence, toxicological influence, and bioaccumulation of toxic entities, e.g., pesticides and toxic elements in the environment, biota, and humans, directly or indirectly, are posing severe social, ecological, and human health concerns. Much attention has been given to the rising bioaccumulation of toxins and their adverse impact on various environmental matrices. For example, the inappropriate and exacerbated use of xenobiotics and related hazardous substances have caused the deterioration of the agricultural environment, e.g., fertile soils where plants are grown. Moreover, the harmful toxins have negatively impacted human health through the trophic chains. However, the analytical and regulatory considerations to effectively monitor and mitigate any or many pesticides and toxic elements from environmental matrices are still lacking in the existing literature. For decades, the scientific community has overseen the consequences caused by pollutants, however, the improvement of analytical detection methods and regulatory considerations are not yet fully covered. This review covers the notable literature gap by stressing the development and deployment of robust analytical and regulatory considerations for an efficient abatement of hazardous substances. Following detailed information on occurrence, toxicological influence, and bioaccumulation of pesticides and toxic elements, the most relevant analytical detection tools and regulatory measures are given herein, with suitable examples, to mitigate or reduce the damage caused by these pollutants.
Collapse
Affiliation(s)
- Almendra Reyes-Calderón
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Campus Queretaro, Av. Epigmenio González 500, Fracc. SanPablo, CP 76130 Queretaro, Mexico
| | - Samantha Pérez-Uribe
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Campus Queretaro, Av. Epigmenio González 500, Fracc. SanPablo, CP 76130 Queretaro, Mexico
| | - Ana Gabriela Ramos-Delgado
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Campus Queretaro, Av. Epigmenio González 500, Fracc. SanPablo, CP 76130 Queretaro, Mexico
| | - Sathishkumar Ramalingam
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641046, India
| | - Goldie Oza
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica (CIDETEQ), Parque Tecnológico Querétaro s/n, Sanfandila. Pedro Escobedo, Querétaro 76703, Mexico
| | | | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Campus Queretaro, Av. Epigmenio González 500, Fracc. SanPablo, CP 76130 Queretaro, Mexico.
| |
Collapse
|
7
|
Palm ER, Guidi Nissim W, Adamcová D, Podlasek A, Jakimiuk A, Vaverková MD. Sinapis alba L. and Triticum aestivum L. as biotest model species for evaluating municipal solid waste leachate toxicity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114012. [PMID: 34731708 DOI: 10.1016/j.jenvman.2021.114012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/11/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
The volume of municipal solid waste (MSW) inputs is rapidly increasing with a growing human population, and its composition is changing due an increased diversity of materials being deposited. There is an associated increase in leachate, a common toxic byproduct of MSW facilities that must be collected and treated prior to its release into the environment. There is growing interest in plant-based methods that are economical and efficient for leachate toxicity assessment such as biological tests that use indicator species. In the present study, the tolerance thresholds of two herbaceous species, Sinapis alba L. (mustard) and Triticum aestivum L. (wheat) to increasing shares of leachate sourced from an MSW facility in the Czech Republic were assessed through a variety of physiological parameters. Soil-based biotests showed a stimulation in the shoot biomass, leaf expansion, primary root elongation and carbon assimilation rate of the selected plant species to leachate concentrations between 20 and 50 %. Higher leachate concentrations led to reductions in most physiological parameters, especially the elongation of seedling roots when growth solutions with >50 % leachate were applied. While S. alba was more sensitive to increasing proportions of leachate in terms of growth parameters of the shoot tissues, photosystem II efficiency and chlorophyll pigment concentrations were more responsive in T. aestivum, indicating species-dependent differences. The present biotests provide further support for the use of both Sinapis alba L and Triticum aestivum L. as indicator species of phytotoxicity.
Collapse
Affiliation(s)
- Emily Rose Palm
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Viale delle idee, 30, 50019, Sesto Fiorentino, FI, Italy
| | - Werther Guidi Nissim
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Viale delle idee, 30, 50019, Sesto Fiorentino, FI, Italy; PNAT s.r.l, via delle Cascine, 33/35, 50144, Firenze, Italy.
| | - Dana Adamcová
- Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic
| | - Anna Podlasek
- Institute of Civil Engineering, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02 776, Warsaw, Poland
| | - Aleksandra Jakimiuk
- Institute of Civil Engineering, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02 776, Warsaw, Poland
| | - Magdalena Daria Vaverková
- Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic; Institute of Civil Engineering, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02 776, Warsaw, Poland
| |
Collapse
|
8
|
Cruz Y, Villar S, Gutiérrez K, Montoya-Ruiz C, Gallego JL, Delgado MDP, Saldarriaga JF. Gene expression and morphological responses of Lolium perenne L. exposed to cadmium (Cd 2+) and mercury (Hg 2+). Sci Rep 2021; 11:11257. [PMID: 34045631 PMCID: PMC8160004 DOI: 10.1038/s41598-021-90826-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 05/17/2021] [Indexed: 11/27/2022] Open
Abstract
Soil contamination with heavy metals is a major problem worldwide, due to the increasing impact mainly caused by anthropogenic activities. This research evaluated the phytoremediation capacity of, Lolium perenne for heavy metals such as cadmium (Cd2+) and mercury (Hg2+), and the effects of these metals on morphology, biomass production, and the changes on gene expression. Seeds of L. perenne were exposed to six concentrations of Cd2+ and Hg2+ in the range of 0 to 25 mg L−1, and two mixtures of Cd2+–Hg2. The Non-Observed Effect Level (NOEL) was established with dose response curves and the expression of specific genes was evaluated applying a commercially available quantitative reverse transcription (RT-qPCR) assay. There was no significant effect when exposing the seeds to Hg2+, for Cd2+ the maximum concentration was established in 0.1 mg L−1, and for the two concentrations of mixtures, there was a negative effect. An increase of expression of genes that regulate antioxidant activity and stress was found when the plant was exposed to heavy metals. Given the high tolerance to metals analyzed that was reflected both, the development of the plant and in its molecular response, these results highlight that L. perenne is a plant with phytoremediator potential.
Collapse
Affiliation(s)
- Yuby Cruz
- Department Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, Bogotá, Colombia
| | - Sharik Villar
- Department Biological Sciences, Universidad de los Andes, Carrera 1 #18A-10, Bogotá, Colombia
| | - Karen Gutiérrez
- Department Biological Sciences, Universidad de los Andes, Carrera 1 #18A-10, Bogotá, Colombia
| | - Carolina Montoya-Ruiz
- Department Biological Sciences, Universidad de los Andes, Carrera 1 #18A-10, Bogotá, Colombia.,Facultad de Ciencias, Universidad Nacional de Colombia, Sede Medellín Calle 59A #63-20, Medellín, Colombia, 050034
| | - Jorge L Gallego
- Environmental Research Group (GIA), Department Engineering, Fundación Universitaria Tecnológico Comfenalco, Carrera 44 D # 30A-91, 130015, Cartagena, Colombia
| | - Maria Del Pilar Delgado
- Department Biological Sciences, Universidad de los Andes, Carrera 1 #18A-10, Bogotá, Colombia
| | - Juan F Saldarriaga
- Department Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, Bogotá, Colombia.
| |
Collapse
|
9
|
Sharma P, Pandey AK, Udayan A, Kumar S. Role of microbial community and metal-binding proteins in phytoremediation of heavy metals from industrial wastewater. BIORESOURCE TECHNOLOGY 2021; 326:124750. [PMID: 33517048 DOI: 10.1016/j.biortech.2021.124750] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 05/22/2023]
Abstract
This review illustrated the role of metal-binding proteins (MBPs) and microbial interaction in assisting the phytoremediation of industrial wastewater polluted with heavy metals. MBPs are used to increase the accumulation and tolerance of metals by microorganisms via binding protein synthesis. Microbes have various protection mechanisms to heavy metals stress like compartmentalization, exclusion, complexity rendering, and the synthesis of binding proteins. MBPs include phytochelatins, metallothioneins, Cd-binding peptides (CdBPs), cysteines (gcgcpcgcg) (CP), and histidines (ghhphg)2 (HP). In comparison with other physico-chemical methods, phytoremediation is an eco-friendly and safe method for the society. The present review concentrated on the efficiency of phytoremediation strategies for the use of MBPs and microbe-assisted approaches.
Collapse
Affiliation(s)
- Pooja Sharma
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India
| | - Ashutosh Kumar Pandey
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India
| | - Aswathy Udayan
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India
| | - Sunil Kumar
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India.
| |
Collapse
|
10
|
Galati S, Gullì M, Giannelli G, Furini A, DalCorso G, Fragni R, Buschini A, Visioli G. Heavy metals modulate DNA compaction and methylation at CpG sites in the metal hyperaccumulator Arabidopsis halleri. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:133-142. [PMID: 33389774 DOI: 10.1002/em.22421] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/14/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Excess heavy metals affect plant physiology by inducing stress symptoms, however several species have evolved the ability to hyperaccumulate metals in above-ground tissues without phytotoxic effects. In this study we assume that at subcellular level, different strategies were adopted by hyperaccumulator versus the non-accumulator plant species to face the excess of heavy metals. At this purpose the comet assay was used to investigate the nucleoid structure modifications occurring in response to Zn and Cd treatments in the I16 and PL22 populations of the hyperaccumulator Arabidopsis halleri versus the nonaccumulator species Arabidopsis thaliana. Methy-sens comet assay and RT-qPCR were also performed to associate metal induced variations in nucleoids with possible epigenetic modifications. The comet assay showed that Zn induced a mild but non significant reduction in the tail moment in A. thaliana and in both I16 and PL22. Cd treatment induced an increase in DNA migration in nuclei of A. thaliana, whereas no differences in DNA migration was observed for I16, and a significant increase in nucleoid condensation was found in PL22 Cd treated samples. This last population showed higher CpG DNA methylation upon Cd treatment than in control conditions, and an up-regulation of genes involved in symmetric methylation and histone deacetylation. Our data support the hypothesis of a possible role of epigenetic modifications in the hyperaccumulation trait to cope with the high Cd shoot concentrations. In addition, the differences observed between PL22 and I16 could reinforce previous suggestions of divergent strategies for metals detoxification developing in the two metallicolous populations.
Collapse
Affiliation(s)
- Serena Galati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Mariolina Gullì
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gianluigi Giannelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Antonella Furini
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Rosaria Fragni
- SSICA, Experimental Station for the Food Preserving Industry, Parma, Italy
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giovanna Visioli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
11
|
Evaluation of newly reclaimed areas in Saudi Arabia for cultivation of the leguminous crop Phaseolus vulgaris under sewage sludge amendment. J Verbrauch Lebensm 2021. [DOI: 10.1007/s00003-020-01311-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Shikha D, Singh PK. In situ phytoremediation of heavy metal-contaminated soil and groundwater: a green inventive approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4104-4124. [PMID: 33210252 DOI: 10.1007/s11356-020-11600-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/09/2020] [Indexed: 05/27/2023]
Abstract
The heavy metal contamination of soil and groundwater is a serious threat to environment worldwide. The survival of human being primarily relies upon soil and groundwater sources. Therefore, the remediation of heavy metal-contaminated soil and groundwater is a matter of utmost concern. Heavy metals are non-degradable and persist in the environment and subsequently contaminate the food chain. Heavy metal pollution puts a serious impact on human health and it adversely affects our physical body. Although, numerous in situ conventional technologies have been utilized for the treatment purpose, but most of the techniques have some limitations such as high cost, deterioration of soil properties, disturbances to soil native flora and fauna and intensive labour. Despite that, in situ phytoremediation is a cost-effective, eco-friendly, solar-driven and novel approach with significant public acceptance. The past research reflects rare discussion addressing both (heavy metal in situ phytoremediation of soil and groundwater) in one platform. The present review article covers both the concepts of in situ phytoremediation of soil and groundwater with major emphasis on health risks of heavy metals, enhanced integrated approaches of in situ phytoremediation, mechanisms of in situ phytoremediation along with effective hyperaccumulator plants for heavy metals remediation, challenges and future prospects.
Collapse
Affiliation(s)
- Deep Shikha
- Department of Environmental Science & Engineering, Indian Institute of Technology (IIT; Indian School of Mines), Dhanbad, Jharkhand, 826004, India.
| | - Prasoon Kumar Singh
- Department of Environmental Science & Engineering, Indian Institute of Technology (IIT; Indian School of Mines), Dhanbad, Jharkhand, 826004, India
| |
Collapse
|
13
|
Razmi B, Ghasemi-Fasaei R, Ronaghi A, Mostowfizadeh-Ghalamfarsa R. Investigation of factors affecting phytoremediation of multi-elements polluted calcareous soil using Taguchi optimization. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111315. [PMID: 32947213 DOI: 10.1016/j.ecoenv.2020.111315] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Growing environmental concern regarding multi elements-contaminated soils reveals the necessity of paying more attention to environmentally friendly remediation techniques such as phytoremediation. A large number of factors influences phytoremediation of potentially toxic elements (PTEs) and investigation on a variety of these factors need appropriate statistical approaches such as "Taguchi optimization" which effectively decreases time and cost of experiments. In the present study, based on the Taguchi optimization method, the effects of several biological (plant type and mycorrhizal fungi (AMF)) and chemical (chelating agents, surfactants and organic acids) factors, on the phytoremediation of soils contaminated with zinc (Zn), lead (Pb), cadmium (Cd) and nickel (Ni) were investigated. The goal was to find out the most effective factors as well as the best level for each factor. The values of dry weights in roots and aerial parts of the studied plants were in orders of maize > sorghum > sunflower and sorghum > maize > sunflower, respectively. AMF was the main factor in increasing dry weight of shoots. Inoculation of AMF caused increases in root and shoot uptake of some PTEs. RESULTS: showed that phytoremediation of PTEs is element-dependent; as Zn showed the highest translocation factor (TF) and bioconcentration factor (BCF) values, while Ni showed the lowest ones and the intermediate values belonged to Pb and Cd. These results show the diverse distribution of elements in plant parts, as Zn and Ni were mostly accumulated in shoot and root, respectively. Although different factors caused impacts on phytoremediation criteria, the role of plant type in the phytoremediation of PTEs was at the first rank. Mean TF of PTEs in sunflower was 6.3 times that of maize. Sunflower showed high TF value for the four elements and translocated most of the PTEs from root to the aerial parts demonstrating phytoextraction as the main mechanism in this plant. Maize and sorghum, however, showed low TF and accumulated most of PTEs in their roots revealing phytostabilization as the main mechanism. In general, it can be concluded that plant type was the most influential factor in the phytoremediation of PTEs followed by EDTA and AMF. Taguchi optimization revealed the appropriateness and significance of different chemical and biological treatments on phytoremediation criteria of different elements.
Collapse
Affiliation(s)
- B Razmi
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - R Ghasemi-Fasaei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - A Ronaghi
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
14
|
Jaskulak M, Grobelak A, Vandenbulcke F. Effects of sewage sludge supplementation on heavy metal accumulation and the expression of ABC transporters in Sinapis alba L. during assisted phytoremediation of contaminated sites. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110606. [PMID: 32304921 DOI: 10.1016/j.ecoenv.2020.110606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
ATP binding cassette (ABC) transporters, types C, G, and B were monitored via qPCR in order to investigate the influence of heavy metal (HM) contamination of post-industrial and post-agricultural soils and the effects of its supplementation with sewage sludge, on Sinapis alba plants. Five house-keeping genes were selected and validated to ensure the best reference points. The relative expression of ABC types C and G genes was profoundly affected by experimental conditions and included their upregulation after plants exposure to heavy metals and downregulation after supplementation with sewage sludge. However, ABC type C was more responsive then type G. The experimental conditions altered the expression of ABC type C gene faster than ABC type G and thus, the expression of ABC type C can therefore potentially be used as a bioindicator during assisted phytoremediation of degraded sites. In clean soil, supplementation with sewage sludge with a slight content of heavy metals still caused an upregulation in the expression of ABC types C and G, which showed that proper toxicity assessments are necessary to ensure safe application of sewage sludge into soils. Results showed that the analysed genes take a significant part in plants metal detoxification and that their expression is regulated at transcriptional level after exposure to soil contaminated with heavy metals by both, industrial activities and by sewage sludge supplementation. Thus, their expression can potentially be used as an early-warning biomarker when soil supplementation with sewage sludge is incorporated into the soil-management process.
Collapse
Affiliation(s)
- Marta Jaskulak
- Institute of Environmental Engineering, Faculty of Infrastructure and Environment, Czestochowa University of Technology, Czestochowa, Poland; University of Lille, Laboratory of Civil Engineering and Environment (LGCgE), Environmental Axis, F-59650, Villeneuve d'Ascq, France.
| | - Anna Grobelak
- Institute of Environmental Engineering, Faculty of Infrastructure and Environment, Czestochowa University of Technology, Czestochowa, Poland
| | - Franck Vandenbulcke
- University of Lille, Laboratory of Civil Engineering and Environment (LGCgE), Environmental Axis, F-59650, Villeneuve d'Ascq, France
| |
Collapse
|
15
|
Jaskulak M, Grobelak A, Vandenbulcke F. Modelling assisted phytoremediation of soils contaminated with heavy metals - Main opportunities, limitations, decision making and future prospects. CHEMOSPHERE 2020; 249:126196. [PMID: 32088456 DOI: 10.1016/j.chemosphere.2020.126196] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/27/2020] [Accepted: 02/11/2020] [Indexed: 05/27/2023]
Abstract
The heavy metals (HMs) soils contamination is a growing concern since HMs are not biodegradable and can accumulate in all living organisms causing a threat to plants and animals, including humans. Phytoremediation is a cost-efficient technology that uses plants to remove, transform or detoxify contaminants. In recent years, phytoremediation is entering the stage of large-scale modelling via various mathematical models. Such models can be useful tools to further our understanding and predicting of the processes that influence the efficiency of phytoremediation and to precisely plan such actions on a large-scale. When dealing with extremely complicated and challenging variables like the interactions between the climate, soil and plants, modelling before starting an operation can significantly reduce the time and cost of such process by granting us an accurate prediction of possible outcomes. Research on the applicability of different modelling approaches is ongoing and presented work compares and discusses available models in order to point out their specific strengths and weaknesses in given scenarios. The main aim of this paper is to critically evaluate the main advantages and limitations of available models for large-scale phytoremediation including, among others, the Decision Support System (DSS), Response Surface Methodology (RSM), BALANS, PLANTIX and various regression models. Study compares their applicability and highlight existing gaps in current knowledge with a special reference to improving the efficiency of large-scale phytoremediation of sites contaminated with heavy-metals. The presented work can serve as a useful tool when choosing the most suitable model for the phytoremediation of contaminated sites.
Collapse
Affiliation(s)
- Marta Jaskulak
- Institute of Environmental Engineering, Faculty of Infrastructure and Environment, Czestochowa University of Technology, Czestochowa, Poland; University of Lille, Laboratory of Civil Engineering and Environment (LGCgE), Environmental Axis, F-59650, Villeneuve d'Ascq, France.
| | - Anna Grobelak
- Institute of Environmental Engineering, Faculty of Infrastructure and Environment, Czestochowa University of Technology, Czestochowa, Poland
| | - Franck Vandenbulcke
- University of Lille, Laboratory of Civil Engineering and Environment (LGCgE), Environmental Axis, F-59650, Villeneuve d'Ascq, France
| |
Collapse
|
16
|
Jaskulak M, Grobelak A, Vandenbulcke F. Modeling and optimizing the removal of cadmium by Sinapis alba L. from contaminated soil via Response Surface Methodology and Artificial Neural Networks during assisted phytoremediation with sewage sludge. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:1321-1330. [PMID: 32466658 DOI: 10.1080/15226514.2020.1768513] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The study was aimed to model and optimize the removal of cadmium from contaminated post-industrial soil via Sinapis alba L. by comparing two modeling approaches: Response Surface Methodology (RSM) and Artificial Neural Networks (ANN). The experimental design was done using the Box-Behnken Design method. In the RSM model, the quadratic model was shown to predict the closest results in comparison to our experimental data. For ANN approach, a two-layer Feed-Forward Back-Propagation Neural Network model was designed. The results showed that sewage sludge supplementation increased the efficiency of the Sinapis alba plant in removing Cd from the soil. After 28 days of exposure, the removal rate varied from 10.96% without any supplementation to 65.9% after supplementation with the highest possible (law allowed) dose of sewage sludge. The comparison proved that the prediction capability of the ANN model was much higher than that of the RSM model (adjusted R-square: 0.98, standard error of the Cd prediction removal: 0.85 ± 0.02). Thus, the ANN model could be used for the prediction of heavy metal removal during assisted phytoremediation with sewage sludge. Moreover, such approach could also be used to determinate the dose of sewage sludge that will ensure highest process efficiency.
Collapse
Affiliation(s)
- Marta Jaskulak
- Faculty of Infrastructure and Environment, Institute of Environmental Engineering, Czestochowa University of Technology, Czestochowa, Poland
- Laboratory of Civil Engineering and Environment (LGCgE), Environmental Axis, University of Lille, Lille, France
| | - Anna Grobelak
- Faculty of Infrastructure and Environment, Institute of Environmental Engineering, Czestochowa University of Technology, Czestochowa, Poland
| | - Franck Vandenbulcke
- Laboratory of Civil Engineering and Environment (LGCgE), Environmental Axis, University of Lille, Lille, France
| |
Collapse
|