1
|
Ouyang F, Guo H, Xie W, Song Y, Yan Z, Peng Z, Zhang Y, Qu R, Xin H, Yuan Z, Xiao Z, Men X. Chromosome-level genome of Osmia excavata (Hymenoptera: Megachilidae) provides insights into low-temperature tolerance of Osmia pollinator. JOURNAL OF ECONOMIC ENTOMOLOGY 2024:toae257. [PMID: 39471471 DOI: 10.1093/jee/toae257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 11/01/2024]
Abstract
The solitary bee Osmia excavata (Hymenoptera: Megachilidae) is a key pollinator managed on a large scale. It has been widely used for commercial pollination of fruit trees, vegetables, and other crops with high efficiency in increasing the crop seeding rate, yield, and seed quality in Northern hemisphere. Here, a high-quality chromosome-level genome of O. excavata was generated using PacBio sequencing along with Hi-C technology. The genome size was 207.02 Mb, of which 90.25% of assembled sequences were anchored to 16 chromosomes with a contig N50 of 9,485 kb. Approximately 186.83 Mb, accounting for 27.93% of the genome, was identified as repeat sequences. The genome comprises 12,259 protein-coding genes, 96.24% of which were functionally annotated. Comparative genomics analysis suggested that the common ancestor of O. excavata and Osmia bicornis (Hymenoptera: Megachilidae) lived 8.54 million years ago. Furthermore, cytochrome P450 family might be involved in the responses of O. excavata to low-temperature stress. Taken together, the chromosome-level genome assembly of O. excavata provides in-depth knowledge and will be a helpful resource for the pollination biology research.
Collapse
Affiliation(s)
- Fang Ouyang
- College of Life Sciences, Hebei University, Baoding, Hebei, China
- Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Honggang Guo
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Wen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, China
| | - Yingying Song
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhuo Yan
- Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | - Yongsheng Zhang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Ritao Qu
- Yantai Agricultural Technology Extension Center, Yantai, China
| | - Huaigen Xin
- Tianjin Qiyuan Biotechnology Development Co., Ltd., Tianjin, China
| | - Zheming Yuan
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Zhishu Xiao
- Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xingyuan Men
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
2
|
Guo D, Wang Y, Li Z, Zhang DX, Wang C, Wang H, Liu Z, Liu F, Guo X, Wang N, Xu B, Gao Z. Effects of abamectin nanocapsules on bees through host physiology, immune function, and gut microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172738. [PMID: 38670362 DOI: 10.1016/j.scitotenv.2024.172738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Pesticide usage is a common practice to increase crop yields. Nevertheless, the existence of pesticide residues in the surrounding environment presents a significant hazard to pollinators, specifically the potential undisclosed dangers related to emerging nanopesticides. This study examines the impact of abamectin nanocapsules (AbaNCs), created through electrostatic self-assembly, as an insecticide on honey bees. It was determined that AbaNCs upregulated detoxification genes, including CYP450, as well as antioxidant and immune genes in honey bees. Furthermore, AbaNCs affected the activity of crucial enzymes such as superoxide dismutase (SOD). Although no apparent damage was observed in bee gut tissue, AbaNCs significantly decreased digestive enzyme activity. Microbiome sequencing revealed that AbaNCs disrupted gut microbiome, resulting in a reduction of beneficial bacteria such as Bifidobacterium and Lactobacillus. Additionally, these changes in the gut microbiome were associated with decreased activity of digestive enzymes, including lipase. This study enhances our understanding of the impact of nanopesticides on pollinating insects. Through the revelation of the consequences arising from the utilization of abamectin nanocapsules, we have identified potential stress factors faced by these pollinators, enabling the implementation of improved protective measures.
Collapse
Affiliation(s)
- Dezheng Guo
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Zhongyu Li
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Da-Xia Zhang
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Chen Wang
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Feng Liu
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Xingqi Guo
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Ningxin Wang
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China.
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China.
| | - Zheng Gao
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China.
| |
Collapse
|
3
|
Green FB, Muñoz SR, Smith PN. Laboratory Determination of Particulate-Matter-Bound Agrochemical Toxicity among Honeybees, Mason Bees, and Painted Lady Butterflies. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2642-2650. [PMID: 37589401 DOI: 10.1002/etc.5730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/13/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
Pollinator population declines are global phenomena with severe consequences for native flora and agriculture. Many factors have contributed to pollinator declines including habitat loss, climate change, disease and parasitism, reductions in abundance and diversity of foraging resources, and agrochemical exposure. Particulate matter (PM) serves as a carrier of toxic agrochemicals, and pollinator mortality can occur following exposure to agrochemical-contaminated PM. Therefore, laboratory-controlled experiments were conducted to evaluate impacts of individual PM-bound agrochemicals. Honeybees (Apis mellifera), blue orchard mason bees (Osmia lignaria), and painted lady butterfly (Vanessa cardui) larvae were exposed to bifenthrin, permethrin, clothianidin, imidacloprid, abamectin, and ivermectin via suspended, airborne PM. Agrochemical concentrations in PM to which pollinators were exposed were based on concentrations observed in fugitive beef cattle feedyard PM including a "mean" treatment and a "max" treatment reflective of reported mean and maximum PM-bound agrochemical concentrations, respectively. In general, pollinators in the mean and max treatments experienced significantly higher mortality compared with controls. Honeybees were most sensitive to pyrethroids, mason bees were most sensitive to neonicotinoids, and painted lady butterfly larvae were most sensitive to macrocyclic lactones. Overall, pollinator mortality was quite low relative to established toxic effect levels derived from traditional pollinator contact toxicity tests. Furthermore, pollinator mortality resulting from exposure to individual agrochemicals via PM was less than that reported to occur at beef cattle feedyards, highlighting the importance of mixture toxicity to native and managed pollinator survival and conservation. Environ Toxicol Chem 2023;42:2642-2650. © 2023 SETAC.
Collapse
Affiliation(s)
- Frank B Green
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas, USA
| | - Sonia R Muñoz
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas, USA
| | - Philip N Smith
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
4
|
Bischoff K, Moiseff J. The role of the veterinary diagnostic toxicologist in apiary health. J Vet Diagn Invest 2023; 35:597-616. [PMID: 37815239 PMCID: PMC10621547 DOI: 10.1177/10406387231203965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Susceptibility of individuals and groups to toxicants depends on complex interactions involving the host, environment, and other exposures. Apiary diagnostic investigation and honey bee health are truly population medicine: the colony is the patient. Here we provide basic information on the application of toxicology to the testing of domestic honey bees, and, in light of recent research, expand on some of the challenges of interpreting analytical chemistry findings as they pertain to hive health. The hive is an efficiently organized system of wax cells used to store brood, honey, and bee bread, and is protected by the bee-procured antimicrobial compound propolis. Toxicants can affect individual workers outside or inside the hive, with disease processes that range from acute to chronic and subclinical to lethal. Toxicants can impact brood and contaminate honey, bee bread, and structural wax. We provide an overview of important natural and synthetic toxicants to which honey bees are exposed; behavioral, husbandry, and external environmental factors influencing exposure; short- and long-term impacts of toxicant exposure on individual bee and colony health; and the convergent impacts of stress, nutrition, infectious disease, and toxicant exposures on colony health. Current and potential future toxicology testing options are included. Common contaminants in apiary products consumed or used by humans (honey, wax, pollen), their sources, and the potential need for product testing are also noted.
Collapse
Affiliation(s)
- Karyn Bischoff
- New York State Animal Health Diagnostic Laboratory, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jennifer Moiseff
- New York State Animal Health Diagnostic Laboratory, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
5
|
Green FB, Peterson EM, Emert AD, Subbiah S, Smith PN. Bee Pollinator Mortality Due to Pesticide-Laden Particulate Matter from Beef Cattle Feedyards. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14839-14848. [PMID: 37723142 DOI: 10.1021/acs.est.3c03135] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Wild and managed bees are critical for the stability of trophic webs, angiosperm reproduction, and agricultural productivity. Unfortunately, as many as 40% of crop pollinators are in a steep decline due to habitat loss and exposure to agrochemicals. Pyrethroids, neonicotinoids, and macrocyclic lactones are among the many agrochemicals toxic to pollinating insects that are used extensively in industrial beef cattle feeding operations throughout the world. Fugitive feedyard particulate matter (PM) transports agrochemicals into the surrounding environs. To determine the impact of agrochemical-laden feedyard particulate matter on bee pollinators, we conducted in situ experiments wherein honeybees and mason bees were placed downwind and upwind of feedyards (N = 40). Concurrent, colocated total suspended particulate matter samples contained multiple insecticides and parasiticides including pyrethroids, neonicotinoids, and macrocyclic lactones, in significantly higher concentrations downwind of feedyards (bifenthrin, 8.45 ± 4.92; permethrin, 1032.34 ± 740.76; clothianidin, 3.61 ± 1.48; imidacloprid, 73.32 ± 47.52; thiamethoxam, 5.81 ± 3.16; abamectin, 0.45 ± 0.29; ivermectin, 8.88 ± 5.06 ng/g). Honeybees and mason bees sited downwind of feedyards always experienced higher mortality than those correspondingly sited upwind, and male mason bees experienced significantly higher mortality compared to females when both were sited downwind. Bees occurring downwind of beef cattle feedyards for 1 h are 232-260% more likely to die than those occurring upwind. Thus, agrochemicals used on and emitted from beef cattle feedyards are significant threats to bee pollinators.
Collapse
Affiliation(s)
- Frank B Green
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas 79406, United States
| | - Eric M Peterson
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas 79406, United States
| | - Amanda D Emert
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas 79406, United States
| | - Seenivasan Subbiah
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas 79406, United States
| | - Philip N Smith
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas 79406, United States
| |
Collapse
|
6
|
Thompson HM, Cione A, Paniago M, Artal M, Veiga JS, Oliveira A, Mareca V. Dust abraded from thiamethoxam-treated seed during sowing: Refining the risk assessment for native bees in Brazil. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:1361-1373. [PMID: 36606547 DOI: 10.1002/ieam.4734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
During sowing using pneumatic machinery, dust may be abraded from pesticide-treated seed and contaminate adjacent bee-attractive off-crop areas. This study quantified the risk to native bees of dust released during sowing of Brazilian crop seeds treated with a thiamethoxam formulation (Cruiser 350FS). To address toxicity to native bees, adult acute contact LD50 data for thiamethoxam were collated from the literature, a species sensitivity distribution generated, and the HD5 calculated. The LD50 HD5 was used to refine the default safety factor applied to the honeybee acute contact LD50 from 10 to 5.45 for thiamethoxam. Crop-specific abraded dust data (Heubach dust and Heubach AI) were generated for seeds treated with Cruiser 350FS sourced from on-farm and industrial facilities. The mean Heubach dust levels was ranked as cotton = maize > sunflower = soybean > drybean. There was no correlation between the measured residues of thiamethoxam (Heubach AI) and those estimated in dust based on the thiamethoxam content of Cruiser 350FS. A hazard quotient (HQ) for each crop (based on application rate, the default dust deposition factor, and the honeybee contact LD50/10) identified risks during sowing for all crops. Refinement of the application rate with the measured 90th percentile Heubach dust (assuming 100% thiamethoxam) resulted in sowing of industrially treated soybean and on-farm treated cotton being identified as risks. Further refinement using either the measured 90th percentile Heubach AI or the acute contact LD50 (HD5 ) resulted in sowing of all crops treated with Cruiser 350FS as being identified as low risk. Similar high quality seed treatment should be demonstrated for other formulations containing insecticides with high toxicity to bees. Data on dust drift from machinery and crops more representative of those in Brazil may allow further refinement of the default dust deposition value of 17% used in this study. Integr Environ Assess Manag 2023;19:1361-1373. © 2023 SETAC.
Collapse
Affiliation(s)
- Helen M Thompson
- Syngenta Ltd, Jealott's Hill International Research Centre, Bracknell, UK
| | - Ana Cione
- Syngenta Proteção de Cultivos Ltda, São Paulo, Brazil
| | - Mario Paniago
- Syngenta Proteção de Cultivos Ltda, São Paulo, Brazil
| | - Mariana Artal
- Syngenta Proteção de Cultivos Ltda, São Paulo, Brazil
| | - José S Veiga
- Syngenta Seedcare Institute, Holambra, São Paulo, Brazil
| | | | | |
Collapse
|
7
|
Green FB, Peterson EM, Smith PN. A novel laboratory method for simulating pollinator exposure to agrochemical-laden particulate matter. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:544-551. [PMID: 37165294 DOI: 10.1007/s10646-023-02660-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Accepted: 04/29/2023] [Indexed: 05/12/2023]
Abstract
Environmental transport and deposition of particulate matter (PM) associated with toxic chemicals has begun to receive attention as a source of risk to pollinators. For example, dust arising from manipulations of insecticide-treated seed has potential to exert toxic effects among non-target insects. Similarly, synthetic steroid growth promoters, antibiotics and multiple insecticides and parasiticides detected in fugitive beef cattle feedyard PM may also negatively impact pollinators since many of these chemicals have been detected on wildflowers and pollinators collected near beef cattle feedyards. Therefore, there is a need to assess risk to pollinators posed by deposition of agrochemical-laden PM, both in the field and the laboratory. Unfortunately, established laboratory methods for simulating PM exposure or toxicity associated with contaminated PM are few and highly situation-specific. Herein we describe development and use of a PM circulation system that can be employed to evaluate toxicity of agrochemical-contaminated PM in the laboratory under controlled conditions. Two model organisms (honeybees (Apis mellifera) and mason bees (Osmia lignaria)) were exposed to agrochemical-free PM in the circulator system, and post-exposure mortality was compared with controls. No significant differences in mortality between exposed and control bees were observed. Next, honeybees and mason bees were exposed to PM spiked with an insecticide known to exert toxic effects to pollinators (thiamethoxam). Bees experienced significantly higher mortality when exposed to thiamethoxam-laden PM at environmentally relevant concentrations as compared to bees exposed to agrochemical-free PM. These results confirm the validity of these methods for use in controlled laboratory PM toxicity tests and offer a source of positive and negative control groups for laboratory and field experiments examining exposure of pollinators to potentially toxic agrochemical-laden PM. This method facilitates generation of more realistic toxicity data than standard contact toxicity tests when pollinator exposure scenarios involve particulate-based agrochemicals or other toxic chemicals.
Collapse
Affiliation(s)
- Frank B Green
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, USA
| | - Eric M Peterson
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, USA
| | - Philip N Smith
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
8
|
Stuligross C, Melone GG, Wang L, Williams NM. Sublethal behavioral impacts of resource limitation and insecticide exposure reinforce negative fitness outcomes for a solitary bee. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161392. [PMID: 36621507 DOI: 10.1016/j.scitotenv.2023.161392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Contemporary landscapes present numerous challenges for bees and other beneficial insects that play critical functional roles in natural ecosystems and agriculture. Pesticides and the loss of food resources from flowering plants are two stressors known to act together to impair bee fitness. The impact of these stressors on key behaviors like foraging and nesting can limit pollination services and population persistence, making it critical to understand these sublethal effects. We investigated the effects of insecticide exposure and floral resource limitation on the foraging and nesting behavior of the solitary blue orchard bee, Osmia lignaria. Bees in field cages foraged on wildflowers at high or low densities, some treated with the common insecticide, imidacloprid, in a fully crossed design. Both stressors influenced behavior, but they had differential impacts. Bees with limited food resources made fewer, but longer foraging trips and misidentified their nests more often. Insecticide exposure reduced bee foraging activity. Additionally, insecticides interacted with bee age to influence antagonistic behavior among neighboring females, such that insecticide-exposed bees were less antagonistic with age. Our findings point towards mechanisms underlying effects on populations and ecosystem function and reinforce the importance of studying multiple drivers to understand the consequences of anthropogenic change.
Collapse
Affiliation(s)
- Clara Stuligross
- Graduate Group in Ecology, University of California, Davis, One Shields Ave, Davis, CA 95616, USA; Department of Entomology and Nematology, University of California, Davis, One Shields Ave, Davis, CA 95616, USA.
| | - Grace G Melone
- Department of Entomology and Nematology, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Li Wang
- Department of Entomology and Nematology, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Neal M Williams
- Graduate Group in Ecology, University of California, Davis, One Shields Ave, Davis, CA 95616, USA; Department of Entomology and Nematology, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
9
|
Conceição de Assis J, Eduardo da Costa Domingues C, Tadei R, Inês da Silva C, Soares Lima HM, Decio P, Silva-Zacarin ECM. Sublethal doses of imidacloprid and pyraclostrobin impair fat body of solitary bee Tetrapedia diversipes (Klug, 1810). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119140. [PMID: 35301028 DOI: 10.1016/j.envpol.2022.119140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Solitary bees present greater species diversity than social bees. However, they are less studied than managed bees, mainly regarding the harmful effects of pesticides present in agroecosystems commonly visited by them. This study aimed to evaluate the effect of residual doses of imidacloprid and pyraclostrobin, alone and in combination, on the fat body (a multifunctional organ) of the neotropical solitary bee Tetrapedia diversipes by means of morphological and histochemical evaluation of oenocytes and trophocytes. Males and females of newly-emerged adults were submitted to bioassays of acute topical exposure. Experimental groups were essayed: control (CTR), solvent control (ACT), imidacloprid (IMI, 0.0028 ng/μL), pyraclostrobin (PYR, 2.7 ng/μL) and imidacloprid + pyraclostrobin (I + P). The data demonstrated that the residual doses applied in T. diversipes adults are sublethal at 96 h. Both oenocytes and trophocytes cells responded to topical exposure to the pesticides, showing morphological changes. In the IMI group, the bee oenocytes showed the greatest proportion of vacuolization and altered nuclei. The pyraclostrobin exposure increased the intensity of PAS-positive labeling (glycogen) in trophocytes. This increase was also observed in the I + P group. Changes in energy reserve (glycogen) of trophocytes indicate a possible mobilization impairment of this neutral polysaccharide to the hemolymph, which can compromise the fitness of exposed individuals. Also, changes in oenocytes can compromise the detoxification function performed by the fat body. This is the first study to show sublethal effects in neotropical solitary bees and highlight the importance of studies with native bees.
Collapse
Affiliation(s)
- Josimere Conceição de Assis
- Federal University of São Carlos, UFSCar, Postgraduate Program in Biotechnology and Environmental Monitoring, Sorocaba, São Paulo State, Brazil
| | | | - Rafaela Tadei
- São Paulo State University, UNESP, Postgraduate Program in Biological Sciences, Rio Claro, São Paulo State, Brazil
| | - Cláudia Inês da Silva
- Federal University of São Carlos, UFSCar, Department of Biology, Laboratory of Ecotoxicology and Environmental Integrity (LEIA), Sorocaba, São Paulo State, Brazil; Federal University of São Carlos, UFSCar, Department of Environmental Sciences, Sorocaba, São Paulo State, Brazil
| | - Hellen Maria Soares Lima
- Federal University of São Carlos, UFSCar, Department of Biology, Laboratory of Ecotoxicology and Environmental Integrity (LEIA), Sorocaba, São Paulo State, Brazil
| | - Pâmela Decio
- Federal University of São Carlos, UFSCar, Postgraduate Program in Biotechnology and Environmental Monitoring, Sorocaba, São Paulo State, Brazil; Federal University of São Carlos, UFSCar, Department of Biology, Laboratory of Ecotoxicology and Environmental Integrity (LEIA), Sorocaba, São Paulo State, Brazil
| | - Elaine C M Silva-Zacarin
- Federal University of São Carlos, UFSCar, Postgraduate Program in Biotechnology and Environmental Monitoring, Sorocaba, São Paulo State, Brazil; Federal University of São Carlos, UFSCar, Department of Biology, Laboratory of Ecotoxicology and Environmental Integrity (LEIA), Sorocaba, São Paulo State, Brazil.
| |
Collapse
|
10
|
Peterson EM, Green FB, Subbiah S, Emert A, Smith PN. Agrochemical occurrence on colocated wildflowers and wild bees collected near beef cattle feed yards and row crops. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:163-173. [PMID: 33913622 DOI: 10.1002/ieam.4436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/29/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
It is well established that agrochemicals can pose significant threats to native pollinators; however, relatively little is known about pollinator risks associated with agrochemicals that are used on beef cattle feed yards. Recently, feed yard-derived agrochemicals and those from row crop agriculture were quantified on wildflowers growing on the High Plains, USA. To better characterize pollinator risks on the High Plains, we collected colocated wildflowers and foraging bees across three field seasons for analytical determination of residual agrochemicals. Agrochemicals were detected and quantified on the majority of wildflowers (85%) and nearly half of bees (49%). Permethrin was the most frequently detected analyte on wildflowers (32%) and bees (17%). Flower hazard quotients and flower hazard indices were calculated to deterministically evaluate risk to foraging pollinators. Mean flower hazard quotients exceeded one for 5/16 analytes (31%), and flower hazard quotients calculated for 30% of wildflowers were greater than 50. Flower hazard quotients for clothianidin exceeded 400 for 14% of wildflowers, which portends conditions conducive to frequent bee mortalities. Flower hazard indices were greater on wildflowers from mid-July to mid-September as compared with wildflowers collected earlier in the summer, which coincides with row crop planting and increased prevalence of feed yard flies. Hazard quotients and hazard index values calculated from agrochemical residue data suggest that pollinators frequenting wildflowers near beef cattle feed yards and row crops on the High Plains are at risk from both individual sources, and more so when considered in combination. Integr Environ Assess Manag 2022;18:163-173. © 2021 SETAC.
Collapse
Affiliation(s)
- Eric M Peterson
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas, USA
| | - Frank B Green
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas, USA
| | - Seenivasan Subbiah
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas, USA
| | - Amanda Emert
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas, USA
| | - Philip N Smith
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
11
|
Peterson EM, Thompson KN, Shaw KR, Tomlinson C, Longing SD, Smith PN. Use of nest bundles to monitor agrochemical exposure and effects among cavity nesting pollinators. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117142. [PMID: 33965805 DOI: 10.1016/j.envpol.2021.117142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Cavity nesting bees are proficient and important pollinators that can augment or replace honey bee pollination services for some crops. Relatively little is known about specific pesticide concentrations present in cavity nesting insect reed matrices and associated potential risks to cavity nesting bees. Nesting substrates (Phragmites australis reeds in bundles) were deployed in an agriculturally intensive landscape to evaluate colonization and agrochemical exposure among cavity nesting pollinators over two consecutive field seasons. Composition of insect species colonizing reeds within nest bundles varied considerably; those placed near beef cattle feed yards were dominated by wasps (93% of the total number of individuals occupying reed nest bundles), whereas nest bundles deployed in cropland-dominated landscapes were colonized primarily by leaf cutter bees (71%). All nesting/brood matrices in reeds (mud, leaves, brood, pollen) contained agrochemicals. Mud used in brood chamber construction at feed yard sites contained 21 of 23 agrochemicals included in analysis and >70% of leaf substrate stored in reeds contained at least one agrochemical. Moxidectin was most frequently detected across all reed matrices from feed yard sites, and moxidectin concentrations in nonviable larvae were more than four times higher than those quantified in viable larvae. Agrochemical concentrations in leaf material and pollen were also quantified at levels that may have induced toxic effects among developing larvae. To our knowledge, this is the first study to characterize agrochemical concentrations in multiple reed matrices provisioned by cavity-nesting insects. Use of nest bundles revealed that cavity nesting pollinators in agriculturally intensive regions are exposed to agrochemicals during all life stages, at relatively high frequencies, and at potentially lethal concentrations. These results demonstrate the utility of nest bundles for characterizing risks to cavity nesting insects inhabiting agriculturally intensive regions.
Collapse
Affiliation(s)
- Eric M Peterson
- Texas Tech University, Department of Environmental Toxicology, Lubbock, TX, 79409, United States.
| | - Kelsey N Thompson
- Texas Tech University, Department of Environmental Toxicology, Lubbock, TX, 79409, United States
| | - Katherine R Shaw
- Center for Marine Debris Research, Waimanalo, Hawaii, 96795, United States
| | - Caleb Tomlinson
- Texas Tech University, Department of Plant and Soil Science, Lubbock, TX, 79409, United States
| | - Scott D Longing
- Texas Tech University, Department of Plant and Soil Science, Lubbock, TX, 79409, United States
| | - Philip N Smith
- Texas Tech University, Department of Environmental Toxicology, Lubbock, TX, 79409, United States.
| |
Collapse
|