1
|
Liu Y, Cai S, He X, He X, Yue T. Construction of a Food Safety Evaluation System Based on the Factor Analysis of Mixed Data Method. Foods 2024; 13:2680. [PMID: 39272446 PMCID: PMC11394990 DOI: 10.3390/foods13172680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Food safety evaluation, which aims to reflect food safety status, is an important part of food safety management. Traditional food evaluation methods often consider limited data, and the evaluation process is subjective, time-consuming, and difficult to popularize. We developed a new food safety evaluation system that incorporates simple qualification degrees, food consumption, project hazard degrees, sales channels, food production regions, and other information obtained from food safety sampling and inspection to reflect the food safety situation accurately, objectively, and comprehensively. This evaluation model combined the statistical method and the machine learning method. The optimal distance method was used to calculate the basic qualification degree, and then expert elicitation via a questionnaire and the factor analysis of mixed data method (FADM) was applied to modify the basic qualification degree so as to obtain the food safety index, which indicates food safety status. Then, the effectiveness of this new method was verified by calculating and analyzing of the food safety index in region X. The results show that this model can clearly distinguish food safety levels in different cities and food categories and identify food safety trends in different years. Thus, this food safety evaluation system based on the FADM quantifies the real food safety level, screens out cities and food categories with high food safety risks, and, finally, helps to optimize the allocation of regulatory resources and provide technical and theoretical support for government decision-making.
Collapse
Affiliation(s)
- Yiqiong Liu
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Shengmei Cai
- School of Information Sciences and Technology, Northwest University, Xi'an 710069, China
| | - Xuelei He
- School of Information Sciences and Technology, Northwest University, Xi'an 710069, China
| | - Xiaowei He
- School of Information Sciences and Technology, Northwest University, Xi'an 710069, China
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi'an 710069, China
| |
Collapse
|
2
|
Zhuzzhassarova G, Azarbayjani F, Zamaratskaia G. Fish and Seafood Safety: Human Exposure to Toxic Metals from the Aquatic Environment and Fish in Central Asia. Int J Mol Sci 2024; 25:1590. [PMID: 38338869 PMCID: PMC10855114 DOI: 10.3390/ijms25031590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Toxic metals that are released into aquatic environments from natural and anthropogenic sources are absorbed by aquatic organisms and may threaten the health of both aquatic organisms and humans. Despite this, there have been limited studies on the metal concentrations in fish and humans in Central Asia. This study summarizes the presence of the toxic metals arsenic (As), mercury (Hg), cadmium (Cd), and lead (Pb) in aquatic bodies, fish, and seafood products and conducts a risk assessment. While certain areas show a notable increase in fish and seafood consumption, the overall intake in Central Asia remains below recommended levels. However, in regions with high fish consumption, there is a potential for elevated exposure to toxic metals, especially Hg. The risk of exposure to toxic metals in fish and seafood in Central Asia emerges as a significant concern. Comprehensive monitoring, regulation, and remediation efforts are imperative to ensure the safety of water sources and food consumption in the region. Public awareness campaigns and the establishment of dietary guidelines play a crucial role in minimizing the health risks associated with consumption.
Collapse
Affiliation(s)
- Gulnur Zhuzzhassarova
- Department of Veterinary Sanitation, S. Seifullin Kazakh Agro-Technical University, Astana 010 011, Kazakhstan;
| | - Faranak Azarbayjani
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden;
| | - Galia Zamaratskaia
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| |
Collapse
|
3
|
Kuo KY, Chen Y, Chuang Y, Lin P, Lin YJ. Worldwide serum concentration-based probabilistic mixture risk assessment of perfluoroalkyl substances among pregnant women, infants, and children. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115712. [PMID: 38000299 DOI: 10.1016/j.ecoenv.2023.115712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Pregnant women, infants, and children are particularly vulnerable to perfluoroalkyl substances (PFASs), yet little is known about related health risks. Here, we aimed to study the four main PFASs: perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorohexanesulfonic acid (PFHxS), and assess the mixture risks of co-exposure to PFASs for pregnant women and children as well as for infants associated with maternal PFAS exposure at national and global scales, based on biomonitoring data on serum. We conducted a literature search and aggregated 69 data sources across 22 countries/regions from 2010 to 2020 to profile the serum concentrations of these four PFASs in pregnant women and children. Based on toxicity assessments by regulatory authorities, we determined conservative reference levels (RfLs) in the serum for the primary adverse effects of PFASs, including hepatic, developmental, and immune effects. The cumulative hazard quotient (HQ) was combined with probabilistic analysis to compare serum levels with RfLs and to quantify mixture risks. Our analysis revealed that PFOS was the dominant PFAS in maternal and child serum worldwide, with median levels 2.5-10 times higher than those of PFOA, PFNA, and PFHxS. The estimated global median serum levels of PFOS were 6.17 ng/mL for pregnant women and 4.85 ng/mL for children, and their immune effects in pregnant women and children are concerning as their cumulative HQs could exceed 1. For infants, the cumulative HQs for both developmental and immune effects could also be > 1, suggesting that maternal exposure to PFASs during pregnancy and breastfeeding may pose concerns for infant development and immunity. Our national and global serum database and risk assessment offer additional insights into PFAS exposures and mixture risks in susceptible populations, serving as a reference for evaluating the effectiveness of ongoing regulatory mitigation measures.
Collapse
Affiliation(s)
- Kuan-Yu Kuo
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yu Chen
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yi Chuang
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Pinpin Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County 350, Taiwan
| | - Yi-Jun Lin
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County 350, Taiwan.
| |
Collapse
|
4
|
Niu L, Li C, Wang W, Zhang J, Scali M, Li W, Liu H, Tai F, Hu X, Wu X. Cadmium tolerance and hyperaccumulation in plants - A proteomic perspective of phytoremediation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114882. [PMID: 37037105 DOI: 10.1016/j.ecoenv.2023.114882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/27/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Cadmium (Cd) is a major environmental pollutant and poses a risk of transfer into the food chain through contaminated plants. Mechanisms underlying Cd tolerance and hyperaccumulation in plants are not fully understood. Proteomics-based approaches facilitate an in-depth understanding of plant responses to Cd stress at the systemic level by identifying Cd-inducible differentially abundant proteins (DAPs). In this review, we summarize studies related to proteomic changes associated with Cd-tolerance mechanisms in Cd-tolerant crops and Cd-hyperaccumulating plants, especially the similarities and differences across plant species. The enhanced DAPs identified through proteomic studies can be potential targets for developing Cd-hyperaccumulators to remediate Cd-contaminated environments and Cd-tolerant crops with low Cd content in the edible organs. This is of great significance for ensuring the food security of an exponentially growing global population. Finally, we discuss the methodological drawbacks in current proteomic studies and propose that better protocols and advanced techniques should be utilized to further strengthen the reliability and applicability of future Cd-stress-related studies in plants. This review provides insights into the improvement of phytoremediation efficiency and an in-depth study of the molecular mechanisms of Cd enrichment in plants.
Collapse
Affiliation(s)
- Liangjie Niu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Chunyang Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wei Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China.
| | - Jinghua Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Monica Scali
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Weiqiang Li
- Jilin Da'an Agro-ecosystem National Observation Research Station, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Hui Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Fuju Tai
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Xiuli Hu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Xiaolin Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
5
|
Effects of Steaming on the Concentration, Distribution and Bioaccessibility of Cadmium in Chlamys farreri Tissues. Food Res Int 2022; 162:112126. [DOI: 10.1016/j.foodres.2022.112126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/26/2022] [Accepted: 11/06/2022] [Indexed: 11/14/2022]
|
6
|
Liu H, Li H, Zhang X, Gong X, Han D, Zhang H, Tian X, Xu Y. Metabolomics comparison of metabolites and functional pathways in the gills of Chlamys farreri under cadmium exposure. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103683. [PMID: 34052434 DOI: 10.1016/j.etap.2021.103683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/17/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
The biological processes of Chlamys farreri (C. farreri), an economically important shellfish, are affected when exposed to Cd2+. In this study, changes to biological processes and metabolite levels in C. farreri were examined when exposed to Cd2+. Ultra-performance liquid chromatography-tandem TOF mass spectrometry (UPLC-TOF/MS)-based untargeted metabolomics was used to examine changes in the metabolism of C. farreri gill tissue exposed to 0.050 mg/L Cd2+ for 96 h in a natural environment. Sixty-eight metabolites with significant differences were screened by multivariate statistical analysis. Eleven enriched functional pathways displayed significant changes in inactivity. Differential metabolites, mainly C00157 and C00350, have a significant impact on functional pathways and can be used as potential major biomarkers. Lipid phosphorylation, disruption of signal transduction, and autophagy activation were observed to change in C. farreri when exposed to Cd. The metabolome information supplements research on C. farreri exposure to heavy metals and provides a platform for further multi-omics analysis.
Collapse
Affiliation(s)
- Huan Liu
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai, 200120, China
| | - Huanjun Li
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, China
| | - Xiuzhen Zhang
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, China
| | - Xianghong Gong
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, China
| | - Dianfeng Han
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, China
| | - Huawei Zhang
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, China
| | - Xiuhui Tian
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, China
| | - Yingjiang Xu
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, China.
| |
Collapse
|
7
|
Wang X, Li C, Jia Z, Xu T, Wang Y, Sun M, Han S, Wang X, Qiu L. Regulation of apoptosis by Pacific oyster Crassostrea gigas reveals acclimation strategy to CO 2 driven acidification. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112235. [PMID: 33873079 DOI: 10.1016/j.ecoenv.2021.112235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/05/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Ocean acidification (OA) has posed formidable threats to marine calcifiers. In response to elevated CO2 levels, marine calcifiers have developed multiple strategies to survive, such as taking advantage of apoptosis, but its regulation mechanism remains largely unknown. Here, we used the Pacific oyster Crassostrea gigas as model to understand the apoptotic responses and regulation mechanism at short- (7 d) to long-term (56 d) CO2 exposure (pH = 7.50). The apoptosis of hemocytes was significantly induced after short-term treatment (7-21 d) but was suppressed under long-term CO2 exposure (42-56 d). Similarly, caspase-3 and caspase-9 were also increased post short-term exposure and fell back to normal levels after long-term exposure. These data together indicated diverse regulation mechanisms of apoptosis through different exposure periods. Through analysis of the B-cell lymphoma 2 (Bcl-2) family mitochondrial apoptosis regulators, we showed that only CgBcl-XL's expression kept at high levels after 42- and 56-day CO2 exposure. CgBcl-XL shared sequence, and structural similarity with its mammalian counterpart, and knockdown of CgBcl-XL in hemocytes via RNA interference promoted apoptosis. The protein level of CgBcl-XL was significantly increased after long-term CO2 exposure (28-56 d), and its distribution in hemocytes became more concentrated and dense. Therefore, CgBcl-XL serves as an essential anti-apoptotic protein for tipping the balance of cell apoptosis, which may play a key role in survival under long-term CO2 exposure. These results reveal a potential adaptation strategy of oysters towards OA and the variable environment changes through the modulation of apoptosis.
Collapse
Affiliation(s)
- Xiudan Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Changmei Li
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhihao Jia
- Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou 215123, China
| | - Tongxiao Xu
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yilin Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Mingzhu Sun
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shuhui Han
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xia Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Limei Qiu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
8
|
A phosphorescence resonance energy transfer-based "off-on" long afterglow aptasensor for cadmium detection in food samples. Talanta 2021; 232:122409. [PMID: 34074399 DOI: 10.1016/j.talanta.2021.122409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 11/22/2022]
Abstract
Cadmium contamination is a severe food safety risk for human health. Herein, a long afterglow "off-on" phosphorescent aptasensor was developed based on phosphorescence resonance energy transfer (PRET) for the detection of Cd2+ in complex samples which minimizes the interference of background fluorescence. In this scheme, initially the phosphorescence of Cd2+-binding aptamer conjugated long afterglow nanoparticles (Zn2GeO4:Mn) was quenched by black hole quencher 1 (BHQ1) modified complementary DNA. Upon encountering of Cd2+, the aptamer interacted with Cd2+ and the complementary DNA with BHQ1 was released, leading to phosphorescence recovery. The content of Cd2+ could be quantified by the intensity of phosphorescence recovery with 100 μs gate time (which eliminated the sample autofluorescence) with a linear relationship between 0.5 and 50 μg L-1 and a limit of detection (LOD) of 0.35 μg L-1. This method was successfully demonstrated for Cd2+ detection in drinking water and yesso scallop samples. The "off-on" phosphorescent aptasensor based on PRET of long afterglow nanomaterials could be an effective tool for Cd2+ detection in food samples.
Collapse
|
9
|
Shi P, Yan H, Fan X, Xi S. A benchmark dose analysis for urinary cadmium and type 2 diabetes mellitus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116519. [PMID: 33493762 DOI: 10.1016/j.envpol.2021.116519] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/16/2020] [Accepted: 01/13/2021] [Indexed: 05/22/2023]
Abstract
Cadmium (Cd) is a heavy metal referred to as one of the environmental endocrine disruptors. The dose-dependent association between Cd and type 2 diabetes mellitus (T2DM) has been elucidated, but the corresponding threshold has not been established. To evaluate the urinary Cd levels associated with T2DM, we perform a benchmark dose (BMD) analysis based on data from the 1999-2006 National Health and Nutrition Examination Survey (NHANES). Weighted datasets were generated by the inverse probability of treatment weighting analysis to develop the robustness of our analysis. We inferred a strong positive association between urinary Cd and T2DM in unweighted and weighted populations. BMD and its low limit (BMDL) estimates for 5% benchmark responses (BMR) was 0.297 (0.198) and 0.190 (0.178) μg/g creatinine for each population, respectively. The sensitivity analysis by race, followed by weight of sum method showed similar estimates of urinary Cd level for the risk of developing T2DM, which are rather low and far less than those for the renal or bone disease development risk. This indicates that T2DM can be a sensitive outcome of Cd exposure and therefore should be taken into account in the development of standard regulatory limits for safe exposure to Cd.
Collapse
Affiliation(s)
- Peng Shi
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, China
| | - Huanchang Yan
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xingjun Fan
- Department of Environmental and Occupational Health, School of Public Health, Mudanjiang Medical University, Mudanjiang, China
| | - Shuhua Xi
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, China.
| |
Collapse
|
10
|
Hsueh YM, Huang YL, Chen HH, Shiue HS, Lin YC, Hsieh RL. Alcohol Consumption Moderated the Association Between Levels of High Blood Lead or Total Urinary Arsenic and Bone Loss. Front Endocrinol (Lausanne) 2021; 12:782174. [PMID: 34925242 PMCID: PMC8678633 DOI: 10.3389/fendo.2021.782174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022] Open
Abstract
Metal exposure and lifestyle are important risk factors for osteoporosis. Our study aimed to investigate the association between red blood cell lead and cadmium, total urinary arsenic, and plasma selenium levels and bone mineral density (BMD). In addition, we explored whether alcohol and coffee consumption modified the association between BMD and metals and metalloids. In total, 437 participants who underwent adult or senile physical examinations were recruited. Bone loss was defined as a calcaneus BMD T-score of <-1. Blood cadmium and lead and plasma selenium levels were measured using inductively coupled plasma mass spectrometry. Levels of urinary arsenic species were determined using high-performance liquid chromatography-hydride generator-atomic absorption spectrometry. The total urinary arsenic level was defined as the sum of the levels of urinary arsenic species. The BMD T-scores decreased significantly with increasing blood lead levels. The BMD T-scores also showed a downward trend with increasing total urinary arsenic levels. The odds ratio (OR) and 95% confidence interval (CI) for bone loss in patients with blood lead levels >57.58 versus 35.74 μg/dL were 1.98 and 1.17-3.34. In addition, the greater the lead or arsenic exposure and alcohol intake was the higher the OR for bone loss with multivariate ORs of 2.57 (95% CI 1.45-4.56) and 2.96 (95% CI 1.67-5.22), respectively. To the best of our knowledge, this study is the first to demonstrate that high total urinary arsenic or blood lead levels and frequent or occasional alcohol consumption had a significant multiplicative interaction for increasing the OR for bone loss.
Collapse
Affiliation(s)
- Yu-Mei Hsueh
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ya-Li Huang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsi-Hsien Chen
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Horng-Sheng Shiue
- Department of Chinese Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ying-Chin Lin
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Geriatric Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ru-Lan Hsieh
- Department of Physical Medicine and Rehabilitation, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- *Correspondence: Ru-Lan Hsieh,
| |
Collapse
|