1
|
Xie J, Zheng S, Wei H, Shi Z, Liu Z, Zhang J. Assessing the interactive effects of microplastics and acid rain on cadmium toxicity in rice seedlings: Insights from physiological and transcriptomic analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175533. [PMID: 39155013 DOI: 10.1016/j.scitotenv.2024.175533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/20/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
In heavy metal-contaminated areas, the simultaneous occurrence of increasing microplastic pollution and persistent acid rain poses a serious threat to food security. However, the mechanisms of combined exposure to microplastics (MP) and acid rain (AR) on the toxicity of cadmium (Cd) in rice seedlings remain unclear. Our study investigated the combined effects of exposure to polyvinyl chloride microplastics and AR (pH 4.0) on the toxicity of Cd (0.3, 3, and 10 mg/L) in rice seedlings. The results showed that at low Cd concentrations, the combined exposure had no significant effect, but at high Cd concentrations, it alleviated the effects of Cd stress. The combined application of MP and AR alleviated the inhibitory effects of Cd on seedling growth and chlorophyll content. Under high Cd concentrations (10 mg/L), the simultaneous addition of MP and AR significantly reduced the production of reactive oxygen species (ROS), the content of malondialdehyde (MDA), and the activity of the superoxide dismutase (SOD). Compared with AR or MP alone, the combination of MP and AR reduced root cell damage and Cd accumulation in rice seedlings. Transcriptomic analysis confirmed that under high Cd concentrations, the combination of MP and AR altered the expression levels of genes related to Cd transport, uptake, MAPK kinase, GSTs, MTs, and transcription factors, producing a synergistic effect on oxidative stress and glutathione metabolism. These results indicate that co-exposure to MP and AR affected the toxicity of Cd in rice seedlings and alleviated Cd toxicity under high Cd concentrations to some extent. These findings provide a theoretical basis for evaluating the toxicological effects of microplastic and acid rain pollution on crop growth in areas contaminated with heavy metals, and are important for safe agricultural production and ecological security.
Collapse
Affiliation(s)
- Jiefen Xie
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Shaoyan Zheng
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hui Wei
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoji Shi
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Ziqiang Liu
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Jiaen Zhang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Wei L, Li J, Qu K, Chen H, Wang M, Xia S, Cai H, Long XE, Miao Y, Liu D. Organic fertilizer application promotes the soil nitrogen cycle and plant starch and sucrose metabolism to improve the yield of Pinellia ternata. Sci Rep 2024; 14:12722. [PMID: 38830940 PMCID: PMC11148117 DOI: 10.1038/s41598-024-63564-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/30/2024] [Indexed: 06/05/2024] Open
Abstract
Pinellia ternata (Thunb.) Breit is a traditional Chinese medicine with important pharmacological effects. However, its cultivation is challenged by soil degradation following excessive use of chemical fertilizer. We conducted an experiment exploring the effects of replacing chemical fertilizers with organic fertilizers (OF) on the growth and yield of P. ternata, as well as on the soil physicochemical properties and microbial community composition using containerized plants. Six fertilization treatments were evaluated, including control (CK), chemical fertilizer (CF), different proportions of replacing chemical fertilizer with organic fertilizer (OM1-4). Containerized P. ternata plants in each OF treatment had greater growth and yield than the CK and CF treatments while maintaining alkaloid content. The OM3 treatment had the greatest yield among all treatments, with an increase of 42.35% and 44.93% compared to the CK and CF treatments, respectively. OF treatments improved soil quality and fertility by enhancing the activities of soil urease (S-UE) and sucrase (S-SC) enzymes while increasing soil organic matter and trace mineral elements. OF treatments increased bacterial abundance and changed soil community structure. In comparison to the CK microbial groups enriched in OM3 were OLB13, Vicinamibacteraceae, and Blrii41. There were also changes in the abundance of gene transcripts among treatments. The abundance of genes involved in the nitrogen cycle in the OM3 has increased, specifically promoting the transformation of N-NO3- into N-NH4+, a type of nitrogen more easily absorbed by P. ternata. Also, genes involved in "starch and sucrose metabolism" and "plant hormone signal transduction" pathways were positively correlated to P. ternata yield and were upregulated in the OM3 treatment. Overall, OF in P. ternata cultivation is a feasible practice in advancing sustainable agriculture and is potentially profitable in commercial production.
Collapse
Affiliation(s)
- Lu Wei
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Jinxin Li
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Kaili Qu
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Hong Chen
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Mingxing Wang
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Shuaijie Xia
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Huixia Cai
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xi-En Long
- School of Geographic Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Yuhuan Miao
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Dahui Liu
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
3
|
Liu W, Fang J, Liang Y, Wang X, Zhang Q, Wang J, He M, Wang W, Deng J, Ren C, Zhang W, Han X. Acid rain reduced soil carbon emissions and increased the temperature sensitivity of soil respiration: A comprehensive meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171370. [PMID: 38438037 DOI: 10.1016/j.scitotenv.2024.171370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
Soil respiration the second-largest carbon flux in terrestrial ecosystems, has been extensively studied across a wide range of biomes. Surprisingly, no consensus exist on how acid rain (AR) impacts the spatiotemporal pattern of soil respiration. Therefore, we conducted a meta-analysis using 318 soil respiration and 263 soil respiration temperature sensitivity (Q10) data points obtained from 48 studies to assess the impact of AR on soil respiration components and their Q10. The results showed that AR reduced soil total respiration (Rt) and soil autotrophic respiration (Ra) by 7.41 % and 20.75 %, respectively. As the H+ input increased, the response rates of Ra to AR (RR-Ra) and soil heterotrophic respiration (Rh) to AR (RR-Rh) decreased and increased, respectively. With increased AR duration, the RR-Ra increased, whereas the RR-Rh did not change. AR increased the Q10 of Rt (Rt-Q10) and Rh (Rh-Q10) by 1.92 % and 9.47 %, respectively, and decreased the Q10 of Ra (Ra-Q10) by 2.77 %. Increased mean annual temperature, mean annual precipitation, and initial soil organic carbon increased the response rate of Ra-Q10 to AR (RR-Ra-Q10) and decreased the response rate of Rh-Q10 to AR (RR-Rh-Q10). However, as the AR frequency and initial soil pH increased, both RR-Ra-Q10 and RR-Rh-Q10 also increased. In summary, AR decreased Rt but increased Q10, likely due to soil acidification (soil pH decreased by 7.84 %), reducing plant root biomass (decreased by 5.67 %) and soil microbial biomass (decreased by 5.67 %), changing microbial communities (increased fungi to bacteria ratio of 15.91 %), and regulated by climate, vegetation, soil and AR regimes. To the best of our knowledge, this is the first study to reveal the large-scale, varied response patterns of soil respiration components and their Q10 to AR. It highlights the importance of applying the reductionism theory in soil respiration research to enhance our understanding of soil carbon cycling processes with in the context of global climate change.
Collapse
Affiliation(s)
- Weichao Liu
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China; The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, China
| | - Jingbo Fang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China; The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, China
| | - Yaoyue Liang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China; The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, China
| | - Xing Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China; The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, China
| | - Qi Zhang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China; The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, China
| | - Jinduo Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mengfan He
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China; The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, China
| | - Wenjie Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China; The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, China
| | - Jian Deng
- College of life sciences, Yan'an University, Yan'an 716000, Shaanxi, China
| | - Chengjie Ren
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China; The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, China
| | - Wei Zhang
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xinhui Han
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China; The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, China.
| |
Collapse
|
4
|
Shu P, Gong X, Du Y, Han Y, Jin S, Wang Z, Qian P, Li X. Effects of Simulated Acid Rain on Photosynthesis in Pinus massoniana and Cunninghamia lanceolata in Terms of Prompt Fluorescence, Delayed Fluorescence, and Modulated Reflection at 820 nm. PLANTS (BASEL, SWITZERLAND) 2024; 13:622. [PMID: 38475467 DOI: 10.3390/plants13050622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
The effects of simulated acid rain (SAR) on the photosynthetic performance of subtropical coniferous species have not been thoroughly investigated. In this study, we treated two coniferous species, Pinus massoniana (PM) and Cunninghamia lanceolata (CL), with four gradients of SAR and then analyzed their photosynthetic activities through measurements of gas exchange, prompt fluorescence (PF), delayed fluorescence (DF), and modulated reflection at 820 nm (MR820). Gas exchange analysis indicated that the decrease in the net photosynthetic rate (Pn) in PM and CL was unrelated to stomatal factors. For the PF transients, SAR induced positive K-band and L-band, a significant reduction in photosynthetic performance index (PIABS), the quantum yield of electron transfer per unit cross-section (ETO/CSm), and maximal photochemical efficiency of photosystem II (Fv/Fm). Analysis of the MR820 kinetics showed that the re-reduction kinetics of PSI reaction center (P700+) and plastocyanin (PC+) became slower and occurred at later times under SAR treatment. For the DF signals, a decrease in the amplitude of the DF induction curve reduced the maximum value of DF (I1). These results suggested that SAR obstructed photosystem II (PSII) donor-side and acceptor-side electron transfer capacity, impaired the connectivity between PSII and PSI, and destroyed the oxygen-evolving complex (OEC). However, PM was better able to withstand SAR stress than CL, likely because of the activation of a protective mechanism.
Collapse
Affiliation(s)
- Pengzhou Shu
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Xiaofei Gong
- Ecological Forestry Development Center of Suichang County, Lishui 323300, China
| | - Yanlei Du
- Environmental Protection Monitoring Station of Changxing County, Huzhou 313000, China
| | - Yini Han
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Songheng Jin
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Zhongxu Wang
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Penghong Qian
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Xueqin Li
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| |
Collapse
|
5
|
Luo M, Liu Y, Li J, Gao T, Wu S, Wu L, Lai X, Xu H, Hu H, Ma Y. Effects of Straw Returning and New Fertilizer Substitution on Rice Growth, Yield, and Soil Properties in the Chaohu Lake Region of China. PLANTS (BASEL, SWITZERLAND) 2024; 13:444. [PMID: 38337978 PMCID: PMC10857592 DOI: 10.3390/plants13030444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/27/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
Recently, replacing chemical fertilizers with straw returning and new fertilizers has received considerable attention in the agricultural sector, as it is believed to increase rice yield and improve soil properties. However, less is known about rice growth and soil properties in paddy fields with the addition of different fertilizers. Thus, in this paper, we investigated the effects of different fertilizer treatments, including no fertilization (CK), optimized fertilization based on the medium yield recommended fertilizer amount (OF), 4.50 Mg ha-1 straw returning with chemical fertilizers (SF), 0.59 Mg ha-1 slow-release fertilizer with chemical fertilizers (SRF), and 0.60 Mg ha-1 water-soluble fertilizer with chemical fertilizers (WSF), on rice growth, yield, and soil properties through a field experiment. The results show that compared with the OF treatment, the new SF, SRF, and WSF treatments increased plant height, main root length, tiller number, leaf area index, chlorophyll content, and aboveground dry weight. The SF, SRF, and WSF treatments improved rice grain yield by 30.65-32.51% and 0.24-1.66% compared to the CK and OF treatments, respectively. The SRF treatment increased nitrogen (N) and phosphorus (P) uptake by 18.78% and 28.68%, the harvest indexes of N and P by 1.75% and 0.59%, and the partial productivity of N and P by 2.64% and 2.63%, respectively, compared with the OF treatment. However, fertilization did not significantly affect the average yield, harvest indexes of N and P, and partial productivity of N and P. The contents of TN, AN, SOM, TP, AP, and AK across all the treatments decreased significantly with increasing soil depth, while soil pH increased with soil depth. The SF treatment could more effectively increase soil pH and NH4+-N content compared to the SRF and WSF treatments, while the SRF treatment could greatly enhance other soil nutrients and enzyme activities compared to the SF and WSF treatments. A correlation analysis showed that rice yield was significantly positively associated with tiller number, leaf area index, chlorophyll, soil NO3--N, NH4+-N, SOM, TP, AK, and soil enzyme activity. The experimental results indicate that SRF was the best fertilization method to improve rice growth and yield and enhance soil properties, followed by the SF, WSF, and OF treatments. Hence, the results provide useful information for better fertilization management in the Chaohu Lake region of China.
Collapse
Affiliation(s)
- Mei Luo
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; (M.L.)
| | - Ying Liu
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; (M.L.)
| | - Jing Li
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; (M.L.)
| | - Tingfeng Gao
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; (M.L.)
| | - Sheng Wu
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; (M.L.)
| | - Lei Wu
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; (M.L.)
| | - Xijun Lai
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hongjun Xu
- Station of Agricultural Environment Protection, Chaohu 238006, China
| | - Hongxiang Hu
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; (M.L.)
| | - Youhua Ma
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; (M.L.)
| |
Collapse
|
6
|
Shi Z, Zhang J, Zhang H, Wei H, Lu T, Chen X, Li H, Yang J, Liu Z. Response and driving factors of soil enzyme activity related to acid rain: a meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:105072-105083. [PMID: 37730980 DOI: 10.1007/s11356-023-29585-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 08/25/2023] [Indexed: 09/22/2023]
Abstract
As a global pollution, acid rain can significantly alter soil physicochemical and biochemical processes, but our knowledge of how acid rain affects soil enzyme activity is still limited. To quantify the overall magnitude and direction of the response of soil enzyme activity to acid rain, we conducted a linear mixed model-based meta-analysis of 40 articles. Our analysis revealed that acid rain decreased enzyme activity by an average of 4.87%. Soil dehydrogenase and protease activities were particularly sensitive to acid rain, with significant inhibitions observed. The effect of acid rain was moderated by acid rain intensity (i.e., H+ addition rate, total H+ added, and acid rain pH) and soil fraction (i.e., rhizosphere and bulk soil). Structural equation modelling further revealed that acid rain suppressed soil microbial biomass by acidifying the soil and that the reduction in microbial biomass directly led to the inhibition of enzyme activity in bulk soil. However, the enzyme activity in the rhizosphere soil was not affected by acid rain due to the rhizosphere effect, which was also not impacted by the decreased soil pH induced by acid rain in rhizosphere. Our study gives an insight into how bulk soil enzyme activity is impacted by acid rain and highlights the need to incorporate rhizosphere processes into acid rain-terrestrial ecosystem models.
Collapse
Affiliation(s)
- Zhaoji Shi
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China
| | - Jiaen Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China.
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| | - Huicheng Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China
| | - Hui Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Tiantian Lu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China
| | - Xuan Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China
| | - Hongru Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China
| | - Jiayue Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China
| | - Ziqiang Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China
| |
Collapse
|
7
|
Neagoe A, Iordache V. A Commercial Arbuscular Mycorrhizal Inoculum Alleviated the Effects of Acid Water on Lupinus angustifolius Grown in a Sterilized Mining Dump. PLANTS (BASEL, SWITZERLAND) 2023; 12:1983. [PMID: 37653900 PMCID: PMC10222887 DOI: 10.3390/plants12101983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/07/2023] [Accepted: 05/12/2023] [Indexed: 09/02/2023]
Abstract
Lupinus species have been sporadically reported to be colonized by arbuscular mycorrhizal fungi (AMF). The interactions between AMF and lupine plants could also be non-symbiotic, from positive to negative, as controlled by the stress conditions of the plant. The goal of the study was to reveal the existence of such positive interactions and provide preliminary data for a myco-phytoremediation technology of mining dumps using L. angustifolius as a first crop. The objective was to test the hypothesis that the AMF inoculation of an acidified dump material contaminated with heavy metals would improve the growth of L. angustifolius and decrease oxidative stress. The design consisted of a one-month bivariate pot experiment with plants grown in a mining dump soil inoculated and not inoculated with a commercial AMF inoculum sequestered in expanded clay and watered with acidic and neutral water. There was no AMF root colonization under the experimental conditions, but under neutral and acidic water conditions, the phosphorus concentrations in roots and leaves increased, and the superoxide dismutase and peroxidase activities significantly decreased due to AMF inoculation. The increase in leaf phosphorus concentration was correlated with the decrease in peroxidase activity. The fresh weight of shoots and leaves significantly increased due to the commercial inoculum (under acidic water conditions). At the end of the experiment, the ammonium concentration in the substrate was higher in the inoculated treatments than in the not inoculated ones, and the concentrations of many elements in the dump material decreased compared to the start of the experiment. A comprehensive discussion of the potential mechanisms underlying the effects of the commercial AMF inoculum on the non-host L. angustifolius is completed.
Collapse
Affiliation(s)
- Aurora Neagoe
- “Dan Manoleli” Research Centre for Ecological Services—CESEC and “Dimitrie Brândză” Botanical Garden, University of Bucharest, Aleea Portocalelor No. 1-3, Sector 6, 060101 Bucharest, Romania
| | - Virgil Iordache
- Department of Systems Ecology and Sustainability, and “Dan Manoleli” Research Centre for Ecological Services—CESEC, University of Bucharest, Spl Independentei 91-95, Sector 5, 050089 Bucharest, Romania
| |
Collapse
|
8
|
Prakash J, Agrawal SB, Agrawal M. Global Trends of Acidity in Rainfall and Its Impact on Plants and Soil. JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION 2022; 23:398-419. [PMID: 36415481 PMCID: PMC9672585 DOI: 10.1007/s42729-022-01051-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 10/27/2022] [Indexed: 06/02/2023]
Abstract
Due to its deleterious and large-scale effects on the ecosystem and long-range transboundary nature, acid rain has attracted the attention of scientists and policymakers. Acid rain (AR) is a prominent environmental issue that has emerged in the last hundred years. AR refers to any form of precipitation leading to a reduction in pH to less than 5.6. The prime reasons for AR formation encompass the occurrence of sulfur dioxide (SO2), nitrogen oxides (NOx), ozone (O3), and organic acids in air produced by natural as well as anthropogenic activities. India, the top SO2 emitter, also shows a continuous increase in NO2 level responsible for AR formation. The plants being immobile unavoidably get exposed to AR which impacts the natural surrounding negatively. Plants get affected directly by AR due to reductions in growth, productivity, and yield by damaging photosynthetic mechanisms and reproductive organs or indirectly by affecting underground components such as soil and root system. Genes that play important role in plant defense under abiotic stress gets also modulated in response to acid rain. AR induces soil acidification, and disturbs the balance of carbon and nitrogen metabolism, litter properties, and microbial and enzymatic activities. This article overviews the factors contributing to AR, and outlines the past and present trends of rainwater pH across the world, and its effects on plants and soil systems.
Collapse
Affiliation(s)
- Jigyasa Prakash
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Madhoolika Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
9
|
Liu Z, Liu Z, Wu L, Li Y, Wang J, Wei H, Zhang J. Effect of polyethylene microplastics and acid rain on the agricultural soil ecosystem in Southern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119094. [PMID: 35245624 DOI: 10.1016/j.envpol.2022.119094] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
The increasing microplastics (MPs) pollution and continuous acid rain coincide in many areas of the world. However, how MPs interact with acid rain is still unclear. Herein, we conducted a microcosm experiment to decipher the combined effect of polyethylene (PE) MPs (1%, 5%, and 10%) and acid rain (pH 4.0) on the agricultural soil ecosystem of Southern China, in which edaphic property, microbial community, enzymatic activity and CO2 emission were investigated. The results showed that PE MPs significantly decreased soil water retention and nitrate nitrogen content regardless of acid rain. Soil total nitrogen significantly decreased under the co-exposure of 10% PE MPs and acid rain. However, PE MPs did not alter soil microbial biomass, i.e., the content of microbial biomass carbon, total phospholipid fatty acids, with or without acid rain. 10% PE MPs and acid rain treatment significantly increased the activity of catalase and soil CO2 emission. PE MPs addition did not affect the temperature sensitivity (Q10) of soil CO2 emission regardless of acid rain. These findings suggest that MPs may interact with acid rain to affect soil ecosystems, thus underscoring the necessity to consider the interaction between MPs and ambient environmental factors when exploring the impact of MPs on the soil biodiversity and function.
Collapse
Affiliation(s)
- Ziqiang Liu
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenxiu Liu
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Lizhu Wu
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yazheng Li
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Jing Wang
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Wei
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaen Zhang
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
10
|
Effects of Simulated Acid Rain on Soil Enzyme Activity and Related Chemical Indexes in Woodlands. FORESTS 2022. [DOI: 10.3390/f13060860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In order to explore the effects of different concentrations of acid rain on soil nutrient content and nutrient utilization efficiency, and to provide a basis for an improvement in acidified soil in acid rain regions, a year-long acid rain experiment was conducted in a typical evergreen broad-leaved forest and coniferous and broad-leaved mixed forest in Jinyun Mountain of Chongqing. Four pH treatments (pH 4.5, 4.0, 3.25, and 2.5) were established to simulate acid rain. The results showed that: (1) Acid rain promoted the accumulation of soil nutrients, and the contents of organic carbon (SOC), total nitrogen (TN), and hydrolyzed nitrogen (HN) significantly increased during the experiment (p < 0.05). (2) Soil SOC content was significantly positively correlated with acid rain concentration (p < 0.01), HN content was negatively correlated with acid rain concentration, and TN and total phosphorus (TP) contents were not significantly correlated with acid rain concentration. (3) The activities of soil sucrase, urease, and acid phosphatase were negatively correlated with acid rain concentration (p < 0.01) and the activity of soil cellulase was positively correlated with acid rain concentration (p < 0.01). (4) The enzyme activity changed differently, depending on the concentration of acid rain during the study period. (5) According to RDA analysis, soil total nitrogen content and hydrolyzed nitrogen content had significant effects on enzyme activity (p < 0.05). Conclusions: Acid rain did not significantly alter the overall soil nutrient content but reduced the available nutrient content and seriously inhibited enzyme activity—most notably, the soil enzymes involved in nutrient utilization efficiency.
Collapse
|
11
|
Ren J, Liu X, Yang W, Yang X, Li W, Xia Q, Li J, Gao Z, Yang Z. Rhizosphere soil properties, microbial community, and enzyme activities: Short-term responses to partial substitution of chemical fertilizer with organic manure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113650. [PMID: 34481370 DOI: 10.1016/j.jenvman.2021.113650] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 05/20/2023]
Abstract
The partial substitution of chemical fertilizers with organic manure has positive effects on crop productivity and sustainable development. Nevertheless, few studies have focused on major grain crops. Herein, we report the short-term effects of the partial substitution of chemical fertilizers with organic manure on the physicochemical properties, microbial community, and enzyme activities in the rhizosphere soil of a maize (Zea mays L.) field. A decrease in soil bulk density, pH, and electrical conductivity, concomitant with an increase in soil urease, invertase, and alkaline phosphatase activities, and a high level of nutrients were observed in organic manure-treated soil. The influence of the organic substitution treatment on bacterial diversity was greater than that on fungal diversity, particularly on alpha diversity. Among dominant bacterial phyla, Actinobacteria abundance changed the most, with significantly increase under organic manure treatment. In turn, among fungi, only Ascomycota responded substantially to organic substitution. Binding spatial ordination analysis revealed that relative soil water content and soil organic carbon, and nitrate and total nitrogen contents had a stronger effect on bacteria and fungi, respectively, than any other soil physicochemical property. Additionally, the changes in bacterial and fungal communities influenced soil enzymatic activities. Moreover, partial least squares path model revealed that soil physicochemical properties indirectly affected soil enzymatic activities by their direct effects on microbial (both bacteria and fungi) community. Overall, our results indicate that the substitution of chemical fertilizers by organic manure changed the composition of the soil microbial community, and that the effects of the substitution were more significant on bacteria than on fungi.
Collapse
Affiliation(s)
- Jianhong Ren
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030800, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoli Liu
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030800, China
| | - Wenping Yang
- College of Life Sciences, North China University of Science and Technology, Caofeidian, 063210, China
| | - Xiaoxiao Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030800, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenguang Li
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030800, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qing Xia
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030800, China
| | - Junhui Li
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030800, China
| | - Zhiqiang Gao
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030800, China
| | - Zhenping Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030800, China.
| |
Collapse
|
12
|
Response and Deterioration Mechanism of Bitumen under Acid Rain Erosion. MATERIALS 2021; 14:ma14174911. [PMID: 34501006 PMCID: PMC8433632 DOI: 10.3390/ma14174911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 12/02/2022]
Abstract
Acid rain as an important environmental issue has a negative impact on bitumen performance, thereby shortening the service life of asphalt pavements. Thus, this research aims to investigate the response of bitumen to acid rain and its deterioration mechanism. For this purpose, the simulated acid rain was prepared to erode neat bitumen and short-term aged bitumen. The hydrogen ion concentration of the acid rain, and the morphological, physical, chemical, and rheological properties of the bitumen were evaluated by means of a pH meter, scanning electron microscopy, physical tests, Fourier transform infrared radiation with attenuated total reflectance, and dynamic shear rheometer. The results showed that bitumen properties were severely affected by acid rain, and the changes in bitumen properties were highly related to the erosion time, leading to a reduction in pH value by 0.2 of residual acid rain, rougher bitumen surface, and stiffer bitumen with more oxygen-containing functional groups and fewer carbonyl acid groups (around 10% decrement) after 90 days erosion. These changes contributed to two deterioration mechanisms: oxidation and dissolution of carbonyl acid. Oxidation and dissolution are, respectively, the dominant actions for neat bitumen and aged bitumen during the erosion process, which eventually leads to various responses to acid rain.
Collapse
|