1
|
Loperena-Barber M, Elizalde-Bielsa A, Salvador-Bescós M, Ruiz-Rodríguez P, Pellegrini JM, Renau-Mínguez C, Lancaster R, Zúñiga-Ripa A, Iriarte M, Bengoechea JA, Coscollá M, Gorvel JP, Moriyón I, Conde-Álvarez R. "Phylogenomic insights into brucellaceae: The Pseudochrobactrum algeriensis case". INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105625. [PMID: 38906517 DOI: 10.1016/j.meegid.2024.105625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
The genus Pseudochrobactrum encompasses free-living bacteria phylogenetically close to Ochrobactrum opportunistic pathogens and to Brucella, facultative intracellular parasites causing brucellosis, a worldwide-extended and grave zoonosis. Recently, Pseudochrobactrum strains were isolated from Brucella natural hosts on Brucella selective media, potentially causing diagnostic confusions. Strikingly, P. algeriensis was isolated from cattle lymph nodes, organs that are inimical to bacteria. Here, we analyse P. algeriensis potential virulence factors in comparison with Ochrobactrum and Brucella. Consistent with genomic analyses, Western-Blot analyses confirmed that P. algeriensis lacks the ability to synthesize the N-formylperosamine O-polysaccharide characteristic of the lipopolysaccharide (LPS) of smooth Brucella core species. However, unlike other Pseudochrobactrum but similar to some early diverging brucellae, P. algeriensis carries genes potentially synthetizing a rhamnose-based O-polysaccharide LPS. Lipid A analysis by MALDI-TOF demonstrated that P. algeriensis LPS bears a lipid A with a reduced pathogen-associated molecular pattern, a trait shared with Ochrobactrum and Brucella that is essential to generate a highly stable outer membrane and to delay immune activation. Also, although not able to multiply intracellularly in macrophages, the analysis of P. algeriensis cell lipid envelope revealed the presence of large amounts of cationic aminolipids, which may account for the extremely high resistance of P. algeriensis to bactericidal peptides and could favor colonization of mucosae and transient survival in Brucella hosts. However, two traits critical in Brucella pathogenicity are either significantly different (T4SS [VirB]) or absent (erythritol catabolic pathway) in P. algeriensis. This work shows that, while diverging in other characteristics, lipidic envelope features relevant in Brucella pathogenicity are conserved in Brucellaceae. The constant presence of these features strongly suggests that reinforcement of the envelope integrity as an adaptive advantage in soil was maintained in Brucella because of the similarity of some environmental challenges, such as the action of cationic peptide antibiotics and host defense peptides. This information adds knowledge about the evolution of Brucellaceae, and also underlines the taxonomical differences of the three genera compared.
Collapse
Affiliation(s)
- Maite Loperena-Barber
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Aitor Elizalde-Bielsa
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Miriam Salvador-Bescós
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Paula Ruiz-Rodríguez
- Institute for Integrative Systems Biology, Universidad de Valencia-CSIC, Valencia, Spain
| | | | - Chantal Renau-Mínguez
- Institute for Integrative Systems Biology, Universidad de Valencia-CSIC, Valencia, Spain
| | - Rebecca Lancaster
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Amaia Zúñiga-Ripa
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Maite Iriarte
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Jose A Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Mireia Coscollá
- Institute for Integrative Systems Biology, Universidad de Valencia-CSIC, Valencia, Spain
| | - Jean-Pierre Gorvel
- Centre d'Immunologie de Marseille-Luminy, CNRS, INSERM, Aix-Marseille University, Marseille, France
| | - Ignacio Moriyón
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Raquel Conde-Álvarez
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
2
|
Mishra S, Dubey P, Naseem M, Rishi S, Patel A, Srivastava PK. A kinetic modelling approach to explore mechanism of Cr(VI) detoxification by a novel strain Pseudochrobactrum saccharolyticum NBRI-CRB 13 using response surface methodology. World J Microbiol Biotechnol 2024; 40:288. [PMID: 39101971 DOI: 10.1007/s11274-024-04099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
A novel Pseudochrobactrum saccharolyticum strain NBRI-CRB 13, isolated from tannery sludge, was studied to grow up to 500 mgL-1 of Cr(VI) and showed Cr(VI) detoxification by reducing > 90% of Cr(VI) at different concentrations 25, 50 and 100 mgL-1. Kinetic studies showed that first-order models were fitted (R2 = 0.998) to the time-dependent Cr(VI) reduction with degradation rate constant (k) (1.03-0.429 h-1). Cr(VI) detoxification was primarily related to the extracellular fraction of microbial cells, which showed a maximum extracellular reductase enzyme activity led to 94.6% reduction of Cr(VI). Moreover, the strain showed maximum extracellular polymeric substances (EPS) production at 100 mgL-1 Cr(VI), which is presumably the reason for Cr(VI) removal as EPS serves as the metal binding site for Cr(VI) ions. Further, an optimization study using Box-Behnken design was conducted considering parameters viz., pH, temperature, and initial concentration of Cr(VI). The maximum percent reduction of Cr(VI) was obtained at pH 6.5, temperature 30 °C with 62.5 mgL-1Cr(VI) concentration. Further, the Cr(VI) reduction and adsorption ability of strain P. saccharolyticum NBRI-CRB13 were confirmed by SEM-EDS, FTIR, and XRD analyses. FTIR analysis confirmed the presence of functional groups (-OH, -COOH, -PO4) on bacterial cell walls, which were more likely to interact with positively charged chromium ions. The study elucidated the reduction of Cr(VI) by the novel bacterium within 24 h using the response surface methodology approach and advocated its application in real-time situations.
Collapse
Affiliation(s)
- Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, India
| | - Priya Dubey
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, India
- Department of Biosciences, Integral University, Lucknow, India
| | - Mariya Naseem
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, India
| | - Saloni Rishi
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, India
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| | - Anju Patel
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, India
| | - Pankaj Kumar Srivastava
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, India.
| |
Collapse
|
3
|
Khater DZ, Amin RS, Fetohi AE, Mahmoud M, El-Khatib KM. Insights on hexavalent chromium(VI) remediation strategies in abiotic and biotic dual chamber microbial fuel cells: electrochemical, physical, and metagenomics characterizations. Sci Rep 2023; 13:20184. [PMID: 37978236 PMCID: PMC10656525 DOI: 10.1038/s41598-023-47450-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
Hexavalent chromium [Cr(VI)] is one of the most carcinogenic and mutagenic toxins, and is commonly released into the environemt from different industries, including leather tanning, pulp and paper manufacturing, and metal finishing. This study aimed to investigate the performance of dual chamber microbial fuel cells (DMFCs) equipped with a biocathode as alternative promising remediation approaches for the biological reduction of hexavalent chromium [Cr(VI)] with instantaneous power generation. A succession batch under preliminary diverse concentrations of Cr(VI) (from 5 to 60 mg L-1) was conducted to investigate the reduction mechanism of DMFCs. Compared to abiotic-cathode DMFC, biotic-cathode DMFC exhibited a much higher power density, Cr(VI) reduction, and coulombic efficiency over a wide range of Cr(VI) concentrations (i.e., 5-60 mg L-1). Furthermore, the X-ray photoelectron spectroscopy (XPS) revealed that the chemical functional groups on the surface of biotic cathode DMFC were mainly trivalent chromium (Cr(III)). Additionally, high throughput sequencing showed that the predominant anodic bacterial phyla were Firmicutes, Proteobacteria, and Deinococcota with the dominance of Clostridiumsensu strict 1, Enterobacter, Pseudomonas, Clostridiumsensu strict 11 and Lysinibacillus in the cathodic microbial community. Collectively, our results showed that the Cr(VI) removal occurred through two different mechanisms: biosorption and bioelectrochemical reduction. These findings confirmed that the DMFC could be used as a bioremediation approach for the removal of Cr(VI) commonly found in different industrial wastewater, such as tannery effluents. with simultaneous bioenergy production.
Collapse
Affiliation(s)
- Dena Z Khater
- Chemical Engineering and Pilot Plant Department, Engineering Research and Renewable Energy Institute, National Research Centre, 33 El-Buhouth St., Dokki, Cairo, 12311, Egypt
| | - R S Amin
- Chemical Engineering and Pilot Plant Department, Engineering Research and Renewable Energy Institute, National Research Centre, 33 El-Buhouth St., Dokki, Cairo, 12311, Egypt
| | - Amani E Fetohi
- Chemical Engineering and Pilot Plant Department, Engineering Research and Renewable Energy Institute, National Research Centre, 33 El-Buhouth St., Dokki, Cairo, 12311, Egypt
| | - Mohamed Mahmoud
- Water Pollution Research Department, National Research Centre, 33 El-Buhouth St., Dokki, Cairo, 12311, Egypt
- Material and Manufacturing Engineering Department, Faculty of Engineering, Galala University, Galala City, Suez, 43511, Egypt
| | - K M El-Khatib
- Chemical Engineering and Pilot Plant Department, Engineering Research and Renewable Energy Institute, National Research Centre, 33 El-Buhouth St., Dokki, Cairo, 12311, Egypt.
| |
Collapse
|
4
|
Wu Q, Li Q, Zhang Y, Wan R, Peng S. Cr(VI) reduction by Agrobacterium sp. Cr-1 and Lysinibacillus sp. Cr-2, novel Cr(VI)-reducing strains isolated from chromium plant soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109724-109737. [PMID: 37776430 DOI: 10.1007/s11356-023-30181-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023]
Abstract
The bioremediation of Cr(VI)-contaminated soil is a promising strategy; however, the performance of Cr(VI)-reducing bacteria is limited by the toxicity of Cr(VI). In this study, two novel Cr(VI)-reducing bacteria were isolated from a Cr salt plant and identified as Agrobacterium sp. and Lysinibacillus sp. The Cr(VI) reduction conditions of the two strains were optimized. At a Cr(VI) concentration of 500 mg/L, Agrobacterium sp. Cr-1 reduced Cr(VI) with a removal rate of 96.91%, while that for Lysinibacillus sp. Cr-2 was 92.82%. First-order reaction kinetic equations simulated the positive relationship between time and Cr(VI) concentration during Cr(VI) reduction in these two strains. Agrobacterium sp. Cr-1 was further studied, and the effects of different cell components on Cr(VI) reduction were detected. The extracellular extracts of Agrobacterium sp. Cr-1 played a major role in Cr(VI) reduction, followed by intracellular extracts and cell membranes. The scanning electron microscope-energy dispersive spectrometer (SEM-EDS) images show that the precipitation was Cr. The high Cr(VI) reducing ability of Agrobacterium sp. Cr-1 suggests that this strain is promising for the remediation of Cr(VI)-contaminated sites.
Collapse
Affiliation(s)
- Qing Wu
- School of Environmental Science and Engineering, Tianjin University, NO. 135 Yaguan Road, Tianjin, 300350, Jinnan District, China.
| | - Qiannan Li
- School of Environmental Science and Engineering, Tianjin University, NO. 135 Yaguan Road, Tianjin, 300350, Jinnan District, China
| | - Ying Zhang
- School of Environmental Science and Engineering, Tianjin University, NO. 135 Yaguan Road, Tianjin, 300350, Jinnan District, China
| | - Ruihan Wan
- School of Environmental Science and Engineering, Tianjin University, NO. 135 Yaguan Road, Tianjin, 300350, Jinnan District, China
| | - Sen Peng
- School of Environmental Science and Engineering, Tianjin University, NO. 135 Yaguan Road, Tianjin, 300350, Jinnan District, China
| |
Collapse
|
5
|
Li A, Wang Y, Hao J, Wang L, Quan L, Duan K, Fakhar-E-Alam Kulyar M, Ullah K, Zhang J, Wu Y, Li K. Long-term hexavalent chromium exposure disturbs the gut microbial homeostasis of chickens. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113532. [PMID: 35472558 DOI: 10.1016/j.ecoenv.2022.113532] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Industrial production, ore smelting and sewage disposal plant can discharge large amounts of heavy metals every year, which may contaminate soil, water and air, posing a great threat to ecological environment and animal production. Hexavalent chromium [Cr (VI)], a recognized metallic contaminant, has been shown to impair kidney, liver and gastrointestinal tract of many species, but little is known about the gut microbial characteristics of chickens exposed to Cr (VI). Herein, this study characterized the gut microbial alternations of chickens exposed to Cr (VI). Results indicated that the gut microbial alpha-diversity in chickens exposed to Cr (VI) decreased significantly, accompanied by a distinct shifts in taxonomic composition. Microbial taxonomic analysis demonstrated that the preponderant phyla (Firmicutes, Bacteroidetes, Proteobacteria and Epsilonbacteraeota) were the same in both groups, but different in types and relative abundances of dominant genera. Moreover, some bacterial taxa including 2 phyla and 47 genera significantly decreased, whereas 3 phyla and 17 genera significantly increased during Cr (VI) exposure. Among decreased taxa, 9 genera (Coprobacter, Ruminococcus_1, Faecalicoccus, Eubacterium_nodatum_group, Parasutterella, Slackia, Barnesiella, Family_XIII_UCG-001 and Collinsella) even cannot be detected. In conclusion, this study revealed that Cr (VI) exposure dramatically decrased the gut microbial diversity and altered microbial composition of chickens. Additionally, this study also provided a theoretical basis for relieving Cr (VI) poisoning from the perspective of gut microbiota.
Collapse
Affiliation(s)
- Aoyun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingli Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiayuan Hao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lei Wang
- Animal husbandry station of Bijie City, Bijie 551700, China
| | - Lingtong Quan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kun Duan
- China Tobacco Henan Industrial Co. Ltd, Zhengzhou 450000, PR China
| | | | - Kalim Ullah
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Jiabin Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi Wu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
6
|
An Q, Zhang M, Guo D, Wang G, Xu H, Fan C, Li J, Zhang W, Li Y, Chen X, You W, Zhao R. Cr(VI) Removal by Recombinant Escherichia coli Harboring the Main Functional Genes of Sporosarcina saromensis M52. Front Microbiol 2022; 13:820657. [PMID: 35308358 PMCID: PMC8927625 DOI: 10.3389/fmicb.2022.820657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/14/2022] [Indexed: 12/02/2022] Open
Abstract
Hexavalent chromium [Cr(VI)], a recognized heavy metal pollutant, has attracted much attention because of its negative impact on the ecological environment and human health. A chromium-resistant strain, Sporosarcina saromensis M52, was discovered, and the functional genes orf2987, orf3015, orf0415, and orf3237 were identified in the strain by genomics. With the advancement of DNA recombination and gene-splicing technology, genetic engineering technology was used to produce recombinant strains 2987, 3015, 0415, and 3237. The study revealed Cr(VI) tolerance in the order of M52 ≈ 2987 > 3015 ≈ 0415 > 3237 and reduction abilities in the order of M52 ≈ 2987 > 3015 > 0415 ≈ 3237. SEM-EDS, XRD, FT-IR and XPS were utilized to examine the surface structure of the recombinant strains and analyze the surface components and main functional groups. A comprehensive review of the recombinant strains’ capacity to tolerate and reduce Cr(VI) revealed that orf2987 and orf0415 were the main functional genes in Sporosarcina saromensis M52, which may play a key role in removing Cr(VI) and protecting the strain, respectively. The optimum pH for recombinant strains 2987 and 0415 was 7.5–8.5, and the optimum temperature was 37°C. Cu2+ had the greatest promotional effect when Cr(VI) was removed by them, while SDS had an inhibitory effect. This research provided the foundation for further study into the mechanism of Cr(VI) reduction in Sporosarcina saromensis M52, as well as a theoretical basis for the development of effective engineered strains to repair Cr(VI) contamination.
Collapse
Affiliation(s)
- Qiuying An
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Min Zhang
- Huzhou Center for Disease Prevention and Control, Huzhou, China
| | - Dongbei Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Guangshun Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Hao Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Chun Fan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Jiayao Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Wei Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yi Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Xiaoxuan Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Wanting You
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Ran Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
7
|
Li S, Liu Z, Süring C, Chen L, Müller S, Zeng P. The Impact of the Antibiotic Fosfomycin on Wastewater Communities Measured by Flow Cytometry. Front Microbiol 2022; 12:737831. [PMID: 35310391 PMCID: PMC8928225 DOI: 10.3389/fmicb.2021.737831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/16/2021] [Indexed: 12/03/2022] Open
Abstract
Fosfomycin is a re-emergent antibiotic known to be effective against severe bacterial infections even when other antibiotics fail. To avoid overuse and thus the risk of new antibiotic resistance, the European Commission has recommended the intravenous use of fosfomycin only when other antibiotic treatments fail. A release of fosfomycin into the environment via wastewater from not only municipalities but also already from the producing pharmaceutical industry can seriously undermine a sustaining therapeutic value. We showed in long-term continuous-mode bioreactor cultivation and by using microbial community flow cytometry, microbial community ecology tools, and cell sorting that the micro-pollutant altered the bacterial wastewater community (WWC) composition within only a few generations. Under these conditions, fosfomycin was not readily degraded both at lower and higher concentrations. At the same time, operational reactor parameters and typical diversity parameters such as α- and intracommunity β-diversity did not point to system changes. Nevertheless, an intrinsic compositional change occurred, caused by a turnover process in which higher concentrations of fosfomycin selected for organisms known to frequently harbor antibiotic resistance genes. A gfp-labeled Pseudomonas putida strain, used as the model organism and a possible future chassis for fosfomycin degradation pathways, was augmented and outcompeted in all tested situations. The results suggest that WWCs, as complex communities, may tolerate fosfomycin for a time, but selection for cell types that may develop resistance is very likely. The approach presented allows very rapid assessment and visualization of the impact of antibiotics on natural or managed microbial communities in general and on individual members of these communities in particular.
Collapse
Affiliation(s)
- Shuang Li
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Zishu Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Christine Süring
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Luyao Chen
- Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Susann Müller
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Ping Zeng
- Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing, China
| |
Collapse
|
8
|
Chen J, Li X, Gan L, Jiang G, Zhang R, Xu Z, Tian Y. Mechanism of Cr(VI) reduction by Lysinibacillus sp. HST-98, a newly isolated Cr (VI)-reducing strain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:66121-66132. [PMID: 34331221 DOI: 10.1007/s11356-021-15424-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Facing the increasingly severe Cr(VI) pollution, bioreduction has proved to be an eco-friendly remediation method. An isolated strain identified as Lysinibacillus can relatively reduce Cr(VI) well. Even if the concentration of Cr(VI) increased to 250mg/L, the strain HST-98 could also grow and remove Cr(VI) well. After optimization of reaction conditions, the optimal pH, temperature, and electron donor are 8~9, 36°C, and sodium lactate, respectively. Coexisting metal ions such as Cu2+, Co2+, and Mn2+ are beneficial to reduce Cr(VI), while Zn2+, Ni2+, and Cd2+ are just the opposite. What is more, the mechanism of the reduction by the strain HST-98 is chiefly mediated by intracellular enzymes. After gene sequence homology blast and analysis, the genes and enzymes related to chromium metabolism in strain HST-98 have been annotated, which helps us to further understand the reduction mechanism of the strain HST-98. In general, Lysinibacillus sp. HST-98 is a potential candidate to repair the Cr(VI)-contaminated sites.
Collapse
Affiliation(s)
- Jia Chen
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, 610065, China
| | - Xiaoguang Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, 610065, China
| | - Longzhan Gan
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, 610065, China
| | - Guangyang Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, 610065, China
| | - Ruoshi Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, 610065, China
| | - Zhe Xu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, 610065, China
| | - Yongqiang Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.
- Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, 610065, China.
| |
Collapse
|
9
|
Su YQ, Yuan S, Guo YC, Tan YY, Mao HT, Cao Y, Chen YE. Highly efficient and sustainable removal of Cr (VI) in aqueous solutions by photosynthetic bacteria supplemented with phosphor salts. CHEMOSPHERE 2021; 283:131031. [PMID: 34134043 DOI: 10.1016/j.chemosphere.2021.131031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 04/06/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Photosynthetic bacteria have flexible metabolisms and strong environmental adaptability, and require cheap, but plentiful, energy supplements, which all enable their use in Cr(VI)-remediation. In this study, the effects of culture conditions on the total Cr removal rate were investigated for a newly identified strain of Rhodobacter sphaeroides SC01. The subcellular distribution and Cr(VI) reduction ability of four different cellular fractions were evaluated by scanning electron microscopy and transmission electron microscopy. Experiments indicated that the optimal culture conditions for total Cr removal included a culture temperature of 35 °C, pH of 7.20, an NaCl concentration of 5 g L-1, a light intensity of 4000 lx, and an initial cell concentration (OD680) of 0.15. In addition, most Cr was found in the cell membrane in the form of Cr (III) after reduction, while cell membranes had the highest Cr(VI) reduction rate (99%) compared to other cellular components. In addition, the physical and chemical properties of SC01 cells were characterized by FTIR, XPS, and XRD analyses, confirming that Cr was successfully absorbed on bacterial cell surfaces. CrPO4‧6H2O and Cr5(P3O10)3 precipitates were particularly identified by XRD analysis. After screening supplementation with five phosphor salts, Cr(VI) reduction due to bioprecipitation was improved by the addition of Na4P2O7 and (NaPO3)6 salts, with the Cr(VI)-reduction rate combined with Na4P2O7 addition being 15% higher than that of the control. Thus, this study proposes a new Cr(VI)-removal strategy based on the combined use of photosynthetic bacteria and phosphor salts, which importantly increases its potential application in treating wastewater.
Collapse
Affiliation(s)
- Yan-Qiu Su
- College of Life Science, Sichuan Normal University, Chengdu, China.
| | - Shu Yuan
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yuan-Cheng Guo
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Yong-Yao Tan
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Hao-Tian Mao
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yi Cao
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yang-Er Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China.
| |
Collapse
|
10
|
Courrèges C, Bonnecaze M, Flahaut D, Nolivos S, Grimaud R, Allouche J. AES and ToF-SIMS combination for single cell chemical imaging of gold nanoparticle-labeled Escherichia coli. Chem Commun (Camb) 2021; 57:5446-5449. [PMID: 33950059 DOI: 10.1039/d1cc01211h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A chemical fingerprint of the Escherichia coli cell surface labeled by gelatin coated gold nanoparticles was obtained by combining Auger Electron Spectroscopy (AES) for single cell level chemical images, and Time-of-Flight Secondary Ion Mass Spectroscopy (ToF-SIMS) Tandem MS for unambiguous molecular identification of co-localized species.
Collapse
Affiliation(s)
- Cécile Courrèges
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques et Physico-Chimie Pour l'Environnement et les matériaux (IPREM), 2 avenue du Président Angot, 64000 Pau, France
| | - Mélanie Bonnecaze
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques et Physico-Chimie Pour l'Environnement et les matériaux (IPREM), 2 avenue du Président Angot, 64000 Pau, France
| | - Delphine Flahaut
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques et Physico-Chimie Pour l'Environnement et les matériaux (IPREM), 2 avenue du Président Angot, 64000 Pau, France
| | - Sophie Nolivos
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques et Physico-chimie pour l'environnement et les matériaux (IPREM), Avenue de l'Université, 64000 Pau, France
| | - Régis Grimaud
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques et Physico-chimie pour l'environnement et les matériaux (IPREM), Avenue de l'Université, 64000 Pau, France
| | - Joachim Allouche
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques et Physico-Chimie Pour l'Environnement et les matériaux (IPREM), 2 avenue du Président Angot, 64000 Pau, France
| |
Collapse
|
11
|
Lyu Y, Yang T, Liu H, Qi Z, Li P, Shi Z, Xiang Z, Gong D, Li N, Zhang Y. Enrichment and characterization of an effective hexavalent chromium-reducing microbial community YEM001. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:19866-19877. [PMID: 33410044 DOI: 10.1007/s11356-020-11863-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Chromium (Cr) is one of the most widely used heavy metals in industrial processes, resulting in water and soil pollution that seriously threaten environmental safety. In this paper, we have directionally enriched a Cr(VI)-reducing bacterial community YEM001 from no-Cr(VI) polluted pond sedimental sludge by selectively growing it in Cr(VI)-containing media. This community could effectively reduce Cr(VI) in laboratory rich media containing different concentrations of Cr(VI), such as 61% reduction at 435 mg/L Cr(VI), 85% reduction at 355 mg/L Cr(VI), and complete reduction at 269 mg/L Cr(VI) in 93.5 h. It was also able to completely reduce 100 mg/L and 300 mg/L Cr(VI) in landfill leachate and natural sludge in 48 h, respectively. Optimal pH for Cr(VI) reduction of the YEM001 is between 7 and 8 and the best efficiency for Cr(VI) reduction occurs at 30 °C. Metagenomic data demonstrated that the YEM001 community was composed of multiple bacteria, including well-known Cr(VI)-reducing bacteria and non-Cr(VI)-reducing bacteria. Delftia, Comamonas, Alicycliphilus, Acidovorax, Bacillus, and Clostridioides account for 83% of total community abundance. The stability of the composition of the YEM001 community and its Cr(VI)-reducing activity allows for its application in bioremediation of environmental Cr(VI) pollution.
Collapse
Affiliation(s)
- Yucai Lyu
- Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang, 443002, China.
- Hubei Engineering Technology Research Center for Farmland Environmental Monitoring, China Three Gorges University, Yichang, 443002, China.
- Key Laboratory of Functional Yeast, China National Light Industry, China Three Gorges University, Yichang, 443002, China.
| | - Tao Yang
- Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang, 443002, China
| | - Herong Liu
- Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang, 443002, China
| | - Zheng Qi
- Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang, 443002, China
| | - Ping Li
- Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang, 443002, China
| | - Ziyao Shi
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, China
| | - Zhen Xiang
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, China
| | - Dachun Gong
- Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang, 443002, China
- Hubei Engineering Technology Research Center for Farmland Environmental Monitoring, China Three Gorges University, Yichang, 443002, China
- Key Laboratory of Functional Yeast, China National Light Industry, China Three Gorges University, Yichang, 443002, China
| | - Ning Li
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, China
| | - Yaoping Zhang
- Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang, 443002, China.
- DOE-Great Lakes Bioenergy Research Center (GLBRC), University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
12
|
Han H, Zheng Y, Zhou T, Liu P, Li X. Cu(II) nonspecifically binding chromate reductase NfoR promotes Cr(VI) reduction. Environ Microbiol 2020; 23:415-430. [PMID: 33201569 DOI: 10.1111/1462-2920.15329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/30/2020] [Accepted: 11/15/2020] [Indexed: 11/26/2022]
Abstract
Cu(II)-enhanced microbial Cr(VI) reduction is common in the environment, yet its mechanism is unknown. The specific activity of chromate reductase, NfoR, from Staphylococcus aureus sp. LZ-01 was augmented 1.5-fold by Cu(II). Isothermal titration calorimetry and spectral data show that Cu(II) binds to NfoR nonspecifically. Further, Cu(II) stimulates the nitrobenzene reduction of NfoR, indicating that Cu(II) promotes electron transfer. The crystal structure of NfoR in complex with CuSO4 (1.46 Å) was determined. The overall structure of NfoR-Cu(II) complex is a dimer that covalently binds with FMN and Cu(II)-binding pocket is located at the interface of the NfoR dimer. Structural superposition revealed that NfoR resembles the structure of class II chromate reductase. Site-directed mutagenesis revealed that Leu46 and Phe123 were involved in NADH binding, whereas Trp70 and Ser45 were the key residues for nitrobenzene binding. Furthermore, His100 and Asp171 were preferential affinity sites for Cu(II) and that Cys163 is an active site for FMN binding. Attenuation reductase activity in C163S can be partially restored to 54% wild type by increasing Cu(II) concentration. Partial restoration indicates dual-channel electron transfer of NfoR via Cu(II) and FMN. We propose a catalytic mechanism for Cu(II)-enhanced NfoR activity in which Cu(I) is formed transiently. Together, the current results provide an insight on Cu (II)-induced enhancement and benefit of Cr(VI) bioremediation.
Collapse
Affiliation(s)
- Huawen Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Yuanzhang Zheng
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, USA
| | - Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| |
Collapse
|
13
|
Yao Y, Hu L, Li S, Zeng Q, Zhong H, He Z. Exploration on the bioreduction mechanisms of Cr(VI) and Hg(II) by a newly isolated bacterial strain Pseudomonas umsongensis CY-1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110850. [PMID: 32531571 DOI: 10.1016/j.ecoenv.2020.110850] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/24/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Despite of significant progress in remediation of Cr(VI) or Hg(II) pollution by microorganisms, study on the reduction of both Cr(VI) and Hg(II) by the same microbial strain was not reported so far, which is actually important for bioremediation of contaminated sites with multiple heavy metals. In this study, Pseudomonas umsongensis CY-1 was newly isolated from chromium-contaminated soil and showed remediation potentials for both Cr(VI) and Hg(II) pollution. The highest Cr(VI) (93.9%) and Hg(II) (82.8%) reduction rates were obtained at the initial concentration of 5 mg/L. Comparison between removal by resting cells and heat-treated resting cells demonstrated that P. umsongensis CY-1 removed Cr(VI) and Hg(II) from Tris-HCl buffer (pH 7.0) mainly through reduction instead of adsorption. By comparing the Cr(VI) and Hg(II) reduction rates of different cellular fractions, it was found that Cr(VI) and Hg(II) reductions mainly happened in the cytoplasm of P. umsongensis CY-1, which were further demonstrated by Transmission electron microscopy (TEM) analysis. Furthermore, analysis of X-ray photoelectron spectroscopy demonstrated that the reduction products of Cr(VI) and Hg(II) were mainly in the form of Cr(III) and Hg (0), respectively. The findings in this study will provide a guide for further insights in the bioremediation of contaminated sites with multiple heavy metals.
Collapse
Affiliation(s)
- Yang Yao
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Liang Hu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Shuzhen Li
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Qiang Zeng
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Hui Zhong
- School of Life Science, Central South University, Changsha, 410012, China.
| | - Zhiguo He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China; Faculty of Materials Metallurgy & Chemistry, Jiangxi University of Science & Technology, Ganzhou, Jiangxi, 341000, China.
| |
Collapse
|