1
|
Ali L, Alam A, Ali AM, Teoh WY, Altarawneh M. A comprehensive Review into Emission Sources, Formation Mechanisms, Ecological Effects, and Biotransformation Routes of Halogenated Polycyclic Aromatic Hydrocarbons (HPAHs). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117196. [PMID: 39426109 DOI: 10.1016/j.ecoenv.2024.117196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Halogenated polycyclic aromatic hydrocarbons (HPAHs, H = F, Cl, Br) are a new class of PAHs derivatives that mainly originate from the incomplete combustion of halogen-laden materials and via metallurgical operations. These compounds circulate extensively in various environmental matrices. This survey provides a comprehensive review on governing synthesis routes of HPAHs, their environmental occurrence, and their health and ecological effects. The review comprehensively enlists and presents emission sources of these emerging organic pollutants into the air that serves as their main reservoir. The formation of HPAHs ensues through successive addition reactions of related precursors accompanied by ring cyclization steps; in addition to direct unimolecular fragmentation of parents halogenated. Halogenation of parent PAHs rapidly occurs in saline ecosystems, thus multiplying the availability of these notorious compounds in the environment. Certain HPAHs appear to be more carcinogenic than dioxins. Transmission routes of HPAHs from their emission sources to water bodies, soil, aquatic life, plants, terrestrial animals, and humans are well-documented. Later, the direct and indirect diffusion of HPAHs from air to the biotic (plants, animals, humans) and abiotic components (soil, water, sediments) are described in detail. The study concludes that HPAHs are permeable to the carbon matrices resulting in the alleviation of the source-to-sink interface. As a potential future perspective, understanding the transmission interfaces lays a foundation to intervene in the introduction of these toxicants into the food chain.
Collapse
Affiliation(s)
- Labeeb Ali
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain 15551, United Arab Emirates
| | - Ayesha Alam
- United Arab Emirates University, Department of Integrative Agriculture, Sheikh Khalifa bin Zayed Street, Al-Ain 15551, United Arab Emirates
| | - Abdul Majeed Ali
- Medcare Hospital, Department of Pediatrics and Neonatology, King Faisal Street, Sharjah 15551, United Arab Emirates
| | - Wey Yang Teoh
- Department of Chemical Engineering, Sustainable Process Engineering Centre (SPEC), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Mohammednoor Altarawneh
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain 15551, United Arab Emirates.
| |
Collapse
|
2
|
Tu Z, Qi Y, Tang X, Wang Z, Qu R. Photochemical transformation of anthracene (ANT) in surface soil: Chlorination and hydroxylation. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131252. [PMID: 36963191 DOI: 10.1016/j.jhazmat.2023.131252] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
To reveal the fate of anthracene (ANT) in soil, the photodegradation behavior of ANT was systematically studied using SiO2 to simulate a soil environment. Under xenon lamp irradiation, more than 90% of ANT loaded on SiO2 could be removed after 240 min. Moreover, the effects of water content, chloride ions (Cl-) and humic acid (HA) were examined. It was found that the presence of water and HA can significantly inhibit the photolysis of ANT on SiO2, while the addition of chloride alone has no obvious effect. However, when water is present, the inhibition effect of chloride became more obvious. According to radical quenching experiments and electron paramagnetic resonance (EPR) spectra, hydroxyl radicals (•OH) and chlorine radicals (Cl•) were formed in the system. Possible reaction pathways were speculated based on products identified by mass spectrometry. ANT was attacked by •OH to form hydroxylated products, which can be further hydroxylated and oxidized with the final formation of ring-opening products. ANT directly excited by light may also react with Cl• to produce chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs). Finally, the experimental results were verified on real soil. This study provides important information for understanding the photochemical transformation mechanism of ANT at the soil/air interface.
Collapse
Affiliation(s)
- Zhengnan Tu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Yumeng Qi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Xiaosheng Tang
- Jiangsu Yangtze River Delta Environmental Science and Technology Research Institute Co., Ltd., Changzhou, Jiangsu 213100, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China.
| |
Collapse
|
3
|
Xia Z, Idowu I, Halldorson T, Lucas AM, Stein C, Kaur M, Tomy T, Marvin C, Thomas PJ, Hebert CE, Smith RA, Dwyer-Samuel F, Provencher JF, Tomy GT. Microbead beating extraction of avian eggs for polycyclic aromatic compounds. CHEMOSPHERE 2023; 335:139059. [PMID: 37268236 DOI: 10.1016/j.chemosphere.2023.139059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023]
Abstract
Due to their relatively high trophic position and importance as a food source for many communities in the circumpolar north, seabird eggs are an important matrix for monitoring contaminant levels. In fact, many countries, including Canada, have established long-term seabird egg contaminant monitoring programs, with oil related compounds a contaminant of emerging concern for seabirds in several regions. Current approaches to measuring many contaminant burdens in seabird eggs are time-consuming and often require large volumes of solvent. Here we propose an alternative approach, based on the principle of microbead beating tissue extraction using custom designed stainless-steel extraction tubes and lids, to measure a suite of 75 polycyclic aromatic compounds (polycyclic aromatic hydrocarbons (PAHs), alkyl-PAHs, halogenated-PAHs and some heterocyclic compounds) comprising a wide-range of chemical properties. Our method was conducted in strict accordance with ISO/IEC 17025 guidelines for method validation. Accuracies for our analytes generally ranged from 70 to 120%, and intra and inter-day repeatability for most analytes were <30%. Limits of detection/quantitation for the 75 target analytes were <0.2/0.6 ng g-1. The level of contamination in our method blanks was significantly smaller in our stainless-steel tubes/lids relative to commercially available high-density plastic alternatives. Overall, our method meets our data quality objectives and results in a notable reduction in sample processing times relative to current approaches.
Collapse
Affiliation(s)
- Zhe Xia
- University of Manitoba, Department of Chemistry, Winnipeg, MB, Canada, R3T 2N2.
| | - Ifeoluwa Idowu
- University of Manitoba, Department of Chemistry, Winnipeg, MB, Canada, R3T 2N2
| | - Thor Halldorson
- University of Manitoba, Department of Chemistry, Winnipeg, MB, Canada, R3T 2N2
| | - Amica-Mariae Lucas
- University of Manitoba, Department of Chemistry, Winnipeg, MB, Canada, R3T 2N2
| | - Claire Stein
- University of Manitoba, Department of Chemistry, Winnipeg, MB, Canada, R3T 2N2
| | - Manpreet Kaur
- University of Manitoba, Department of Chemistry, Winnipeg, MB, Canada, R3T 2N2
| | - Thane Tomy
- University of Manitoba, Department of Chemistry, Winnipeg, MB, Canada, R3T 2N2
| | - Chris Marvin
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON, Canada, L7S 1A1
| | - Philippe J Thomas
- Wildlife Landscape Science Directorate, Environment and Climate Change Canada, Ottawa, ON, Canada, K1A 0H3
| | - Craig E Hebert
- Wildlife Landscape Science Directorate, Environment and Climate Change Canada, Ottawa, ON, Canada, K1A 0H3
| | - Reyd A Smith
- Carleton University, Department of Biology, Ottawa, ON, Canada K1S 5B6
| | | | - Jennifer F Provencher
- Wildlife Landscape Science Directorate, Environment and Climate Change Canada, Ottawa, ON, Canada, K1A 0H3
| | - Gregg T Tomy
- University of Manitoba, Department of Chemistry, Winnipeg, MB, Canada, R3T 2N2.
| |
Collapse
|
4
|
Li W, Wu S. Challenges of halogenated polycyclic aromatic hydrocarbons in foods: Occurrence, risk, and formation. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
PCDD/Fs and DL-PCBs in Chinese Mitten Crab (Eriocheir sinensis) and Its Farming Environment in Shanghai, China. Foods 2022; 11:foods11172556. [PMID: 36076742 PMCID: PMC9455688 DOI: 10.3390/foods11172556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/09/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
Most polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) in the human body are acquired from dietary intake. The chronic exposure of humans to PCDD/Fs and DL-PCBs is a major health concern, and these compounds are strictly controlled in many areas. This study measured the levels of PCDD/Fs and DL-PCBs in Chinese mitten crab (Eriocheir sinensis) farms in Shanghai and determined potential sources. The mean concentrations of PCDD/Fs and DL-PCBs in the studied crab samples were 264.20 ± 260.14 and 506.25 ± 226.80 pg/g ww (wet weight), respectively. The range of the toxic equivalent (TEQ) for the total PCDD/Fs and DL-PCBs in the crab samples was 1.20–29.04 pg TEQ/g ww. Further analysis revealed that the TEQ input to crabs in aquacultural water was 1.6 times higher than the TEQ in edible crab parts. Aquatic plants, shore plants, and feed contributed about 0.05% of the total TEQ input to crabs. The TEQ contribution from sediment was 317 times that found in edible crab parts, and sediment may be the most prevalent source of PCDD/Fs and DL-PCBs in farm crabs. The evaluation of the Shanghai market crab revealed different levels of PCDD/Fs and DL-PCBs. The TEQs for the mean PCDD/F and DL-PCB levels were 1.55 ± 1.96 and 1.05 ± 0.55 pg TEQ/g ww, respectively. The tolerable daily intake (TDI) levels of adults and children were lower than the prescribed range (1–4 pg TEQ/kg (weight)·d), indicating no significant chronic or acute ingestion risk for adults and children.
Collapse
|
6
|
Tian Y, Xu Z, Liu Z, Si X, Zhang F, Jiang W. Fe 3O 4@SiO 2@VAN Nanoadsorbent Followed by GC-MS for the Determination of Polycyclic Aromatic Hydrocarbons at Ultra-Trace Levels in Environmental Water Samples. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2921. [PMID: 36079959 PMCID: PMC9458231 DOI: 10.3390/nano12172921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
In the present study, silica-coated magnetic nanoparticles functionalized with vancomycin (Fe3O4@SiO2@VAN) were synthesized. The Fe3O4@SiO2@VAN nanocomposite was used as a sorbent for the magnetic solid-phase extraction (MSPE) of polycyclic aromatic hydrocarbons (PAHs) from environmental water, followed by GC-MS. The nanocomposite was characterized by Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry, and nitrogen sorption. Various experimental parameters were optimized, including extraction condition and desorption condition. Results show that Fe3O4@SiO2@VAN combined the advantages of nanomaterials and magnetic separation technology, showing excellent dispersibility and high selectivity for PAHs in environmental water sample. Under the optimal extraction conditions, an analytical method was established with the sensitive limit of detection (LOD) of 0.03-0.16 μg L-1. The method was successfully applied for the analysis of environmental water samples. The relative standard deviations (%) were in the range of 0.50-12.82%, and the extraction recovery (%) was in the range of 82.48% and 116.32%. MSPE-coupled gas chromatography-mass spectrometry quantification of PAHs is an accurate and repeatable method for the monitoring of PAH accumulation in environmental water samples. It also provides an effective strategy for the tracing and quantification of other environmental pollutants in complex samples.
Collapse
Affiliation(s)
- Yu Tian
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhigang Xu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhimin Liu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaoxi Si
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming 650231, China
| | - Fengmei Zhang
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming 650231, China
| | - Wei Jiang
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming 650231, China
| |
Collapse
|
7
|
Research Progress of Polycyclic Aromatic Hydrocarbons Pretreatment Methods and Application of Computer Simulation Technology for Prediction and Degradation of Electrochemical Concentration Detection. J CHEM-NY 2022. [DOI: 10.1155/2022/6288072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of organic compounds that are composed of aromatic rings containing only carbon and hydrogen atoms. They are one of the widespread environmental pollutants in the world. In recent years, many scholars have focused on the inhibition, formation mechanism, content of active components, and biodegradation effect of polycyclic aromatic hydrocarbons. They summarized the research progress of pretreatment methods for detection, but rarely discussed the experimental dataset for comprehensive analysis of pollution sources and the impact of different pretreatment technologies on the extraction of different substrates. What is more, computer simulation has not been mentioned. In this study, the pollution sources of polycyclic aromatic hydrocarbons (PAHs) are reviewed, and the related applications of various pretreatment methods such as gel permeation chromatography (GPC) are summarized. Finally, the computer simulation of the response surface method is introduced. The concentration of polycyclic aromatic hydrocarbons is tested or predicted by combining the neural network with the alternating trilinear decomposition (ATLD) algorithm, artificial population algorithm (ABC), and hierarchical genetic algorithm (HGA). Its future development trend is discussed and prospected, which provides a reference for solving the pollution problem. We look forward to providing help for the follow-up research of scholars in this field.
Collapse
|
8
|
Li W, Wu S. Halogenated polycyclic aromatic hydrocarbons and their parent compounds in ready-to-eat seafood rich in salt: Method validation, profiles, correlation, and exposure risks. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Du Y, Xu X, Liu Q, Lin L, Bai L, Wang D. Contribution of atmospheric deposition to halogenated polycyclic aromatic hydrocarbons in surface sediments: A validation study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152889. [PMID: 34998763 DOI: 10.1016/j.scitotenv.2021.152889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Surface sediments are both sinks and sources of chlorinated and brominated polycyclic aromatic hydrocarbons (Cl/Br-PAHs) in the environment. It is important to study the source of Cl/Br-PAHs in the surface sediment for controlling the ecological risk of Cl/Br-PAHs. Clues from the previous research suggested that atmospheric deposition may be one of the main sources of Cl/Br-PAHs in sediment. However, due to the lack of matched sediment and atmospheric Cl/Br-PAHs data, the contribution of atmospheric deposition to Cl/Br-PAHs in sediment has not been confirmed. This study investigated the characteristics of 37 Cl/Br-PAHs and validated the contribution of atmospheric sedimentation to Cl/Br-PAHs in sediment by a case study in the surface sediments of the Chaobai River, China. To the best of our knowledge, four Cl-PAHs and eleven Br-PAHs were found in the sediments for the first time. The total concentrations of 18 Cl-PAH species were 76-2301 pg/g, while those of Br-PAHs were 6-238 pg/g. The toxic equivalent quantities (TEQ) of the Cl-PAHs in surface sediments in the water conservation area and in the urban comparison area were 0.73 pg TEQ/g and 2.21 pg TEQ/g, respectively. The TEQ of the Br-PAHs in surface sediments in the water conservation area and in the urban comparison area were 2.85 × 10-2 pg TEQ/g and 6.6 × 10-2 pg TEQ/g, respectively. Based on the characteristics comparison and correlation analysis of Cl/Br-PAHs in both sediment and ambient air, it was initially confirmed the contribution of atmospheric deposition to Cl-PAHs in sediments. However, there was no conclusion of Br-PAHs in sediment similar to Cl-PAHs in sediment. It was inferred that the sources of Br-PAHs in sediment were different from Cl-PAHs in sediment.
Collapse
Affiliation(s)
- Yanjun Du
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China; National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 100021 Beijing, China
| | - Xiong Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| | - Quanzhen Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Lihua Lin
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| | - Lu Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Donghong Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China.
| |
Collapse
|
10
|
Determination of 3-nitrobenzanthrone, its metabolites, and 41 polycyclic aromatic compounds (16 PAHs, 19 nitro-PAHs, and 6 oxy-PAHs) in ascidians (Phallusia nigra). Microchem J 2022. [DOI: 10.1016/j.microc.2021.107081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Ye Q, Xi X, Fan D, Cao X, Wang Q, Wang X, Zhang M, Wang B, Tao Q, Xiao C. Polycyclic aromatic hydrocarbons in bone homeostasis. Biomed Pharmacother 2021; 146:112547. [PMID: 34929579 DOI: 10.1016/j.biopha.2021.112547] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/03/2021] [Accepted: 12/13/2021] [Indexed: 01/16/2023] Open
Abstract
Prolonged exposure to polycyclic aromatic hydrocarbons (PAHs) may result in autoimmune diseases, such as rheumatoid arthritis (RA) and osteoporosis (OP), which are based on an imbalance in bone homeostasis. These diseases are characterized by bone erosion and even a disruption in homeostasis, including in osteoblasts and osteoclasts. Current evidence indicates that multiple factors affect the progression of bone homeostasis, such as genetic susceptibility and epigenetic modifications. However, environmental factors, especially PAHs from various sources, have been shown to play an increasingly prominent role in the progression of bone homeostasis. Hence, it is essential to investigate the effects and pathogenesis of PAHs in bone homeostasis. In this review, recent progress is summarized concerning the effects and mechanisms of PAHs and their ligands and receptors in bone homeostasis. Moreover, strategies based on the effects and mechanisms of PAHs in the regulation of the bone balance and alleviation of bone destruction are also reviewed. We further discuss the future challenges and perspectives regarding the roles of PAHs in autoimmune diseases based on bone homeostasis.
Collapse
Affiliation(s)
- Qinbin Ye
- Beijing University of Chinese Medicine, Beijing 100029, China; Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiaoyu Xi
- Beijing University of Chinese Medicine, Beijing 100029, China; Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Danping Fan
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100193, China
| | - Xiaoxue Cao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100193, China
| | - Qiong Wang
- Beijing University of Chinese Medicine, Beijing 100029, China; Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xing Wang
- Beijing University of Chinese Medicine, Beijing 100029, China; Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Bailiang Wang
- Department of Orthopaedic Surgery, Center for Osteonecrosis and Joint Preserving & Reconstruction, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Qingwen Tao
- Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Department of Emergency, China-Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|
12
|
Xu ML, Gao Y, Wang X, Han XX, Zhao B. Comprehensive Strategy for Sample Preparation for the Analysis of Food Contaminants and Residues by GC-MS/MS: A Review of Recent Research Trends. Foods 2021; 10:2473. [PMID: 34681522 PMCID: PMC8535889 DOI: 10.3390/foods10102473] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 01/19/2023] Open
Abstract
Food safety and quality have been gaining increasing attention in recent years. Gas chromatography coupled to tandem mass spectrometry (GC-MS/MS), a highly sensitive technique, is gradually being preferred to GC-MS in food safety laboratories since it provides a greater degree of separation on contaminants. In the analysis of food contaminants, sample preparation steps are crucial. The extraction of multiple target analytes simultaneously has become a new trend. Thus, multi-residue analytical methods, such as QuEChERs and adsorption extraction, are fast, simple, cheap, effective, robust, and safe. The number of microorganic contaminants has been increasing worldwide in recent years and are considered contaminants of emerging concern. High separation in MS/MS might be, in certain cases, favored to sample preparation selectivity. The ideal sample extraction procedure and purification method should take into account the contaminants of interest. Moreover, these methods should cooperate with high-resolution MS, and other sensitive full scan MSs that can produce a more comprehensive detection of contaminants in foods. In this review, we discuss the most recent trends in preparation methods for highly effective detection and analysis of food contaminants, which can be considered tools in the control of food quality and safety.
Collapse
Affiliation(s)
- Meng-Lei Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China;
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yu Gao
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China;
| | - Xiao Wang
- Jilin Institute for Food Control, Changchun 130103, China;
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China;
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China;
| |
Collapse
|
13
|
Wickrama-Arachchige AUK, Guruge KS, Inagaki Y, Tani H, Dharmaratne TS, Niizuma Y, Ohura T. Halogenated polycyclic aromatic hydrocarbons in edible aquatic species of two Asian countries: Congener profiles, biomagnification, and human risk assessment. Food Chem 2021; 360:130072. [PMID: 34082376 DOI: 10.1016/j.foodchem.2021.130072] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/26/2021] [Accepted: 05/08/2021] [Indexed: 11/27/2022]
Abstract
Seventy-five contaminants including chlorinated/brominated/parent polycyclic aromatic hydrocarbons (Cl/Br/PAHs) were investigated in 29 edible aquatic species from the Indian Ocean near Sri Lanka and 10 species from the Pacific Ocean near Japan. Concentrations of total ClPAHs and BrPAHs in the samples were 2.6-57 and 0.30-9.5 ng/g-dry weight from the Indian Ocean, and 0.35-18 and 0.03-3.3 ng/g-dry weight from the Pacific Ocean, respectively. Comparing the profiles of Cl/BrPAHs among the samples, congeners of chlorinated and brominated pyrene were predominant components and enhanced the potential for biomagnification in the sample from the off-shore pelagic environment in the Indian Ocean. The incremental lifetime cancer risks estimated by intake of the targets in consuming aquatic organisms showed that approximately one-third of studied organisms exceeded the acceptable risk level for Sri Lankans.
Collapse
Affiliation(s)
| | - Keerthi S Guruge
- Pathology and Pathophysiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba 305-0856, Japan; National Institute of Fundamental Studies, Hanthana Road, Kandy, Sri Lanka.
| | - Yuriko Inagaki
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Nagoya 468-8502, Japan
| | - Hinako Tani
- Graduate School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Nagoya 468-8502, Japan
| | - Tilak Siri Dharmaratne
- Faculty of Fisheries and Ocean Sciences, Ocean University of Sri Lanka, Mahawela Road, Tangalle, HB 82200, Sri Lanka; Gem and Jewellery Research and Training Institute, 73 /5/A, Kaduwela, Sri Lanka
| | - Yasuaki Niizuma
- Graduate School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Nagoya 468-8502, Japan
| | - Takeshi Ohura
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Nagoya 468-8502, Japan; Graduate School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Nagoya 468-8502, Japan.
| |
Collapse
|
14
|
Kanan SM, Moyet MA. Fabricated metal zeolites as photocatalysts for the degradation of organic pollutants. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04416-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Zhou Q, Yuan Y, Sun Y, Sheng X, Tong Y. Magnetic solid phase extraction of heterocyclic aromatic hydrocarbons from environmental water samples with multiwalled carbon nanotube modified magnetic polyamido-amine dendrimers prior to gas chromatography-triple quadrupole mass spectrometer. J Chromatogr A 2021; 1639:461921. [PMID: 33524931 DOI: 10.1016/j.chroma.2021.461921] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/09/2021] [Accepted: 01/16/2021] [Indexed: 12/25/2022]
Abstract
Present study described a sensitive and efficient method for determination of heterocyclic aromatic hydrocarbons using multiwalled carbon nanotubes modified magnetic polyamido-amine dendrimers (MNPs@PAMAM-Gn@MWCNTs) as adsorbent for magnetic solid-phase extraction (MSPE) coupled with gas chromatography-triple quadrupole mass spectrometer (GC-MS/MS). Some pivotal parameters including PAMAM generation, adsorbent dosage, adsorption time, elution time and volume, pH and humic acid concentration were investigated to achieve the best adsorption efficiencies. Under the optimal conditions, 7-methylquinoline, dibenzothiophene and carbazole had good linearity in the concentration range of 0.005-20 μg L - 1, 9-methylcarbazole, 4-methyldibenzothiophene and 4,6-dimethyl dibenzothiophene had good linearity in the concentration range of 0.001-20 μg L - 1. All the correlation coefficients were higher than 0.996. The detection limits of the targets were in the range of 2.2 × 10-4-1.8 × 10-3 μg L - 1 with precisions less than 8.28% (n = 6). The enrichment factors were in the range of 141-147. The spiked recoveries were in the range of 87.0%-115.1% (n = 3). These results indicated that the method could be a reliable alternative tool for monitoring trace heterocyclic aromatic hydrocarbons in environmental water samples.
Collapse
Affiliation(s)
- Qingxiang Zhou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China.
| | - Yongyong Yuan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yi Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Xueying Sheng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yayan Tong
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| |
Collapse
|
16
|
Yan K, Wu S, Gong G, Sun Y. A new approach of specific determination for 6-chlorobenzo[a]pyrene and 7-chlorobenzo[a]anthracene in six different oils. Food Chem 2020; 316:126344. [DOI: 10.1016/j.foodchem.2020.126344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/24/2019] [Accepted: 01/31/2020] [Indexed: 01/28/2023]
|
17
|
Zaukuu JLZ, Bazar G, Gillay Z, Kovacs Z. Emerging trends of advanced sensor based instruments for meat, poultry and fish quality- a review. Crit Rev Food Sci Nutr 2019; 60:3443-3460. [PMID: 31793331 DOI: 10.1080/10408398.2019.1691972] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Meat and fish chemical composition and sensory attributes are markers of quality that require innovative assessment methods as existing ones are rather technical, laborious, and expensive. Emerging trends of advanced technology instruments have been lauded in the pharmaceutical, cosmetic and food industries for their high sensitivity, customizability, rapidness and affordability. Common among these, are the electronic tongue (e-tongue) and electronic nose (e-nose) but their use for meat and fish quality, remains scanty and scattered. This paper aims to systematically discuss the developing trends, principles and the recent use of e-tongue and e-nose for quality measurements in fish and meat. From over 90 research papers, it was observed that an arsenal of chemometric tools have been pivotal in applying these instruments for rapid quantitative, qualitative and predictive analysis of some physical properties, chemical properties, storability and the authentication of meat and fish. Both instruments require no reagent (waste free analytical procedure) and have been lauded for precision and*accuracy but e-nose may be better suited for meat and fish assessments. Unlike the e-tongue, e-nose requires no liquid sample preparation and portable versions are promising for rapid remote analysis of meat and fish samples that can save cost on transferring carcass to laboratories.
Collapse
Affiliation(s)
- John Lewis Zinia Zaukuu
- Department of Physics and Control, Faculty of Food Science, Szent István University, Budapest, Hungary
| | - George Bazar
- Department of Nutritional Science and Production Technology, Kaposvár University, Kaposvár, Hungary
| | - Zoltan Gillay
- Department of Physics and Control, Faculty of Food Science, Szent István University, Budapest, Hungary
| | - Zoltan Kovacs
- Department of Physics and Control, Faculty of Food Science, Szent István University, Budapest, Hungary
| |
Collapse
|