1
|
Wang J, Han L, Liu Z, Zhang W, Zhang L, Jing J, Gao A. Targeting IGF2BP1 alleviated benzene hematotoxicity by reprogramming BCAA metabolism and fatty acid oxidation. Chem Biol Interact 2024; 398:111107. [PMID: 38866309 DOI: 10.1016/j.cbi.2024.111107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/30/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
Benzene is the main environmental pollutant and risk factor of childhood leukemia and chronic benzene poisoning. Benzene exposure leads to hematopoietic stem and progenitor cell (HSPC) dysfunction and abnormal blood cell counts. However, the key regulatory targets and mechanisms of benzene hematotoxicity are unclear. In this study, we constructed a benzene-induced hematopoietic damage mouse model to explore the underlying mechanisms. We identified that Insulin like growth factor 2 mRNA binding protein 1 (IGF2BP1) was significantly reduced in benzene-exposed mice. Moreover, targeting IGF2BP1 effectively mitigated damages to hematopoietic function and hematopoietic molecule expression caused by benzene in mice. On the mechanics, by metabolomics and transcriptomics, we discovered that branched-chain amino acid (BCAA) metabolism and fatty acid oxidation were key metabolic pathways, and Branched-chain amino acid transaminase 1 (BCAT1) and Carnitine palmitoyltransferase 1a (CPT1A) were critical metabolic enzymes involved in IGF2BP1-mediated hematopoietic injury process. The expression of the above molecules in the benzene exposure population was also examined and consistent with animal experiments. In conclusion, targeting IGF2BP1 alleviated hematopoietic injury caused by benzene exposure, possibly due to the reprogramming of BCAA metabolism and fatty acid oxidation via BCAT1 and CPT1A metabolic enzymes. IGF2BP1 is a potential regulatory and therapeutic target for benzene hematotoxicity.
Collapse
Affiliation(s)
- Jingyu Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Lin Han
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Ziyan Liu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Wei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Lei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Jiaru Jing
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Ai Gao
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
2
|
Wang J, Guo X, Chen Y, Zhang W, Ren J, Gao A. The m6A reader IGF2BP1 attenuates the stability of RPL36 and cell proliferation to mediate benzene hematotoxicity by recognizing m6A modification. Toxicology 2024; 503:153758. [PMID: 38367942 DOI: 10.1016/j.tox.2024.153758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 02/19/2024]
Abstract
Benzene exposure leads to hematotoxicity, and epigenetic modification is considered to be a potential mechanism of benzene pathogenesis. As a newly discovered post-transcriptional modification, the roles of N6-methyladenosine (m6A) in benzene hematotoxicity are still unclear. m6A can only exert its gene regulatory function after being recognized by m6A reading proteins. In this study, we found that the expression of m6A reader IGF2BP1 decreased in benzene poisoning workers and in 20 μM benzene metabolite 1,4-BQ-treated AHH-1 cells. Further overexpression of IGF2BP1 in mice alleviated 50 ppm benzene-induced hematopoietic damage, suggesting that IGF2BP1 plays a critical role in benzene hematotoxicity. Next, we examined transcriptome-wide m6A methylation in vitro to search for target genes of IGF2BP1. We found that benzene metabolite 1,4-BQ treatment altered the m6A methylation levels of various genes. The comprehensive analysis of mRNA expression and m6A methylation uncovered that the hypomethylated Ribosomal Protein L36 (RPL36) and its consequent reduced expression impaired cell proliferation. Mechanically, m6A modification reduced RNA stability to down-regulate RPL36 expression. Moreover, overexpression of IGF2BP1 relieved RPL36 reduction and cell proliferation inhibition caused by benzene in vitro and in vivo by directly binding with RPL36 mRNA. In conclusion, the m6A reader IGF2BP1 attenuates the stability of RPL36 and cell proliferation to mediate benzene hematotoxicity by recognizing m6A modification. IGF2BP1 and RPL36 may be key molecules and potential therapeutic targets for benzene hematotoxicity.
Collapse
Affiliation(s)
- Jingyu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaoli Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China; Department of Cancer Epidemiology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, PR China
| | - Yujiao Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Jing Ren
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
3
|
Yang X, Dong S, Li C, Li M, Xing C, He J, Peng C, Shao H, Jia Q. Hydroquinone triggers pyroptosis and endoplasmic reticulum stress via AhR-regulated oxidative stress in human lymphocytes. Toxicol Lett 2023; 376:39-50. [PMID: 36646296 DOI: 10.1016/j.toxlet.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Benzene is a frequent component of environmental pollution and is abundant in petrochemicals, decorative materials, motor vehicle exhaust and cigarette smoke. Benzene is a well-known carcinogen in humans and animals, but the molecular mechanism has not yet been elucidated. Our earlier research indicated that hydroquinone (HQ), one of the main reactive metabolites of benzene, could activate aryl hydrocarbon receptor (AhR), which is essential for HQ-induced toxicity, including apoptosis and DNA damage. Since AhR is an important regulator of the immune system that integrates the environmental stimulus and immune response, we examined whether and how HQ-induced AhR activity could lead to NLRP3 inflammasome-dependent pyroptosis in JHP cells. Our results showed that HQ could cause inflammation process and resultant pyroptosis. In JHP cells, HQ also induced endoplasmic reticulum stress (ERS) by releasing excessive reactive oxygen species (ROS). The activation of pyroptosis induced by HQ treatment was reversed by an antioxidant (NAC) and an ERS inhibitor (4-PBA). Interestingly, the treatment of CH223191, an AhR inhibitor, reversed HQ-induced oxidative stress, ERS and pyroptosis. These data suggested that AhR-mediated HQ-induced ERS, ROS and inflammasome activation may play vital roles in the toxic effects of benzene. This work provides insights and prospective strategies into potential mechanisms for reducing benzene-induced hematotoxicity.
Collapse
Affiliation(s)
- Xiaohan Yang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Ji'nan 250062, China
| | - Shuangyan Dong
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Ji'nan 250062, China
| | - Chao Li
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Ji'nan 250062, China
| | - Ming Li
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Ji'nan 250062, China
| | - Caihong Xing
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention (CDC), Beijing 100050, China
| | - Jin He
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Ji'nan 250062, China
| | - Cheng Peng
- Eusyn Institute of Health Science, Brisbane, QLD 4108, Australia
| | - Hua Shao
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Ji'nan 250062, China.
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Ji'nan 250062, China.
| |
Collapse
|
4
|
Ren J, Wang J, Guo X, Zhang W, Chen Y, Gao A. Lnc-TC/miR-142-5p/CUL4B signaling axis promoted cell ferroptosis to participate in benzene hematotoxicity. Life Sci 2022; 310:121111. [DOI: 10.1016/j.lfs.2022.121111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/09/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
|
5
|
Zhang W, Wang J, Liu Z, Zhang L, Jing J, Han L, Gao A. Iron-dependent ferroptosis participated in benzene-induced anemia of inflammation through IRP1-DHODH-ALOX12 axis. Free Radic Biol Med 2022; 193:122-133. [PMID: 36244588 DOI: 10.1016/j.freeradbiomed.2022.10.273] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 10/31/2022]
Abstract
Benzene, a widely existing environmental pollutant, gives huge harm to the hematopoietic system. Iron is one of the raw materials for the creation of blood cells, but the role of iron in the blood toxicity of benzene is still unknown. Here, we examined the role of iron homeostasis in benzene-induced toxicity both in vivo and in vitro. In this study, mice exposed to benzene at 50 ppm for 8 weeks demonstrated the anemia of inflammation, mainly manifested as the decreased serum Fe2+, increased serum ferritin and inflammation factors (TNF-α, IL6, IL1β) in the plasma of mice. Furthermore, we found that iron maldistribution in the spleen and bone marrow is accompanied by inflammation reaction and ferroptosis. In the vitro study, benzene metabolite 1,4-BQ stimulated the obvious ROS production and ferroptosis activation in the normal B lymphocytes cells. Meanwhile, from the molecular perspective, the combined proteomics and transcriptome enriched the ferroptosis pathway, and we further confirmed the increased expression of iron regulator IRP1, ferroptosis-regulator DHODH, and fatty acids metabolism enzyme ALOX12 were the crucial participators in regulating benzene-mediated iron metabolism imbalance and ferroptosis. Particularly, the targeted and un-targeted metabolomics in the vivo and vitro study further emphasized the importance of DHODH in benzene-induced ferroptosis. In conclusion, this study revealed that iron-dependent ferroptosis participated in benzene-induced anemia of inflammation and provided a constructive perspective on targeting ferroptosis for the prevention and control of benzene toxicity.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Jingyu Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - ZiYan Liu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Lei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Jiaru Jing
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Lin Han
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Ai Gao
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
6
|
Cordiano R, Papa V, Cicero N, Spatari G, Allegra A, Gangemi S. Effects of Benzene: Hematological and Hypersensitivity Manifestations in Resident Living in Oil Refinery Areas. TOXICS 2022; 10:678. [PMID: 36355969 PMCID: PMC9697938 DOI: 10.3390/toxics10110678] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Literature is teeming with publications on industrial pollution. Over the decades, the main industrial pollutants and their effects on human health have been widely framed. Among the various compounds involved, benzene plays a leading role in the onset of specific diseases. Two systems are mainly affected by the adverse health effects of benzene exposure, both acute and chronic: the respiratory and hematopoietic systems. The most suitable population targets for a proper damage assessment on these systems are oil refinery workers and residents near refining plants. Our work fits into this area of interest with the aim of reviewing the most relevant cases published in the literature related to the impairment of the aforementioned systems following benzene exposure. We perform an initial debate between the two clinical branches that see a high epidemiological expression in this slice of the population examined: residents near petroleum refinery areas worldwide. In addition, the discussion expands on highlighting the main immunological implications of benzene exposure, finding a common pathophysiological denominator in inflammation, oxidative stress, and DNA damage, thus helping to set the basis for an increasingly detailed characterization aimed at identifying common molecular patterns between the two clinical fields discussed.
Collapse
Affiliation(s)
- Raffaele Cordiano
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Vincenzo Papa
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Nicola Cicero
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Giovanna Spatari
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
7
|
Cui S, Pang B, Yan H, Wu B, Li M, Xing C, Li J. Using Urinary Biomarkers to Estimate the Benzene Exposure Levels in Individuals Exposed to Benzene. TOXICS 2022; 10:636. [PMID: 36355928 PMCID: PMC9698901 DOI: 10.3390/toxics10110636] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Urinary benzene metabolites trans, trans-muconic acid (t, t-MA), and S-phenyl mercapturic acid (S-PMA) are often used as biomarkers of internal exposure to benzene. However, there are few reports on using urinary benzene metabolites to estimate airborne benzene concentrations in individuals exposed to benzene. In this study, t, t-MA, and S-PMA were analyzed by UPLC-MS/MS, and a simple pharmacokinetic model was used to calculate the daily intake (DI) of benzene based on the levels of urinary t, t-MA, and S-PMA in occupational individuals. The back-calculated airborne benzene levels (BCABL) were obtained from the DI of benzene. Among the exposed subjects (n = 84), the median BCABL (3.67 mg/m3) based on t, t-MA was very close to the median level of measured airborne benzene (3.27 mg/m3, p = 0.171), and there was no effect of smoking or dietary habits on t, t-MA-based BCABL. In the control subjects (n = 49), the levels of measured airborne benzene were all below the quantitation limit (0.024 mg/m3), and the BCABL (0.002-0.25 mg/m3) calculated by S-PMA was close to this background level. Our study suggests that the t, t-MA-based BCABL can reflect the actual airborne benzene level in a range of 1.10-86.91 mg/m3 and that the S-PMA-based BCABL is more reliable for non-professional benzene exposure.
Collapse
Affiliation(s)
- Shiwei Cui
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun 130021, China
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Bo Pang
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun 130021, China
| | - Huifang Yan
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Bo Wu
- Science and Technology Research Center of China Customs, Beijing 100026, China
| | - Ming Li
- Department of Occupational Health, Jinan Railway Disease Control and Prevention Center, Jinan 250001, China
| | - Caihong Xing
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Juan Li
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun 130021, China
| |
Collapse
|
8
|
Zhang L, Han L, Liu Z, Jing J, Wang J, Zhang W, Gao A. Early hematopoietic injury triggered by benzene characterized with inhibition of erythrocyte differentiation involving the mollicutes_RF39-derived citrulline. CHEMOSPHERE 2022; 303:135009. [PMID: 35597459 DOI: 10.1016/j.chemosphere.2022.135009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Benzene poisoning is a common adverse blood outcome in occupational workers, manifested by hematopoietic dysfunction. However, the specific phenotype and its mechanisms of early hematopoietic toxicity caused by benzene remain unclear. After 15 days of exposure, the WBC levels were not significantly altered in benzene-exposed mice. However, the level of red blood cells (RBC) showed a significant decrease, and it was significantly and negatively correlated with urinary S-phenylmercapturic acid (SPMA). Notably, 5 mg/kg benzene exposure significantly inhibited the renewal capacity and the number of colony formation of hematopoietic stem progenitor cells in mice, especially erythrocyte differentiation. These results suggested that the early hematopoietic toxicity phenotype caused by benzene was dominated by inhibition of erythroid differentiation rather than WBC-related inflammation. To further understand the underlying mechanisms of benzene-induced early hematopoietic toxicity, 16 S rRNA sequencing and plasma metabolites analysis were conducted to investigate the impact of benzene exposure for 15 days on microbial composition and metabolic profile of mice. We found that short-term benzene exposure induced disturbances in gut microbiota and metabolism. The relative abundance of Mollicutes_RF39 at order levels was significantly reduced in benzene-exposed mice and was strongly correlated with hematopoietic indicators and urinary benzene markers. Interestingly, Mollicutes_RF39 might disturb the levels of eight metabolites, whereas Citrulline was highly linked to Mollicutes_RF39 (r = 0.862, P = 0.000). Consequently, Mollicutes_RF39-derived Citrulline might be the key regulator of early hematopoietic injury induced by benzene exposure. These findings promote the understanding of early hematotoxicity phenotypes and provide new perspectives on the underlying mechanisms of benzene-induced hematotoxicity.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Lin Han
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Ziyan Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Jiaru Jing
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Jingyu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
9
|
Microaerobic enrichment of benzene-degrading bacteria and description of Ideonella benzenivorans sp. nov., capable of degrading benzene, toluene and ethylbenzene under microaerobic conditions. Antonie Van Leeuwenhoek 2022; 115:1113-1128. [PMID: 35841500 PMCID: PMC9363352 DOI: 10.1007/s10482-022-01759-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/23/2022] [Indexed: 11/23/2022]
Abstract
In the present study, the bacterial community structure of enrichment cultures degrading benzene under microaerobic conditions was investigated through culturing and 16S rRNA gene Illumina amplicon sequencing. Enrichments were dominated by members of the genus Rhodoferax followed by Pseudomonas and Acidovorax. Additionally, a pale amber-coloured, motile, Gram-stain-negative bacterium, designated B7T was isolated from the microaerobic benzene-degrading enrichment cultures and characterized using a polyphasic approach to determine its taxonomic position. The 16S rRNA gene and whole genome-based phylogenetic analyses revealed that strain B7T formed a lineage within the family Comamonadaceae, clustered as a member of the genus Ideonella and most closely related to Ideonella dechloratans CCUG 30977T. The sole respiratory quinone is ubiquinone-8. The major fatty acids are C16:0 and summed feature 3 (C16:1ω7c/iso-C15:0 2-OH). The DNA G + C content of the type strain is 68.8 mol%. The orthologous average nucleotide identity (OrthoANI) and in silico DNA–DNA hybridization (dDDH) relatedness values between strain B7T and closest relatives were below the threshold values for species demarcation. The genome of strain B7T, which is approximately 4.5 Mb, contains a phenol degradation gene cluster, encoding a multicomponent phenol hydroxylase (mPH) together with a complete meta-cleavage pathway including a I.2.C-type catechol 2,3-dioxygenase (C23O) gene. As predicted by the genome, the type strain is involved in aromatic hydrocarbon-degradation: benzene, toluene and ethylbenzene are degraded aerobically and also microaerobically as sole source of carbon and energy. Based on phenotypic characteristics and phylogenetic analysis, strain B7T is a member of the genus Ideonella and represents a novel species for which the name Ideonella benzenivorans sp. nov. is proposed. The type strain of the species is strain B7T (= LMG 32,345T = NCAIM B.02664T).
Collapse
|
10
|
D'Souza LC, Dwivedi S, Raihan F, Yathisha UG, Raghu SV, Mamatha BS, Sharma A. Hsp70 overexpression in Drosophila hemocytes attenuates benzene-induced immune and developmental toxicity via regulating ROS/JNK signaling pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:1723-1739. [PMID: 35301792 DOI: 10.1002/tox.23520] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/07/2021] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Benzene, a ubiquitous environmental chemical, is known to cause immune dysfunction and developmental defects. This study aims to investigate the relation between benzene-induced immune dysfunction and developmental toxicity in a genetically tractable animal model, Drosophila melanogaster. Further, the study explored the protective role of Heat Shock Protein 70 (Hsp70) against benzene-induced immunotoxicity and subsequent developmental impact. Drosophila larvae exposed to benzene (1.0, 10.0, and 100.0 mM) were examined for total hemocyte (immune cells) count, phagocytic activity, oxidative stress, apoptosis, and their developmental delay and reduction were analyzed. Benzene exposure for 48 h reduced the total hemocytes count and phagocytic activity, along with an increase in the Reactive Oxygen Species (ROS), and lipid peroxidation in the larval hemocytes. Subsequently, JNK-dependent activation of the apoptosis (Caspase-3 dependent) was also observed. During their development, benzene exposure to Drosophila larvae led to 3 days of delay in development, and ~40% reduced adult emergence. Hsp70-overexpression in hemocytes was found to mitigate benzene-induced oxidative stress and abrogated the JNK-mediated apoptosis in hemocytes, thus restoring total hemocyte count and improving phagocytotic activity. Further, hsp70-overexpression in hemocytes also lessened the benzene-induced developmental delay (rescue of 2.5 days) and improved adult emergence (~20%) emergence, revealing a possible control of immune cells on the organism's development and survival. Overall, this study established that hsp70-overexpression in the Drosophila hemocytes confers protection against benzene-induced immune injury via regulating the ROS/JNK signaling pathway, which helps in the organism's survival and development.
Collapse
Affiliation(s)
- Leonard Clinton D'Souza
- Division of Environmental Health and Toxicology, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Shiwangi Dwivedi
- Division of Environmental Health and Toxicology, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Faiza Raihan
- Division of Environmental Health and Toxicology, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Undiganalu Gangadharappa Yathisha
- Division of Food Safety and Nutrition, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | | | - Bangera Sheshappa Mamatha
- Division of Food Safety and Nutrition, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Anurag Sharma
- Division of Environmental Health and Toxicology, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| |
Collapse
|
11
|
Evaluating Phenotypic and Transcriptomic Responses Induced by Low-Level VOCs in Zebrafish: Benzene as an Example. TOXICS 2022; 10:toxics10070351. [PMID: 35878256 PMCID: PMC9324908 DOI: 10.3390/toxics10070351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022]
Abstract
Urban environments are plagued by complex mixtures of anthropogenic volatile organic compounds (VOCs), such as mixtures of benzene, toluene, ethylene, and xylene (BTEX). Sources of BTEX that drive human exposure include vehicle exhaust, industrial emissions, off-gassing of building material, as well as oil spillage and leakage. Among the BTEX mixture, benzene is the most volatile compound and has been linked to numerous adverse health outcomes. However, few studies have focused on the effects of low-level benzene on exposure during early development, which is a susceptible window when hematological, immune, metabolic, and detoxification systems are immature. In this study, we used zebrafish to conduct a VOC exposure model and evaluated phenotypic and transcriptomic responses following 0.1 and 1 ppm benzene exposure during the first five days of embryogenesis (n = 740 per treatment). The benzene body burden was 2 mg/kg in 1 ppm-exposed larval zebrafish pools and under the detection limit in 0.1 ppm-exposed fish. No observable phenotypic changes were found in both larvae except for significant skeletal deformities in 0.1 ppm-exposed fish (p = 0.01) compared with unexposed fish. Based on transcriptomic responses, 1 ppm benzene dysregulated genes that were implicated with the development of hematological system, and the regulation of oxidative stress response, fatty acid metabolism, immune system, and inflammatory response, including apob, nfkbiaa, serpinf1, foxa1, cyp2k6, and cyp2n13 from the cytochrome P450 gene family. Key genes including pik3c2b, pltp, and chia.2 were differentially expressed in both 1 and 0.1 ppm exposures. However, fewer transcriptomic changes were induced by 0.1 ppm compared with 1 ppm. Future studies are needed to determine if these transcriptomic responses during embryogenesis have long-term consequences at levels equal to or lower than 1 ppm.
Collapse
|
12
|
Zhang W, Guo X, Ren J, Chen Y, Wang J, Gao A. GCN5-mediated PKM2 acetylation participates in benzene-induced hematotoxicity through regulating glycolysis and inflammation via p-Stat3/IL17A axis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118708. [PMID: 34929209 DOI: 10.1016/j.envpol.2021.118708] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Benzene is a common environmental carcinogen that induces leukemia. Studies suggest that metabolic disorder has a relationship with the toxicity of benzene. Pyruvate kinase M2 (PKM2) is a key rate-limiting enzyme in glycolysis. However, the upstream and downstream regulatory mechanisms of PKM2 in benzene-induced hematotoxicity and the therapeutic effects of targeting PKM2 in vivo are unclear. This study aims to provide insights into the new mechanism of benzene-induced hematotoxicity and reveal the therapeutic significance of targeting PKM2. Herein, we demonstrated that PKM2-dependent glycolysis contributes to benzene-induced hematotoxicity by regulating inflammation reaction. Mechanistically, acetylated proteomics revealed that 1,4-benzoquinone (1,4-BQ) induced acetylation of PKM2 at position K66, and this modification contributed to the increase of PKM2 expression and can be inhibited by inhibition of acetyltransferase GCN5. Meanwhile, the elevated PKM2 was shown to prompt the activation of nuclear phosphorylated Stat3 (p-Stat3) and IL17A. Clinically, pharmacological inhibition of PKM2 alleviated the blood toxicity induced by benzene, which was mainly characterized by an increase in routine blood parameters and improvement of hematopoietic imbalance. Besides, elevated PKM2 is a promising biomarker in people occupationally exposed to benzene. Overall, we identified PKM2/p-Stat3/IL-17A axis participates in the hematotoxicity of benzene, and targeting PKM2 has certain therapeutic implications in hematologic diseases.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Xiaoli Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Jing Ren
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Yujiao Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Jingyu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
13
|
Zhang L, Jing J, Han L, Wang J, Zhang W, Liu Z, Gao A. Characterization of gut microbiota, metabolism and cytokines in benzene-induced hematopoietic damage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112956. [PMID: 34781132 DOI: 10.1016/j.ecoenv.2021.112956] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/18/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Benzene exposure leads to hematopoietic dysfunction and is characterized clinically by a decrease in blood cells, but the underlying mechanisms remain elusive. Disturbed gut microbiota may induce host metabolic, immune disorders and the onset of disease. However, the characterization of gut microbiota, metabolism, cytokines and their association with benzene-induced hematopoietic toxicity lacks systematic evidence. Here, the microbiomics, metabolomics and cytokine network were applied to find out the critical characteristics of gut microbiota, metabolism and cytokines in mice involved in the benzene-induced hematopoietic toxicity. We found that the decline in hematopoietic stem cells was earlier than the hematological changes in the 5 mg/kg and 25 mg/kg benzene exposure groups. While 125 mg/kg benzene exposure resulted in a significant decline in whole blood cells. High-throughput sequencing results showed that benzene exposure disrupted homeostasis of gut microbiota, metabolism and cytokine in mice. 6 bacteria, 12 plasma metabolites and 6 cytokines were associated with benzene-induced hematopoietic damage. Notably, IL-5 was significantly increased in benzene exposure group in a dose-dependent manner, and a significant negative correlation was found between IL-5 and hematopoietic damage. We further found that increased Family_XIII_AD3011_group at the genus level and decreased Anaerotruncus_sp at the species level in benzene-exposed group were strongly associated with hematopoietic toxicity and IL-5. Furthermore, the abundance of Family_XIII_AD3011_group and Anaerotruncus_sp were negatively correlated with Adipic acid and 4-Hydroxyproline, respectively. Our findings indicated that altered flora structure of gut microbiota affects the metabolic phenotype which acts as messengers for the gut microbes, affecting host inflammation. This preliminary study provides new insight into the potential mechanisms of benzene-induced hematopoietic toxicity, further exploration by functional studies is required in the future.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jiaru Jing
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Lin Han
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jingyu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ziyan Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|