1
|
Ge K, Du X, Liu H, Meng R, Wu C, Zhang Z, Liang X, Yang J, Zhang H. The cytotoxicity of microcystin-LR: ultrastructural and functional damage of cells. Arch Toxicol 2024; 98:663-687. [PMID: 38252150 DOI: 10.1007/s00204-023-03676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Microcystin-LR (MC-LR) is a toxin produced by cyanobacteria, which is widely distributed in eutrophic water bodies and has multi-organ toxicity. Previous cytotoxicity studies have mostly elucidated the effects of MC-LR on intracellular-related factors, proteins, and DNA at the molecular level. However, there have been few studies on the adverse effects of MC-LR on cell ultrastructure and function. Therefore, research on the cytotoxicity of MC-LR in recent years was collected and summarized. It was found that MC-LR can induce a series of cytotoxic effects, including decreased cell viability, induced autophagy, apoptosis and necrosis, altered cell cycle, altered cell morphology, abnormal cell migration and invasion as well as leading to genetic damage. The above cytotoxic effects were related to the damage of various ultrastructure and functions such as cell membranes and mitochondria. Furthermore, MC-LR can disrupt cell ultrastructure and function by inducing oxidative stress and inhibiting protein phosphatase activity. In addition, the combined toxic effects of MC-LR and other environmental pollutants were investigated. This review explored the toxic targets of MC-LR at the subcellular level, which will provide new ideas for the prevention and treatment of multi-organ toxicity caused by MC-LR.
Collapse
Affiliation(s)
- Kangfeng Ge
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Haohao Liu
- Department of Public Health, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Ruiyang Meng
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunrui Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Zongxin Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiao Liang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jun Yang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Zhang Y, Gao J, Cao L, Du J, Xu G, Xu P. Microcystin-LR-induced autophagy via miR-282-5p/PIK3R1 pathway in Eriocheir sinensis hepatopancreas. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115661. [PMID: 37948941 DOI: 10.1016/j.ecoenv.2023.115661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
With the intensifying climate warming, blue-green algae blooms have become more frequent and severe, releasing environmental hazards such as microcystin that pose potential threats to human and animal health. Autophagy has been shown to play a crucial role in regulating immune responses induced by environmental hazards, enabling cells to adapt to stress and protect against damage. Although microcystin-LR (MC-LR) has been identified to affect autophagy in mammalian, its impact on aquatic animals has been poorly studied. To investigate the toxicological effects of MC-LR in aquatic ecosystems, we constructed a microRNA profile of acute MC-LR stress in the hepatopancreas of the Chinese mitten crab. Interestingly, we found the MC-LR exposure activated autophagy in the hepatopancreas based on the following evidence. Specifically, mRNA expression level of ATG7, Beclin1 and Gabarap was significantly up-regulated, autophagy regulatory pathways were significantly enriched, and numerous autolysosomes and autophagosomes were observed. Additionally, we found that miR-282-5p and its target gene PIK3R1 played important regulatory roles in autophagy by in vivo and in vitro experiments. Overexpression of miR-282-5p mimicked MC-LR-induced autophagy by inhibiting PIK3R1 expression, while miR-282-5p silencing inhibited autophagy by promoting PIK3R1 expression. Altogether, our findings suggest that MC-LR increases miR-282-5p, which then targets inhibition of PIK3R1 to stimulate autophagy. This study focused on the stress response regulatory mechanisms of juvenile crabs to toxic pollutants in water, offering a potential target for alleviating the toxicity of MC-LR. These findings lay a foundation for reducing the toxicity of MC-LR and environmental hazards in organisms.
Collapse
Affiliation(s)
- Yuning Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jiancao Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Liping Cao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jinliang Du
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
3
|
Li Y, Zhang S, Chen Z, Ye Z, Lyu R. Multi-omics analysis unravels effects of salt and oil on substance transformation, microbial community, and transcriptional activity in food waste anaerobic digestion. BIORESOURCE TECHNOLOGY 2023; 387:129684. [PMID: 37586433 DOI: 10.1016/j.biortech.2023.129684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
In this study, through quantitative detection of key substances and enzyme activities, an integrated analysis of 16S rRNA sequencing and metatranscriptomics revealed the mechanisms by which salt and oil influence the biotransformation process during anaerobic digestion (AD). The results demonstrated that a salt concentration of 6 g/L promoted lipid metabolism and hydrogenotrophic methanogenesis, while inhibiting the acetoclastic pathway. An oil concentration of 5 g/L facilitated the expression of key enzyme-encoding genes involved in β-oxidation of long-chain fatty acids, transcription, and acetoclastic methanogenesis. It also promoted the enrichment of syntrophic propionate/butyrate oxidation bacteria (Syntrophomonas and DMER64). Salt/oil co-addition enhanced the expression of genes related to glucose metabolism, amino acid metabolism, organic acid synthesis, and quorum sensing. Furthermore, salt/oil co-addition inhibited the secretion of key enzymes related to methanogens by impeding the transcription process. Collectively, these findings provide systematic insights into how salt and oil affect the biochemical metabolic mechanisms of AD.
Collapse
Affiliation(s)
- Yanzeng Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shenghua Zhang
- College of Harbour and Coastal Engineering, Jimei University, Xiamen 361021, China.
| | - Zhou Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhilong Ye
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Ruoshui Lyu
- Shanghai Guanghua Qidi College, Shanghai 200433, China
| |
Collapse
|
4
|
Cai DM, Mei FB, Zhang CJ, An SC, Lv RB, Ren GH, Xiao CC, Long L, Huang TR, Deng W. The Abnormal Proliferation of Hepatocytes is Associated with MC-LR and C-Terminal Truncated HBX Synergistic Disturbance of the Redox Balance. J Hepatocell Carcinoma 2022; 9:1229-1246. [PMID: 36505941 PMCID: PMC9733568 DOI: 10.2147/jhc.s389574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/23/2022] [Indexed: 12/11/2022] Open
Abstract
Background Microcystin-LR (MC-LR) and hepatitis B virus (HBV) are associated with hepatocellular carcinoma (HCC). However, the concentrations of MC-LR in drinking water and the synergistic effect of MC-LR and HBV on hepatocellular carcinogenesis through their disturbance of redox balance have not been fully elucidated. Methods We measured the MC-LR concentrations in 168 drinking water samples of areas with a high incidence of HCC. The relationships between MC-LR and both redox status and liver diseases in 177 local residents were analyzed. The hepatoma cell line HepG2 transfected with C-terminal truncated hepatitis B virus X gene (Ct-HBX) were treated with MC-LR. Reactive oxygen species (ROS), superoxide dismutase (SOD), glutathione (GSH) and malondialdehyde (MDA) were measured. Cell proliferation, migration, invasion, and apoptosis were assessed with cell activity assays, scratch and transwell assays, and flow cytometry, respectively. The mRNA and protein expression-related redox status genes were analyzed with qPCR and Western blotting. Results The average concentration of MC-LR in well water, river water and reservoir water were 57.55 ng/L, 76.74 ng/L and 132.86 ng/L respectively, and the differences were statistically significant (P < 0.05). The MC-LR levels in drinking water were correlated with liver health status, including hepatitis, clonorchiasis, glutamic pyruvic transaminase abnormalities and hepatitis B surface antigen carriage (all P values < 0.05). The serum MDA increased in subjects who drank reservoir water and were infected with HBV (P < 0.05). In the cell experiment, ROS increased when Ct-HBX-transfected HepG2 cells were treated with MC-LR, followed by a decrease in SOD and GSH and an increase in MDA. MC-LR combined with Ct-HBX promoted the proliferation, migration and invasion of HepG2 cells, upregulated the mRNA and protein expression of MAOA gene, and downregulated UCP2 and GPX1 genes. Conclusion MC-LR and HBV may synergistically affect redox status and play an important role in hepatocarcinoma genesis.
Collapse
Affiliation(s)
- Dong-Mei Cai
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Fan-Biao Mei
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Chao-Jun Zhang
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - San-Chun An
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Rui-Bo Lv
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Guan-Hua Ren
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Chan-Chan Xiao
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Long Long
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China,Guangxi Cancer Molecular Medicine Engineering Research Center, Nanning, Guangxi, 530021, People’s Republic of China
| | - Tian-Ren Huang
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China,Guangxi Cancer Molecular Medicine Engineering Research Center, Nanning, Guangxi, 530021, People’s Republic of China
| | - Wei Deng
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China,Guangxi Cancer Molecular Medicine Engineering Research Center, Nanning, Guangxi, 530021, People’s Republic of China,Correspondence: Wei Deng; Tianren Huang, Department of Experimental Research, Guangxi Medical University Cancer Hospital, No. 71, Hedi Road, Nanning, Guangxi, 530021, People’s Republic of China, Email ;
| |
Collapse
|
5
|
He Q, Wang W, Xu Q, Liu Z, Teng J, Yan H, Liu X. Microcystins in Water: Detection, Microbial Degradation Strategies, and Mechanisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192013175. [PMID: 36293755 PMCID: PMC9603262 DOI: 10.3390/ijerph192013175] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/25/2022] [Accepted: 10/11/2022] [Indexed: 05/12/2023]
Abstract
Microcystins are secondary metabolites produced by some cyanobacteria, a class of cyclic heptapeptide toxins that are stable in the environment. Microcystins can create a variety of adverse health effects in humans, animals, and plants through contaminated water. Effective methods to degrade them are required. Microorganisms are considered to be a promising method to degrade microcystins due to their high efficiency, low cost, and environmental friendliness. This review focuses on perspectives on the frontiers of microcystin biodegradation. It has been reported that bacteria and fungi play an important contribution to degradation. Analysis of the biodegradation mechanism and pathway is an important part of the research. Microcystin biodegradation has been extensively studied in the existing research. This review provides an overview of (1) pollution assessment strategies and hazards of microcystins in water bodies and (2) the important contributions of various bacteria and fungi in the biodegradation of microcystins and their degradation mechanisms, including mlr gene-induced (gene cluster expressing microcystinase) degradation. The application of biodegradable technology still needs development. Further, a robust regulatory oversight is required to monitor and minimize MC contamination. This review aims to provide more references regarding the detection and removal of microcystins in aqueous environments and to promote the application of biodegradation techniques for the purification of microcystin-contaminated water.
Collapse
Affiliation(s)
| | | | | | | | | | - Hai Yan
- Correspondence: (H.Y.); (X.L.)
| | | |
Collapse
|
6
|
Zhu P, Chen G, Liu Y, Wang Q, Wang M, Hu T. Microcystin-leucine arginine exhibits adverse effects on human aortic vascular smooth muscle cells in vitro. Toxicol In Vitro 2022; 84:105450. [PMID: 35905885 DOI: 10.1016/j.tiv.2022.105450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022]
Abstract
Microcystin-leucine arginine (MC-LR) is a kind of toxin produced by cyanobacteria, which can do harm to human and livestock health. MC-LR can easily enter tissues and organs through the blood circulation and accumulate in certain target organs. Vessels are prone to contact with MC-LR during growth and development. Previous study had demonstrated that MC-LR had potential vascular toxicity. However, it is not clear whether MC-LR has adverse effects on vascular smooth muscle cells. In this study, we evaluated the cytotoxicity of MC-LR exposure (0.01, 0.05, 0.1, 0.5, and 1 μM) on human aortic vascular smooth muscle cells (HAVSMCs) in vitro. The data showed that MC-LR exposure inhibited the HAVSMC proliferation and migration, induced HAVSMC apoptosis, cytoskeleton destruction, S-phase arrest, mitochondrial transmembrane potential (MMP) loss, and reactive oxygen species (ROS) production. In addition, MC-LR exposure resulted in the imbalance between oxidants and antioxidants, increased the caspase-3 and caspase-9 activities, and down-regulated the gene expressions (integrin β1, Rho, ROCK, MLC). Taken together, MC-LR could induce the generation of ROS in HAVSMCs, leading to apoptosis by the mitochondrial signaling pathway. MC-LR could also induce cytoskeletal disruption by integrin-mediated FAK/ROCK signaling pathway, leading to cell cycle arrest and the inhibition of HAVSMCs proliferation and migration. The current findings facilitate an understanding of the mechanism of MC-LR toxicity involved in angiocardiopathy.
Collapse
Affiliation(s)
- Panpan Zhu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Guoliang Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yuanli Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Qilong Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Mingxing Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
7
|
Effect of Acute Exposure to the Ionic Liquid 1-Methyl-3-octylimidazolium Chloride on the Embryonic Development and Larval Thyroid System of Zebrafish. Animals (Basel) 2022; 12:ani12111353. [PMID: 35681818 PMCID: PMC9179473 DOI: 10.3390/ani12111353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary In this study, we aimed to evaluate the effect of acute exposure to the ionic liquid 1-methyl-3-octylimidazolium chloride on the embryonic development and larval thyroid system of zebrafish. The results showed that the fish embryonic development, thyroid hormone level, and expression of HPTs-related genes were altered, suggesting that the ionic liquid [C8mim]Cl might pose an aquatic environmental threat to fish. Abstract Previous studies have shown that ILs can induce toxicity in animals, plants, and cells. However, the effect of imidazolium-based ILs on the hypothalamus–pituitary–thyroid (HPT) axis of fish remains unknown. The present study aimed to evaluate the acute effect of [C8mim]Cl on the embryonic development and thyroid-controlled internal secretion system of zebrafish by determining the thyroid hormone level and the expression of HPT-related genes. The results obtained for embryonic developmental toxicity showed the survival rate, heart beats, and body length of fish had decreased 96 h after exposure to [C8mim]Cl, but the hatching rate had increased by the 48 h time point. The transcription levels of HTP-related genes showed that the genes dio3, tg, ttr, tsh, trhrα, trhrβ, trhr2, and tpo were up-regulated, while the expression levels of dio1, trh, tshr, and nis were significantly suppressed. Furthermore, we found that exposure to [C8mim]Cl induced an alteration in the levels of thyroid hormones that increased the T3 but decreased the T4 content. In conclusion, our study indicated that acute exposure to [C8mim]Cl altered the expression of HTP-related genes and disturbed the thyroid hormone level, suggesting that the ionic liquid [C8mim]Cl might pose an aquatic environmental threat to fish.
Collapse
|
8
|
Aljohani AS, Ahmed AA, Althwab SA, Alkhamiss AS, Rasheed Z, Fernández N, Al Abdulmonem W. Gene expression of glutathione S-transferase alpha, glutathione S-transferase rho, glutathione peroxidase, uncoupling protein 2, cytochrome P450 1A, heat shock protein 70 in liver of Oreochromis niloticus upon exposure of microcystin-LR, microcystin-RR and toxic cyanobacteria crude. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Wang P, Li X, Chu S, Su Y, Wu D, Xie B. Metatranscriptomic insight into the effects of antibiotic exposure on performance during anaerobic co-digestion of food waste and sludge. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127163. [PMID: 34530275 DOI: 10.1016/j.jhazmat.2021.127163] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Antibiotics are inevitably entered into anaerobic co-digestion (AcoD) system of food waste (FW) and sludge along with the addition of abundant antibiotic-containing activated sludge. However, the in-depth insights into antibiotics affecting AcoD performance have not comprehensively studied. In present study, the results showed that tetracycline (TC), sulfamethoxazole (SMZ) and erythromycin (ERY) inhibited and delayed methane production except for 5 mg/L ERY. By comparison, TC and SMZ significantly inhibited the cumulative methane yields (one-way ANOVA, p < 0.01), and the inhibition effects were magnified as the antibiotic level increased. Physicochemical and methane yield analysis indicated antibiotics inhibited hydrolysis process and delayed methanogenesis process, which was in line with the declined abundance of acetogenic Proteiniphilum and hydrogenotrophic Methanobacterium during AcoD. Furthermore, metatranscriptomic analysis demonstrated the microbial activities of major organic and energy metabolism were down-regulated under antibiotics exposure, thereby down-regulating the expressions of key coenzymes (coenzymes M, F420, methanofuran) biosynthesis for methanogenesis and methane metabolism. The declined methanogenesis activity was completely consistent with the inhibited activity of dominant Methanosarcina and methane production, proving the importance of Methanosarcina on methane production. This study provides new metatranscriptomic evidence into the effects of antibiotics on methanogenesis during AcoD.
Collapse
Affiliation(s)
- Panliang Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xunan Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Siqin Chu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
10
|
Wang P, Wu D, Su Y, Li X, Xie B. Dissemination of antibiotic resistance under antibiotics pressure during anaerobic co-digestion of food waste and sludge: Insights of driving factors, genetic expression, and regulation mechanism. BIORESOURCE TECHNOLOGY 2022; 344:126257. [PMID: 34752891 DOI: 10.1016/j.biortech.2021.126257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
This study revealed the effects and regulation mechanisms on antibiotic resistance genes (ARGs) dissemination during anaerobic co-digestion (AcoD) of food waste and sludge under the exposure of tetracycline, sulfamethoxazole (SMZ) and erythromycin (ERY). Results indicated antibiotics significantly increased the abundance of ARGs, and selectively enriched integron gene, suggesting antibiotics promoted the dissemination of ARGs. Procrustes analysis indicated that bacterial community, integrons and physicochemical properties displayed significant correlations with ARGs, and they respectively contributed 10.61%, 6.94% and 2.97% of explanations on ARGs variation. Especially, the maximum combined contribution (48.6%) of bacterial community and integrons, implying their significances on ARGs alteration. Metatranscriptomic analysis further demonstrated antibiotics upregulated the expressions of total ARGs and virulence factors, raising potential risks. The proposed mechanisms for ARGs dissemination facilitated by antibiotics might be attributed to the changes of ARGs-regulated functions for inducing DNA/cell damage and DNA conjugation during AcoD.
Collapse
Affiliation(s)
- Panliang Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xunan Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
11
|
Ding W, Shangguan Y, Zhu Y, Sultan Y, Feng Y, Zhang B, Liu Y, Ma J, Li X. Negative impacts of microcystin-LR and glyphosate on zebrafish intestine: Linked with gut microbiota and microRNAs? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117685. [PMID: 34438504 DOI: 10.1016/j.envpol.2021.117685] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Microcystin-LR (MC-LR) and glyphosate (GLY) have been classified as a Group 2B and Group 2A carcinogens for humans, respectively, and frequently found in aquatic ecosystems. However, data on the potential hazard of MC-LR and GLY exposure to the fish gut are relatively scarce. In the current study, a subacute toxicity test of zebrafish exposed to MC-LR (35 μg L-1) and GLY (3.5 mg L-1), either alone or in combination was performed for 21 d. The results showed that MC-LR or/and GLY treatment reduced the mRNA levels of tight junction genes (claudin-5, occludin, and zonula occludens-1) and altered the levels of diamine oxidase and D-lactic, indicating increased intestinal permeability in zebrafish. Furthermore, MC-LR and/or GLY treatment remarkably increased the levels of intestinal IL-1β and IL-8 but decreased the levels of IL-10 and TGF-β, indicating that MC-LR and/or GLY exposure induced an inflammatory response in the fish gut. MC-LR and/or GLY exposure also activated superoxide dismutase and catalase, generally upregulated the levels of p53, bax, bcl-2, caspase-3, and caspase-9, downregulated the levels of caspase-8 and caused notable histological injury in the fish gut. Moreover, MC-LR and/or GLY exposure also significantly altered the microbial community in the zebrafish gut and the expression of miRNAs (miR-146a, miR-155, miR-16, miR-21, and miR-223). Chronic exposure to MC-LR and/or GLY can induce intestinal damage in zebrafish, and this study is the first to demonstrate an altered gut microbiome and miRNAs in the zebrafish gut after MC-LR and GLY exposure.
Collapse
Affiliation(s)
- Weikai Ding
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yingying Shangguan
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yuqing Zhu
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yousef Sultan
- Department of Food Toxicology and Contaminants, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Yiyi Feng
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Bangjun Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yang Liu
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
12
|
Yilmaz S, Ülger TG, Göktaş B, Öztürk Ş, Karataş DÖ, Beyzi E. Cyanotoxin genotoxicity: a review. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1922922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Serkan Yilmaz
- Department of Midwifery, Faculty of Nursing, University of Ankara, Institute for Forensic Sciences, Ankara, Turkey
| | - Taha Gökmen Ülger
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bolu Abant İzzet Baysal University, Bolu, Turkey
| | - Bayram Göktaş
- Department of Health Management, Faculty of Health Sciences, University of Ankara, Ankara, Turkey
| | - Şahlan Öztürk
- Department of Environmental Engineering, Faculty of Engineering, Nevşehir Hacı Bektaş Veli University, Nevşehir, Turkey
| | - Duygu Öztaş Karataş
- Department of Midwifery, Faculty of Nursing, University of Ankara, Ankara, Turkey
| | - Ebru Beyzi
- Vocational School of Health Services, University of Gazi, Ankara, Turkey
| |
Collapse
|
13
|
|