1
|
He Y, Liu T, Larsen DS, Lei Y, Huang M, Zhu L, Daglia M, Xiao X. Barley fermentation on nutritional constituents: structural changes and structure-function correlations. Crit Rev Food Sci Nutr 2025:1-15. [PMID: 39919835 DOI: 10.1080/10408398.2025.2461733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Over the past few years, the demand for healthy grains has become increasingly important. Barley is a basic material for food and animal feed, which is considered an excellent source of multiple nutrients. However, due to limitations in processing techniques, the nutritional attributes of barley have not been completely realized. The functional profile of barley nutrients can be effectively improved by fermentation, due in large to the structural alteration of barley nutrients. The current review outlines the structural changes of barley nutrients during fermentation and summarizes the potential mechanisms by which structural alteration occurs. Correlations between the nutrient structures and their nutritional properties are also discussed. In general, fermentation leads to decreased particle size and modified internal structures of macromolecular nutrients. Enzyme action, pH alterations and interactions between nutrient matrices may contribute to these structural alterations. Barley nutrients with modified structure exhibit enhanced health promoting functions and digestive characteristics, which will further contribute to the utilization of barley resources in the food industry.
Collapse
Affiliation(s)
- Yufeng He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Tao Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Danaè S Larsen
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Yuexin Lei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Manchun Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lin Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Maria Daglia
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Wei F, Jiang H, Zhu C, Zhong L, Lin Z, Wu Y, Song L. The co-fermentation of whole-grain black barley and quinoa improves murine cognitive impairment induced by a high-fat diet via altering gut microbial ecology and suppressing neuroinflammation. Food Funct 2024; 15:11667-11685. [PMID: 39526896 DOI: 10.1039/d4fo02704c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A high-fat diet (HFD) is associated with various adverse health outcomes, including cognitive impairment and an elevated risk of neurodegenerative conditions. This relationship is partially attributed to the influence of an HFD on the gut microbiota. The objective of this research was to evaluate the neuroprotective benefits of co-fermented black barley and quinoa with Lactobacillus (FG) against cognitive impairments triggered by an HFD and to investigate the microbiota-gut-brain axis mechanisms involved. C57BL/6J mice were randomized into four groups: the normal control group (NC, n = 10), the high-fat diet group (HFD, n = 10), the high-fat diet group supplemented with FG (HFG, 10 mL per kg BW, n = 10), and the high-fat diet group supplemented with Lactobacillus (HFL, 10 mL per kg BW, n = 10). Our results showed that the FG intervention enhanced the behavioral and locomotor skills of the mice, elevated the levels of dopamine (DA) and norepinephrine (NPI) in brain tissues, and alleviated synaptic ultrastructural damage in the hippocampus. Furthermore, FG intervention was observed to exert a protective effect on both the blood-brain barrier and the colonic barrier, as evidenced by an increase in the mRNA levels of Zona occludens-1 (ZO-1), Claudin-4, and Occludin in the hippocampus and colon. These beneficial effects may be attributed to FG's regulation of gut microbiota dysbiosis, which involves the restoration of intestinal flora diversity, reduction of the Firmicutes/Bacteroidetes (F/B) ratio, and a decrease in the levels of pro-inflammatory bacteria such as s_Escherichia coli E and g_Escherichia; moreover, there was an increase in the abundances of anti-inflammatory bacteria, such as s_Bacteroides thetaiotaomicron and s_Parabacteroides goldsteinii. Metagenomic analysis revealed that the FG treatment downregulated the lipopolysaccharide (LPS) pathway and upregulated neurotransmitter biosynthetic pathways. These probiotic effects of FG resulted in reduced production and "leakage" of LPS and decreased mRNA expression of Toll-like receptor 4 (Tlr4), cluster of differentiation 14 (CD14), and myeloid differentiation factor 88 (Myd88) in hippocampal and colon tissues. Consequently, a reduction was observed in the levels of inflammatory cytokines in the serum, hippocampus, and colon, along with suppression of the immunoreactivity of microglia and astrocytes. Our results suggest that FG may serve as an intervention strategy for preventing cognitive impairments caused by an HFD.
Collapse
Affiliation(s)
- Fenfen Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Huibin Jiang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chuang Zhu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lingyue Zhong
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zihan Lin
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yan Wu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lihua Song
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
3
|
Mazumder MHH, Gandhi J, Majumder N, Wang L, Cumming RI, Stradtman S, Velayutham M, Hathaway QA, Shannahan J, Hu G, Nurkiewicz TR, Tighe RM, Kelley EE, Hussain S. Lung-gut axis of microbiome alterations following co-exposure to ultrafine carbon black and ozone. Part Fibre Toxicol 2023; 20:15. [PMID: 37085867 PMCID: PMC10122302 DOI: 10.1186/s12989-023-00528-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Microbial dysbiosis is a potential mediator of air pollution-induced adverse outcomes. However, a systemic comparison of the lung and gut microbiome alterations and lung-gut axis following air pollution exposure is scant. In this study, we exposed male C57BL/6J mice to inhaled air, CB (10 mg/m3), O3 (2 ppm) or CB + O3 mixture for 3 h/day for either one day or four consecutive days and were euthanized 24 h post last exposure. The lung and gut microbiome were quantified by 16 s sequencing. RESULTS Multiple CB + O3 exposures induced an increase in the lung inflammatory cells (neutrophils, eosinophils and B lymphocytes), reduced absolute bacterial load in the lungs and increased load in the gut. CB + O3 exposure was more potent as it decreased lung microbiome alpha diversity just after a single exposure. CB + O3 co-exposure uniquely increased Clostridiaceae and Prevotellaceae in the lungs. Serum short chain fatty acids (SCFA) (acetate and propionate) were increased significantly only after CB + O3 co-exposure. A significant increase in SCFA producing bacterial families (Ruminococcaceae, Lachnospiraceae, and Eubacterium) were also observed in the gut after multiple exposures. Co-exposure induced significant alterations in the gut derived metabolite receptors/mediator (Gcg, Glp-1r, Cck) mRNA expression. Oxidative stress related mRNA expression in lungs, and oxidant levels in the BALF, serum and gut significantly increased after CB + O3 exposures. CONCLUSION Our study confirms distinct gut and lung microbiome alterations after CB + O3 inhalation co-exposure and indicate a potential homeostatic shift in the gut microbiome to counter deleterious impacts of environmental exposures on metabolic system.
Collapse
Affiliation(s)
- Md Habibul Hasan Mazumder
- Department of Physiology, Pharmacology, and Toxicology, Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Jasleen Gandhi
- Department of Microbiology, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Nairrita Majumder
- Department of Physiology, Pharmacology, and Toxicology, Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Lei Wang
- Department of Microbiology, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Robert Ian Cumming
- Department of Medicine, Duke University Medical Center, Durham, NC, 2927, USA
| | - Sydney Stradtman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Murugesan Velayutham
- Department of Physiology, Pharmacology, and Toxicology, Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Quincy A Hathaway
- Heart and Vascular Institute, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Jonathan Shannahan
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Gangqing Hu
- Department of Microbiology, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Timothy R Nurkiewicz
- Department of Physiology, Pharmacology, and Toxicology, Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Robert M Tighe
- Department of Medicine, Duke University Medical Center, Durham, NC, 2927, USA
| | - Eric E Kelley
- Department of Physiology, Pharmacology, and Toxicology, Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Salik Hussain
- Department of Physiology, Pharmacology, and Toxicology, Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA.
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Microbiology, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
4
|
The regulatory effect of fermented black barley on the gut microbiota and metabolic dysbiosis in mice exposed to cigarette smoke. Food Res Int 2022; 157:111465. [DOI: 10.1016/j.foodres.2022.111465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022]
|
5
|
Guan Q, Ding XW, Zhong LY, Zhu C, Nie P, Song LH. Beneficial effects of Lactobacillus-fermented black barley on high fat diet-induced fatty liver in rats. Food Funct 2021; 12:6526-6539. [PMID: 34095944 DOI: 10.1039/d1fo00290b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A long-term high-fat (HF) diet can cause metabolic disorders, which might induce visceral obesity and ectopic triglyceride storage (e.g., hepatic steatosis), and increase hepatic oxidative stress. Oxidative stress plays a significant role in the development of complications associated with obesity. Fermented whole cereal foods exhibit healthy potential due to their unique phytochemical composition and the presence of probiotics. In the present study, the regular nutrients and phytochemicals of Lactobacillus-fermented black barley (Hordeum distichum L.) were analyzed. Further, the black barley fermentation broth (1 mL per 100 g BW per d, equivalent to 1 mL per kg BW of daily human intake) was administered orally to the rats fed on a high fat diet (HF). The anti-oxidative activity and hepatic metabolic profile of Lactobacillus-fermented black barley were investigated. The results showed that the fermentation processing significantly increased the contents of polyphenols (e.g., ferulic acid, etc.), flavonoids (e.g., flavone, etc.), vitamin B1 and B2, partial mineral elements (e.g., Ca, etc.), and thymine. Furthermore, compared to the HF-fed only rats, fermented black barley treatment significantly increased the activities of SOD (superoxide dismutase) and GSH-PX (glutathione peroxidase), and decreased the level of TBARS (thiobarbituric acid reactive substances) in serum, the levels of TG (triglyceride), TC (total cholesterol), NEFA (non-esterified fatty acid) in the liver, and the levels of TC, NEFA in the adipose tissue. This suggested the beneficial effects of fermented black barley on ameliorating oxidative stress and hepatic steatosis, which could be attributed to its regulatory role in the hepatic metabolism of glycerophospholipids, nicotinate and nicotinamide, glutathione, and nucleotide, and on the expression of genes related to oxidative stress (Heat shock protein 90 and reactive oxygen species modulator 1).
Collapse
Affiliation(s)
- Qi Guan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | | | | | | | | | | |
Collapse
|
6
|
Zhu C, Guan Q, Song C, Zhong L, Ding X, Zeng H, Nie P, Song L. Regulatory effects of Lactobacillus fermented black barley on intestinal microbiota of NAFLD rats. Food Res Int 2021; 147:110467. [PMID: 34399465 DOI: 10.1016/j.foodres.2021.110467] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 02/07/2023]
Abstract
Gut microbiota dysbiosis and oxidative stress may play important roles in the progression of nonalcoholic fatty liver disease (NAFLD). Fermented foods contain probiotics and other bioactive components that may improve gastrointestinal health and provide other health benefits. Here, we investigated the effect of Lactobacillus-fermented black barley on NAFLD rats. Adult Sprague Dawley rats were randomized into four groups: normal chow diet (NC), high-fat diet (HF), HF + fermented black barley treatment (HB) and HF + Lactobacillus treatment (HL). The rats in the HB and HL groups were continuously administered fermented black barley or Lactobacillus, respectively, for 12 weeks (1 mL/100 g·BW, containing 1 × 108 CFU/mL Lactobacillus). Compared with the HF treatment, HB treatment effectively inhibited the increase in body weight, liver and abdominal fat indexes and hepatic lipids (p < 0.01), increased hepatic SOD activity (p < 0.05), decreased thiobarbituric acid reactive substances (TBARSs) (p < 0.01) and improved liver function. Moreover, Lactobacillus-fermented black barley exhibited regulatory effect on high-fat diet-induced intestinal microbiota dysbiosis by increasing the relative microbiota abundance and diversity, increasing the relative abundance of Bacteroidetes, decreasing the Firmicutes/Bacteroidetes ratio, increasing the abundances of some intestinal probiotics (such as Akkermansia and Lactococcus), and influencing some of the fecal metabolites related to hormones and lipid metabolism. The supplementation of fermented cereal food might be a new effective and safe preventive dietary strategy against NAFLD.
Collapse
Affiliation(s)
- Chuang Zhu
- Department of Food Science and Engineer, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Guan
- Department of Food Science and Engineer, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chenwei Song
- Department of Food Science and Engineer, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lingyue Zhong
- Department of Food Science and Engineer, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinwen Ding
- Department of Food Science and Engineer, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Zeng
- Department of Food Science and Engineer, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pan Nie
- Department of Food Science and Engineer, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lihua Song
- Department of Food Science and Engineer, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
7
|
Das G, Paramithiotis S, Sundaram Sivamaruthi B, Wijaya CH, Suharta S, Sanlier N, Shin HS, Patra JK. Traditional fermented foods with anti-aging effect: A concentric review. Food Res Int 2020; 134:109269. [PMID: 32517898 DOI: 10.1016/j.foodres.2020.109269] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 12/22/2022]
Abstract
Fermentation has been applied since antiquity as a way to preserve foodstuff or as a necessary step in the production of a variety of products. The research was initially focused on accurate description of production procedure and identification of parameters that may affect the composition and dynamics of the developing micro-communities, since the major aim was standardization and commercial exploitation of the products. Soon it was realized that consumption of these products was associated with an array of health benefits, such as anti-hypertensive, anti-inflammatory, anti-diabetic, anti-carcinogenic and anti-allergenic activities. These were credited to the microorganisms present in the fermented products as well as their metabolic activities and the bio-transformations that took place during the fermentation process. Aging has been defined as a gradual decline in the physiological function and concomitantly homeostasis, which is experienced by all living beings over time, leading inevitably to age-associated injuries, diseases, and finally death. Research has focused on effective strategies to delay this process and thus increase both lifespan and well-being. Fermented food products seem to be a promising alternative due to the immunomodulatory effect of microorganisms and elevated amounts of bioactive compounds. Indeed, a series of anti-aging related benefits have been reported, some of which have been attributed to specific compounds such as genistein and daidzein in soybeans, while others are yet to be discovered. The present article aims to collect and critically discuss all available literature regarding the anti-aging properties of fermented food products.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Goyangsi, South Korea
| | - Spiros Paramithiotis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Christofora Hanny Wijaya
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Bogor, Indonesia
| | - Sigit Suharta
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Bogor, Indonesia
| | - Nevin Sanlier
- Ankara Medipol University, School of Health Science, Department of Nutrition and Dietetics, Ankara, Turkey
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyang, South Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Goyangsi, South Korea.
| |
Collapse
|