1
|
Li J, Tian Z, Han A, Li J, Luo A, Liu R, Zhang Z. Integrative physiological, critical plant endogenous hormones, and transcriptomic analyses reveal the difenoconazole stress response mechanism in wheat (Triticum aestivum L.). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105688. [PMID: 38072543 DOI: 10.1016/j.pestbp.2023.105688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/04/2023] [Accepted: 11/04/2023] [Indexed: 12/18/2023]
Abstract
Difenoconazole (DFN) is widely utilized as a fungicide in wheat production. However, its accumulation in plant tissues has a profound impact on the physiological functions of wheat plants, thus severely threatening wheat growth and even jeopardizing human health. This study aims to comprehensively analyze the dynamic dissipation patterns of DFN, along with an investigation into the physiological, hormonal, and transcriptomic responses of wheat seedlings exposed to DFN. The results demonstrated that exposure of wheat roots to DFN (10 mg/kg in soil) led to a significant accumulation of DFN in wheat plants, with the DFN content in roots being notably higher than that in leaves. Accumulating DFN triggered an increase in reactive oxygen species content, malonaldehyde content, and antioxidant enzyme activities, while concurrently inhibiting photosynthesis. Transcriptome analysis further revealed that the number of differentially expressed genes was greater in roots compared with leaves under DFN stress. Key genes in roots and leaves that exhibited a positive response to DFN-induced stress were identified through weighted gene co-expression network analysis. Metabolic pathway analysis indicated that these key genes mainly encode proteins involved in glutathione metabolism, plant hormone signaling, amino acid metabolism, and detoxification/defense pathways. Further results indicated that abscisic acid and salicylic acid play vital roles in the detoxification of leaf and root DFN, respectively. In brief, the abovementioned findings contribute to a deeper understanding of the detrimental effects of DFN on wheat seedlings, while shedding light on the molecular mechanisms underlying the responses of wheat root and leaves to DFN exposure.
Collapse
Affiliation(s)
- Jingchong Li
- School of Resources and Environment/School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhixiang Tian
- School of Resources and Environment/School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Aohui Han
- School of Resources and Environment/School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Jingkun Li
- School of Resources and Environment/School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Aodi Luo
- School of Resources and Environment/School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Runqiang Liu
- School of Resources and Environment/School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China.
| | - Zhiyong Zhang
- School of Resources and Environment/School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China.
| |
Collapse
|
2
|
Wang R, Fang Y, Che W, Zhang Q, Wang J, Luo C. The Toxicity, Sublethal Effects, and Biochemical Mechanism of β-Asarone, a Potential Plant-Derived Insecticide, against Bemisia tabaci. Int J Mol Sci 2022; 23:ijms231810462. [PMID: 36142377 PMCID: PMC9501876 DOI: 10.3390/ijms231810462] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022] Open
Abstract
Bemisia tabaci is a threat to agriculture worldwide because of its potential to cause devastating damage to various crops. β-asarone is a bioactive pesticidal chemical originating from Acorus calamus (or “Sweet Flag”) plants, and it displays significant lethal effects against insect pests. In this study, we established a baseline of susceptibility to β-asarone from China and patterns of cross-resistance to other popular insecticides. We found that all the 12 field-collected B. tabaci populations exhibited high susceptibility to β-asarone, and there was no cross-resistance detected for other tested insecticides. We subsequently evaluated the sublethal effects of β-asarone on physiology and biochemistry via LC25 treatment (4.7 mg/L). LC25 of β-asarone resulted in prolonged developmental duration and decreased survival rates in B. tabaci nymphs, pseudopupae, and adults. Significant reductions in oviposition duration, fecundity, and hatchability were also observed. Additionally, the metabolic enzyme activity and expression profiles of selected cytochrome P450 monooxygenase (P450) genes following the LC25 treatment of β-asarone suggest that enhanced detoxification via P450s could be involved in the observed sublethal effects. These findings demonstrate the strong toxicity and significant sublethal effects of β-asarone on B. tabaci and suggest that the induced overexpression of P450 genes could be associated with the response to β-asarone.
Collapse
Affiliation(s)
- Ran Wang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Correspondence: (R.W.); (J.W.)
| | - Yong Fang
- Agriculture Biotechnology Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Wunan Che
- Department of Pesticide Sciences, Shenyang Agricultural University, Shenyang 110866, China
| | - Qinghe Zhang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jinda Wang
- National Engineering Research Center of Sugarcane, Fujian Agricultural and Forestry University, Fuzhou 350002, China
- Correspondence: (R.W.); (J.W.)
| | - Chen Luo
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
3
|
Wang Y, Jin R, Liu C, Gao Y, Deng X, Wan H, Li J. Functional characterization of the transcription factors AhR and ARNT in Nilaparvata lugens. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 176:104875. [PMID: 34119220 DOI: 10.1016/j.pestbp.2021.104875] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
In the present study, the aryl hydrocarbon receptor (AhR) and aryl hydrocarbon receptor nuclear translocator (ARNT) of Nilaparvata lugens were cloned and identified. The NlAhR and NlARNT expression levels significantly increased after imidacloprid, etofenprox and isoprocarb treatments. Knockdowns of NlAhR and NlARNT increased the susceptibility of N. lugens to imidacloprid, etofenprox and isoprocarb, and the detoxification enzyme activities were also significantly decreased. In addition, NlCYP301A1, NlGSTt1 and NlCarE7 were significantly down-regulated after injections of dsNlAhR and dsNlARNT, with the NlCarE7 expression decreasing by greater than 80%. Moreover, after knocking down NlCarE7, the susceptibility of N. lugens to etofenprox and isoprocarb significantly increased. Both NlAhR and NlARNT bound the NlCarE7 promoter and significantly enhanced the transcriptional activity. Our research revealed the functional roles of transcription factors NlAhR and NlARNT in the detoxification metabolism of N. lugens. The results provide a theoretical basis for the pest management and comprehensive control of N. lugens and increase our knowledge of insect toxicology.
Collapse
Affiliation(s)
- Yue Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ruoheng Jin
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Chaoya Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yuanyuan Gao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiaoqian Deng
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hu Wan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jianhong Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
4
|
Shu B, Zou Y, Yu H, Zhang W, Li X, Cao L, Lin J. Growth inhibition of Spodoptera frugiperda larvae by camptothecin correlates with alteration of the structures and gene expression profiles of the midgut. BMC Genomics 2021; 22:391. [PMID: 34039281 PMCID: PMC8157707 DOI: 10.1186/s12864-021-07726-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/19/2021] [Indexed: 12/31/2022] Open
Abstract
Background Spodoptera frugiperda is a serious pest that causes devastating losses to many major crops, including corn, rice, sugarcane, and peanut. Camptothecin (CPT) is a bioactive secondary metabolite of the woody plant Camptotheca acuminata, which has shown high toxicity to various pests. However, the effect of CPT against S. frugiperda remains unknown. Results In this study, bioassays have been conducted on the growth inhibition of CPT on S. frugiperda larvae. Histological and cytological changes were examined in the midgut of larvae fed on an artificial diet supplemented with 1.0 and 5.0 µg/g CPT. The potential molecular mechanism was explored by comparative transcriptomic analyses among midgut samples obtained from larvae under different treatments. A total of 915 and 3560 differentially expressed genes (DEGs) were identified from samples treated with 1.0 and 5.0 µg/g CPT, respectively. Among the identified genes were those encoding detoxification-related proteins and components of peritrophic membrane such as mucins and cuticle proteins. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated that part of DEGs were involved in DNA replication, digestion, immunity, endocrine system, and metabolism. Conclusions Our results provide useful information on the molecular basis for the impact of CPT on S. frugiperda and for future studies on potential practical application. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07726-8.
Collapse
Affiliation(s)
- Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, 313 Yingdong teaching building, 510225, Guangzhou, PR China
| | - Yan Zou
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, 313 Yingdong teaching building, 510225, Guangzhou, PR China
| | - Haikuo Yu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, 313 Yingdong teaching building, 510225, Guangzhou, PR China
| | - Wanying Zhang
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, 313 Yingdong teaching building, 510225, Guangzhou, PR China
| | - Xiangli Li
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, 313 Yingdong teaching building, 510225, Guangzhou, PR China
| | - Liang Cao
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, 313 Yingdong teaching building, 510225, Guangzhou, PR China
| | - Jintian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, 313 Yingdong teaching building, 510225, Guangzhou, PR China.
| |
Collapse
|
5
|
Xu X, Li X, Liu Z, Wang F, Fan L, Wu C, Yao Y. Knockdown of CYP301B1 and CYP6AX1v2 increases the susceptibility of the brown planthopper to beta-asarone, a potential plant-derived insecticide. Int J Biol Macromol 2021; 171:150-157. [PMID: 33418039 DOI: 10.1016/j.ijbiomac.2020.12.217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 01/09/2023]
Abstract
The cytochrome P450 monooxygenases of insects play crucial roles in the metabolic detoxification of insecticides. Our previous finding showed that two cytochrome P450 genes, both CYP301B1 and CYP6AX1v2, in the BPH underwent overexpression due to β-asarone. In this study, we investigated the molecular characteristics, expression patterns and functions of these two cytochrome P450 genes. The results showed that CYP301B1 had the highest expression level in the eggs, while CYP6AX1v2 was expressed in macropterous female adults. Moreover, the expression level of CYP301B1 in the head was higher than that in the integument, fat body and gut. The expression level of CYP6AX1v2 in the fat body and gut was higher than that in head and integument. Importantly, silencing CYP301B1 and CYP6AX1v2 separately could increase the sensitivity, resulting in significant higher mortality of BPH following treatment with β-asarone. Our findings indicated that CYP301B1 and CYP6AX1v2 could contribute to the resistance of BPH to β-asarone, and these two genes may be involved in the detoxification metabolism of β-asarone in BPH.
Collapse
Affiliation(s)
- Xueliang Xu
- Applied Agricultural Micro-organism Research, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China; Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450000, China
| | - Zirong Liu
- Applied Agricultural Micro-organism Research, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Fenshan Wang
- Applied Agricultural Micro-organism Research, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Linjuan Fan
- Applied Agricultural Micro-organism Research, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Caiyun Wu
- Applied Agricultural Micro-organism Research, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Yingjuan Yao
- Applied Agricultural Micro-organism Research, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China.
| |
Collapse
|
6
|
Transcriptome analysis of differential gene expression in the longissimus dorsi muscle from Debao and landrace pigs based on RNA-sequencing. Biosci Rep 2020; 39:221218. [PMID: 31755521 PMCID: PMC6893171 DOI: 10.1042/bsr20192144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
RNA-seq analysis was used to identify differentially expressed genes (DEGs) at the genetic level in the longissimus dorsi muscle from two pigs to investigate the genetic mechanisms underlying the difference in meat quality between Debao pigs and Landrace pigs. Then, these DEGs underwent functional annotation, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and protein–protein interaction (PPI) analyses. Finally, the expression levels of specific DEGs were assessed using qRT-PCR. The reference genome showed gene dosage detection of all samples which showed that the total reference genome comprised 22342 coding genes, including 14743 known and 190 unknown genes. For detection of the Debao pig genome, we obtained 14168 genes, including 13994 known and 174 unknown genes. For detection of the Landrace pig genome, we obtained 14404 genes, including 14223 known and 181 unknown genes. GO analysis and KEGG signaling pathway analysis show that DEGs are significantly related to metabolic regulation, amino acid metabolism, muscular tissue, muscle structure development etc. We identified key genes in these processes, such as FOS, EGR2, and IL6, by PPI network analysis. qRT-PCR confirmed the differential expression of six selected DEGs in both pig breeds. In conclusion, the present study revealed key genes and related signaling pathways that influence the difference in pork quality between these breeds and could provide a theoretical basis for improving pork quality in future genetic thremmatology.
Collapse
|
7
|
Peng Y, Tang J, Xie J. Transcriptomic Analysis of the Brown Planthopper, Nilaparvata lugens, at Different Stages after Metarhizium anisopliae Challenge. INSECTS 2020; 11:insects11020139. [PMID: 32102435 PMCID: PMC7073985 DOI: 10.3390/insects11020139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 01/24/2023]
Abstract
Nilaparvata lugens is one of the major pests of rice and results in substantial yield loss every year. Our previous study found that the entomopathogenic fungus Metarhizium anisopliae showed effective potential for controlling this pest. However, the mechanisms underlying M. anisopliae infection of N. lugens are not well known. In the present study, we further examined the transcriptome of N. lugens at 4 h, 8 h, 16 h, and 24 h after M. anisopliae infection by Illumina deep sequencing. In total, 174.17 Gb of data was collected after sequencing, from which 23,398 unigenes were annotated by various databases, including 3694 newly annotated genes. The results showed that there were 246 vs 75, 275 vs 586, 378 vs 1055, and 638 vs 182 up- and downregulated differentially expressed genes (DEGs) at 4 h, 8 h, 16 h, and 24 h after M. anisopliae infection, respectively. The biological functions and associated metabolic processes of these genes were determined with the Clusters of Orthologous Groups (COG), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The DEGs data were verified using RT-qPCR. These results indicated that the DEGs during the initial fungal infection appropriately reflected the time course of the response to the fungal infection. Taken together, the results of this study provide new insights into the molecular mechanisms underlying the insect host response to fungal infection, especially during the initial stage of infection, and may improve the potential control strategies for N. lugens.
Collapse
Affiliation(s)
- Yifan Peng
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticides/Key Laboratory of Gene Function and Regulation Technology under Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Jifeng Tang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Jiaqin Xie
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticides/Key Laboratory of Gene Function and Regulation Technology under Chongqing Municipal Education Commission, Chongqing 401331, China
- Correspondence:
| |
Collapse
|