1
|
Shi A, Xu J, Shao Y, Alwathnani H, Rensing C, Zhang J, Xing S, Ni W, Zhang L, Yang W. Salicylic Acid's impact on Sedum alfredii growth and cadmium tolerance: Comparative physiological, transcriptomic, and metabolomic study. ENVIRONMENTAL RESEARCH 2024; 252:119092. [PMID: 38729407 DOI: 10.1016/j.envres.2024.119092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
With the acceleration of industrialization, Cd pollution has emerged as a major threat to soil ecosystem health and food safety. Hyperaccumulating plants like Sedum alfredii Hance are considered to be used as part of an effective strategy for the ecological remediation of Cd polluted soils. This study delved deeply into the physiological, transcriptomic, and metabolomic responses of S. alfredii under cadmium (Cd) stress when treated with exogenous salicylic acid (SA). We found that SA notably enhanced the growth of S. alfredii and thereby increased absorption and accumulation of Cd, effectively alleviating the oxidative stress caused by Cd through upregulation of the antioxidant system. Transcriptomic and metabolomic data further unveiled the influence of SA on photosynthesis, antioxidant defensive mechanisms, and metal absorption enrichment pathways. Notably, the interactions between SA and other plant hormones, especially IAA and JA, played a central role in these processes. These findings offer us a comprehensive perspective on understanding how to enhance the growth and heavy metal absorption capabilities of hyperaccumulator plants by regulating plant hormones, providing invaluable strategies for future environmental remediation efforts.
Collapse
Affiliation(s)
- An Shi
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Junlong Xu
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yudie Shao
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hend Alwathnani
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Christopher Rensing
- Department of Environmental Microbiology, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - JinLin Zhang
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Shihe Xing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wuzhong Ni
- College of Environment and Resources, Zhejiang University, Hangzhou, 310058, China
| | - Liming Zhang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Wenhao Yang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
2
|
Jia D, Li Z, Ma H, Ji H, Qi H, Zhang C. Near-Infrared Fluorescence Probe with a New Recognition Moiety for the Specific Detection of Cysteine to Study the Corresponding Physiological Processes in Cells, Zebrafish, and Arabidopsis thaliana. Anal Chem 2024; 96:6030-6036. [PMID: 38569068 DOI: 10.1021/acs.analchem.4c00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Cysteine (Cys), as one of the biological thiols, is related to many physiological and pathological processes in humans and plants. Therefore, it is necessary to develop a sensitive and selective method for the detection and imaging of Cys in biological organisms. In this work, a novel near-infrared (NIR) fluorescent probe, Probe-Cys, was designed by connecting furancarbonyl, as a new recognition moiety, with Fluorophore-OH via the decomposition of IR-806. The use of the furan moiety is anticipated to produce more effective fluorescence quenching because of the electron-donating ability of the O atom. Probe-Cys has outstanding properties, such as a new recognition group, an emission wavelength in the infrared region at 710 nm, a linear range (0-100 μM), a low detection limit of 0.035 μM, good water solubility, excellent sensitivity, and selectivity without the interference of Hcy, GSH, and HS-. More importantly, Probe-Cys could achieve the detection of endogenous Cys by reacting with the stimulant 1,4-dimercaptothreitol (DTT) and the inhibitor N-ethylmaleimide (NEM) in HepG2 cells and zebrafish. Ultimately, it was successfully applied to obtain images of Arabidopsis thaliana, revealing that the content of Cys in the meristematic zone was higher than that in the elongation zone, which was the first time that the NIR fluorescence probe was used to obtain images of Cys in A. thaliana. The superior properties of the probe exhibit its great potential for use in biosystems to explore the physiological and pathological processes associated with Cys.
Collapse
Affiliation(s)
- Dongli Jia
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Zhao Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Hongyu Ma
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Haiyang Ji
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
3
|
Fu S, Iqbal B, Li G, Alabbosh KF, Khan KA, Zhao X, Raheem A, Du D. The role of microbial partners in heavy metal metabolism in plants: a review. PLANT CELL REPORTS 2024; 43:111. [PMID: 38568247 DOI: 10.1007/s00299-024-03194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
Heavy metal pollution threatens plant growth and development as well as ecological stability. Here, we synthesize current research on the interplay between plants and their microbial symbionts under heavy metal stress, highlighting the mechanisms employed by microbes to enhance plant tolerance and resilience. Several key strategies such as bioavailability alteration, chelation, detoxification, induced systemic tolerance, horizontal gene transfer, and methylation and demethylation, are examined, alongside the genetic and molecular basis governing these plant-microbe interactions. However, the complexity of plant-microbe interactions, coupled with our limited understanding of the associated mechanisms, presents challenges in their practical application. Thus, this review underscores the necessity of a more detailed understanding of how plants and microbes interact and the importance of using a combined approach from different scientific fields to maximize the benefits of these microbial processes. By advancing our knowledge of plant-microbe synergies in the metabolism of heavy metals, we can develop more effective bioremediation strategies to combat the contamination of soil by heavy metals.
Collapse
Affiliation(s)
- Shilin Fu
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, 212013, Zhenjiang, People's Republic of China
| | - Babar Iqbal
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, 212013, Zhenjiang, People's Republic of China
| | - Guanlin Li
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, 212013, Zhenjiang, People's Republic of China.
- Jiangsu Collaborative Innovation Centre of Technology and Material of Water Treatment, Suzhou University of Science and Technology, 215009, Suzhou, People's Republic of China.
| | | | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products (CBRP), Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, 61413, Abha, Saudi Arabia
| | - Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Abdulkareem Raheem
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, 212013, Zhenjiang, People's Republic of China.
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering, Jiangsu University, 212013, Zhenjiang, People's Republic of China.
| |
Collapse
|
4
|
Al-Obaidi JR, Jamaludin AA, Rahman NA, Ahmad-Kamil EI. How plants respond to heavy metal contamination: a narrative review of proteomic studies and phytoremediation applications. PLANTA 2024; 259:103. [PMID: 38551683 DOI: 10.1007/s00425-024-04378-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 03/07/2024] [Indexed: 04/02/2024]
Abstract
MAIN CONCLUSION Heavy metal pollution caused by human activities is a serious threat to the environment and human health. Plants have evolved sophisticated defence systems to deal with heavy metal stress, with proteins and enzymes serving as critical intercepting agents for heavy metal toxicity reduction. Proteomics continues to be effective in identifying markers associated with stress response and metabolic processes. This review explores the complex interactions between heavy metal pollution and plant physiology, with an emphasis on proteomic and biotechnological perspectives. Over the last century, accelerated industrialization, agriculture activities, energy production, and urbanization have established a constant need for natural resources, resulting in environmental degradation. The widespread buildup of heavy metals in ecosystems as a result of human activity is especially concerning. Although some heavy metals are required by organisms in trace amounts, high concentrations pose serious risks to the ecosystem and human health. As immobile organisms, plants are directly exposed to heavy metal contamination, prompting the development of robust defence mechanisms. Proteomics has been used to understand how plants react to heavy metal stress. The development of proteomic techniques offers promising opportunities to improve plant tolerance to toxicity from heavy metals. Additionally, there is substantial scope for phytoremediation, a sustainable method that uses plants to extract, sequester, or eliminate contaminants in the context of changes in protein expression and total protein behaviour. Changes in proteins and enzymatic activities have been highlighted to illuminate the complex effects of heavy metal pollution on plant metabolism, and how proteomic research has revealed the plant's ability to mitigate heavy metal toxicity by intercepting vital nutrients, organic substances, and/or microorganisms.
Collapse
Affiliation(s)
- Jameel R Al-Obaidi
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia.
- Applied Science Research Center, Applied Science Private University, Amman, Jordan.
| | - Azi Azeyanty Jamaludin
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia
- Center of Biodiversity and Conservation, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia
| | - Norafizah Abdul Rahman
- Gene Marker Laboratory, Faculty of Agriculture and Life Sciences (AGLS), Science South Building, Lincoln University, Lincoln, 7608, Canterbury, New Zealand
| | - E I Ahmad-Kamil
- Malaysian Nature Society (MNS), JKR 641, Jalan Kelantan, Bukit Persekutuan, 50480, Kuala Lumpur, Malaysia.
| |
Collapse
|
5
|
Shi A, Xu J, Guo Y, Rensing C, Chang J, Zhang T, Zhang L, Xing S, Ni W, Yang W. Jasmonic acid's impact on Sedum alfredii growth and cadmium tolerance: A physiological and transcriptomic study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169939. [PMID: 38211868 DOI: 10.1016/j.scitotenv.2024.169939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Soil cadmium (Cd) pollution is escalating, necessitating effective remediation strategies. This study investigated the effects of exogenous jasmonic acid (JA) on Sedum alfredii Hance under Cd stress, aiming to enhance its phytoextraction efficiency. Initially, experiments were conducted to assess the impact of various concentrations of JA added to environments with Cd concentrations of 100, 300, and 500 μmol/L. The results determined that a concentration of 1 μmol/L JA was optimal. This concentration effectively mitigated the level of ROS products by enhancing the activity of antioxidant enzymes. Additionally, JA fostered Cd absorption and accumulation, while markedly improving plant biomass and photosynthetic performance. In further experiments, treatment with 1 μmol/L JA under 300 μmol/L Cd stress was performed and transcriptomic analysis unveiled a series of differentially expressed genes (DEGs) instrumental in the JA-mediated Cd stress response. These DEGs encompass not only pathways of JA biosynthesis and signaling but also genes encoding functions that influence antioxidant systems and photosynthesis, alongside genes pertinent to cell wall synthesis, and metal chelation and transport. This study highlights that JA treatment significantly enhances S. alfredii's Cd tolerance and accumulation, offering a promising strategy for plant remediation and deepening our understanding of plant responses to heavy metal stress.
Collapse
Affiliation(s)
- An Shi
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junlong Xu
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yingmin Guo
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Christopher Rensing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinqing Chang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Taoxiang Zhang
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liming Zhang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihe Xing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wuzhong Ni
- College of Environment and Resources, Zhejiang University, Hangzhou 310058, China
| | - Wenhao Yang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
6
|
Raza A, Salehi H, Bashir S, Tabassum J, Jamla M, Charagh S, Barmukh R, Mir RA, Bhat BA, Javed MA, Guan DX, Mir RR, Siddique KHM, Varshney RK. Transcriptomics, proteomics, and metabolomics interventions prompt crop improvement against metal(loid) toxicity. PLANT CELL REPORTS 2024; 43:80. [PMID: 38411713 PMCID: PMC10899315 DOI: 10.1007/s00299-024-03153-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/05/2024] [Indexed: 02/28/2024]
Abstract
The escalating challenges posed by metal(loid) toxicity in agricultural ecosystems, exacerbated by rapid climate change and anthropogenic pressures, demand urgent attention. Soil contamination is a critical issue because it significantly impacts crop productivity. The widespread threat of metal(loid) toxicity can jeopardize global food security due to contaminated food supplies and pose environmental risks, contributing to soil and water pollution and thus impacting the whole ecosystem. In this context, plants have evolved complex mechanisms to combat metal(loid) stress. Amid the array of innovative approaches, omics, notably transcriptomics, proteomics, and metabolomics, have emerged as transformative tools, shedding light on the genes, proteins, and key metabolites involved in metal(loid) stress responses and tolerance mechanisms. These identified candidates hold promise for developing high-yielding crops with desirable agronomic traits. Computational biology tools like bioinformatics, biological databases, and analytical pipelines support these omics approaches by harnessing diverse information and facilitating the mapping of genotype-to-phenotype relationships under stress conditions. This review explores: (1) the multifaceted strategies that plants use to adapt to metal(loid) toxicity in their environment; (2) the latest findings in metal(loid)-mediated transcriptomics, proteomics, and metabolomics studies across various plant species; (3) the integration of omics data with artificial intelligence and high-throughput phenotyping; (4) the latest bioinformatics databases, tools and pipelines for single and/or multi-omics data integration; (5) the latest insights into stress adaptations and tolerance mechanisms for future outlooks; and (6) the capacity of omics advances for creating sustainable and resilient crop plants that can thrive in metal(loid)-contaminated environments.
Collapse
Affiliation(s)
- Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Hajar Salehi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Shanza Bashir
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Javaria Tabassum
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Monica Jamla
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Rutwik Barmukh
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Basharat Ahmad Bhat
- Department of Bio-Resources, Amar Singh College Campus, Cluster University Srinagar, Srinagar, JK, India
| | - Muhammad Arshad Javed
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST), Srinagar, Kashmir, India
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia.
| | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| |
Collapse
|
7
|
Li J, Zenda T, Liu S, Dong A, Wang Y, Liu X, Wang N, Duan H. Integrated Transcriptomic and Proteomic Analyses of Low-Nitrogen-Stress Tolerance and Function Analysis of ZmGST42 Gene in Maize. Antioxidants (Basel) 2023; 12:1831. [PMID: 37891910 PMCID: PMC10603844 DOI: 10.3390/antiox12101831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Maize (Zea mays L.) is one of the major staple crops providing human food, animal feed, and raw material support for biofuel production. For its growth and development, maize requires essential macronutrients. In particular, nitrogen (N) plays an important role in determining the final yield and quality of a maize crop. However, the excessive application of N fertilizer is causing serious pollution of land area and water bodies. Therefore, cultivating high-yield and low-N-tolerant maize varieties is crucial for minimizing the nitrate pollution of land and water bodies. Here, based on the analysis of the maize leaf transcriptome and proteome at the grain filling stage, we identified 3957 differentially expressed genes (DEGs) and 329 differentially abundant proteins (DAPs) from the two maize hybrids contrasting in N stress tolerance (low-N-tolerant XY335 and low-N-sensitive HN138) and screened four sets of low-N-responsive genes and proteins through Venn diagram analysis. We identified 761 DEGs (253 up- and 508 down-regulated) specific to XY335, whereas 259 DEGs (198 up- and 61 down-regulated) were specific to HN138, and 59 DEGs (41 up- and 18 down-regulated) were shared between the two cultivars under low-N-stress conditions. Meanwhile, among the low-N-responsive DAPs, thirty were unique to XY335, thirty were specific to HN138, and three DAPs were shared between the two cultivars under low-N treatment. Key among those genes/proteins were leucine-rich repeat protein, DEAD-box ATP-dependent RNA helicase family proteins, copper transport protein, and photosynthesis-related proteins. These genes/proteins were involved in the MAPK signaling pathway, regulating membrane lipid peroxidation, and photosynthesis. Our results may suggest that XY335 better tolerates low-N stress than HN138, possibly through robust low-N-stress sensing and signaling, amplified protein phosphorylation and stress response, and increased photosynthesis efficiency, as well as the down-regulation of 'lavish' or redundant proteins to minimize N demand. Additionally, we screened glutathione transferase 42 (ZmGST42) and performed physiological and biochemical characterizations of the wild-type (B73) and gst42 mutant at the seedling stage. Resultantly, the wild-type exhibited stronger tolerance to low N than the mutant line. Our findings provide a better understanding of the molecular mechanisms underlying low-N tolerance during the maize grain filling stage and reveal key candidate genes for low-N-tolerance breeding in maize.
Collapse
Affiliation(s)
- Jiao Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (J.L.); (T.Z.); (A.D.); (Y.W.); (X.L.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (J.L.); (T.Z.); (A.D.); (Y.W.); (X.L.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Songtao Liu
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Academy of Agriculture and Forestry Sciences, Hebei North University, Zhangjiakou 075000, China;
| | - Anyi Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (J.L.); (T.Z.); (A.D.); (Y.W.); (X.L.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Yafei Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (J.L.); (T.Z.); (A.D.); (Y.W.); (X.L.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Xinyue Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (J.L.); (T.Z.); (A.D.); (Y.W.); (X.L.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Nan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (J.L.); (T.Z.); (A.D.); (Y.W.); (X.L.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (J.L.); (T.Z.); (A.D.); (Y.W.); (X.L.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
8
|
Ghuge SA, Nikalje GC, Kadam US, Suprasanna P, Hong JC. Comprehensive mechanisms of heavy metal toxicity in plants, detoxification, and remediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131039. [PMID: 36867909 DOI: 10.1016/j.jhazmat.2023.131039] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Natural and anthropogenic causes are continually growing sources of metals in the ecosystem; hence, heavy metal (HM) accumulation has become a primary environmental concern. HM contamination poses a serious threat to plants. A major focus of global research has been to develop cost-effective and proficient phytoremediation technologies to rehabilitate HM-contaminated soil. In this regard, there is a need for insights into the mechanisms associated with the accumulation and tolerance of HMs in plants. It has been recently suggested that plant root architecture has a critical role in the processes that determine sensitivity or tolerance to HMs stress. Several plant species, including those from aquatic habitats, are considered good hyperaccumulators for HM cleanup. Several transporters, such as the ABC transporter family, NRAMP, HMA, and metal tolerance proteins, are involved in the metal acquisition mechanisms. Omics tools have shown that HM stress regulates several genes, stress metabolites or small molecules, microRNAs, and phytohormones to promote tolerance to HM stress and for efficient regulation of metabolic pathways for survival. This review presents a mechanistic view of HM uptake, translocation, and detoxification. Sustainable plant-based solutions may provide essential and economical means of mitigating HM toxicity.
Collapse
Affiliation(s)
- Sandip A Ghuge
- Agricultural Research Organization (ARO), The Volcani Institute, P.O. Box 15159, 7505101 Rishon LeZion, Israel
| | - Ganesh Chandrakant Nikalje
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea; Department of Botany, Seva Sadan's R. K. Talreja College of Arts, Science and Commerce, Affiliated to University of Mumbai, Ulhasnagar 421003, India
| | - Ulhas Sopanrao Kadam
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea.
| | - Penna Suprasanna
- Amity Centre for Nuclear Biotechnology, Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai 410206, India
| | - Jong Chan Hong
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea; Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
9
|
Sun C, Gao L, Xu L, Zheng Q, Sun S, Liu X, Zhang Z, Tian Z, Dai T, Sun J. Melatonin alleviates chromium toxicity by altering chromium subcellular distribution and enhancing antioxidant metabolism in wheat seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50743-50758. [PMID: 36797388 DOI: 10.1007/s11356-023-25903-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/08/2023] [Indexed: 04/16/2023]
Abstract
The endogenous stimulating molecule melatonin (N-acetyl-5-methoxytryptamine, MT) has an important function in mitigating the impact of multiple abiotic stressors. However, the ameliorating effect of MT on chromium (Cr) stress and its mechanisms remains unclear. Therefore, the present study aimed to clarify the mitigating effect of exogenous MT (0 μM and 100 μM) on wheat seedlings under Cr (0 μM and 50 μM) stress stemming from the growth and physiological characteristics, phytochelatin (PC) biosynthesis, Cr subcellular distribution, and antioxidant system of the plants in these treatments. The results showed that endogenous MT application significantly promoted plant growth and improved root morphology of wheat seedlings under Cr stress due to decreased Cr and reactive oxygen species (ROS) accumulation in both roots and leaves. Accumulation and transport of Cr from roots to leaves were reduced by MT, because enhanced vacuolar sequestration via upregulated PC accumulation, took place, derived from the fact that MT upregulated the expression of key genes for PC synthesis (TaPCS and Taγ-ECS). Furthermore, MT pre-treatment alleviated Cr-induced oxidative damage by diminishing lipid peroxidation and cell apoptosis, profiting from the enhanced scavenging ability of ROS as a result of the MT-induced increase in the activities of superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase, and the related encoding gene expression levels of TaSOD2, TaCAT, TaAPX, and TaGR. In conclusion, endogenous MT application improved the growth traits, antioxidant system, and decreased Cr accumulation especially at the leaf level in wheat seedlings under Cr stress mainly through enhancing antioxidant enzyme activities and altering Cr subcellular distribution via strengthening PC biosynthesis. The mechanisms of MT-induced plant tolerance to Cr stress could help develop new strategies for secure crop production in Cr-polluted soils.
Collapse
Affiliation(s)
- Chuanjiao Sun
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Lijun Gao
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Libin Xu
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Qiaomei Zheng
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Shuzhen Sun
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Xiaoxue Liu
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Zigang Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Zhongwei Tian
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Tingbo Dai
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Jianyun Sun
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China.
| |
Collapse
|
10
|
Huang Y, Li B, Chen H, Li J, Xu J, Li X. Gamma-Aminobutyric Acid Enhances Cadmium Phytoextraction by Coreopsis grandiflora by Remodeling the Rhizospheric Environment. PLANTS (BASEL, SWITZERLAND) 2023; 12:1484. [PMID: 37050110 PMCID: PMC10096890 DOI: 10.3390/plants12071484] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Gamma-aminobutyric acid (GABA) significantly affects plant responses to heavy metals in hydroponics or culture media, but its corresponding effects in plant-soil systems remain unknown. In this study, different GABA dosages (0-8 g kg-1) were added to the rhizosphere of Coreopsis grandiflora grown in Cd-contaminated soils. Cd accumulation in the shoots of C. grandiflora was enhanced by 38.9-159.5% by GABA in a dose-dependent approach because of accelerated Cd absorption and transport. The increase in exchangeable Cd transformed from Fe-Mn oxide and carbonate-bound Cd, which may be mainly driven by decreased soil pH rather than GABA itself, could be a determining factor responsible for this phenomenon. The N, P, and K availability was affected by multiple factors under GABA treatment, which may regulate Cd accommodation and accumulation in C. grandiflora. The rhizospheric environment dynamics remodeled the bacterial community composition, resulting in a decline in overall bacterial diversity and richness. However, several important plant growth-promoting rhizobacteria, especially Pseudomonas and Sphingomonas, were recruited under GABA treatment to assist Cd phytoextraction in C. grandiflora. This study reveals that GABA as a soil amendment remodels the rhizospheric environment (e.g., soil pH and rhizobacteria) to enhance Cd phytoextraction in plant-soil systems.
Collapse
Affiliation(s)
- Yingqi Huang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China
| | - Boqun Li
- Science and Technology Information Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Huafang Chen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China
| | - Jingxian Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China
| | - Jianchu Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China
| | - Xiong Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China
| |
Collapse
|
11
|
Wyszkowska J, Borowik A, Zaborowska M, Kucharski J. Sensitivity of Zea mays and Soil Microorganisms to the Toxic Effect of Chromium (VI). Int J Mol Sci 2022; 24:178. [PMID: 36613625 PMCID: PMC9820705 DOI: 10.3390/ijms24010178] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Chromium is used in many settings, and hence, it can easily enter the natural environment. It exists in several oxidation states. In soil, depending on its oxidation-reduction potential, it can occur in bivalent, trivalent or hexavalent forms. Hexavalent chromium compounds are cancerogenic to humans. The aim of this study was to determine the effect of Cr(VI) on the structure of bacteria and fungi in soil, to find out how this effect is modified by humic acids and to determine the response of Zea mays to this form of chromium. A pot experiment was conducted to answer the above questions. Zea mays was sown in natural soil and soil polluted with Cr(VI) in an amount of 60 mg kg-1 d.m. Both soils were treated with humic acids in the form of HumiAgra preparation. The ecophysiological and genetic diversity of bacteria and fungi was assayed in soil under maize (not sown with Zea mays). In addition, the following were determined: yield of maize, greenness index, index of tolerance to chromium, translocation index and accumulation of chromium in the plant. It has been determined that Cr(VI) significantly distorts the growth and development of Zea mays, while humic acids completely neutralize its toxic effect on the plant. This element had an adverse effect on the development of bacteria of the genera Cellulosimicrobium, Kaistobacter, Rhodanobacter, Rhodoplanes and Nocardioides and fungi of the genera Chaetomium and Humicola. Soil contamination with Cr(VI) significantly diminished the genetic diversity and richness of bacteria and the ecophysiological diversity of fungi. The negative impact of Cr(VI) on the diversity of bacteria and fungi was mollified by Zea mays and the application of humic acids.
Collapse
Affiliation(s)
- Jadwiga Wyszkowska
- Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-727 Olsztyn, Poland
| | | | | | | |
Collapse
|
12
|
López-Bucio JS, Ravelo-Ortega G, López-Bucio J. Chromium in plant growth and development: Toxicity, tolerance and hormesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120084. [PMID: 36057328 DOI: 10.1016/j.envpol.2022.120084] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/15/2022] [Accepted: 08/28/2022] [Indexed: 05/27/2023]
Abstract
Research over the last three decades showed that chromium, particularly the oxyanion chromate Cr(VI) behaves as a toxic environmental pollutant that strongly damages plants due to oxidative stress, disruption of nutrient uptake, photosynthesis and metabolism, and ultimately, represses growth and development. However, mild Cr(VI) concentrations promote growth, induce adventitious root formation, reinforce the root cap, and produce twin roots from single root meristems under conditions that compromise cell viability, indicating its important role as a driver for root organogenesis. In recent years, considerable advance has been made towards deciphering the molecular mechanisms for root sensing of chromate, including the identification of regulatory proteins such as SOLITARY ROOT and MEDIATOR 18 that orchestrate the multilevel dynamics of the oxyanion. Cr(VI) decreases the expression of several glutamate receptors, whereas amino acids such as glutamate, cysteine and proline confer protection to plants from hexavalent chromium stress. The crosstalk between plant hormones, including auxin, ethylene, and jasmonic acid enables tissues to balance growth and defense under Cr(VI)-induced oxidative damage, which may be useful to better adapt crops to biotic and abiotic challenges. The highly contrasting responses of plants manifested at the transcriptional and translational levels depend on the concentration of chromate in the media, and fit well with the concept of hormesis, an adaptive mechanism that primes plants for resistance to environmental challenges, toxins or pollutants. Here, we review the contrasting facets of Cr(VI) in plants including the cellular, hormonal and molecular aspects that mechanistically separate its toxic effects from biostimulant outputs.
Collapse
Affiliation(s)
- Jesús Salvador López-Bucio
- CONACYT-Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, Mexico
| | - Gustavo Ravelo-Ortega
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, Mexico
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, Mexico.
| |
Collapse
|
13
|
Rahman SU, Nawaz MF, Gul S, Yasin G, Hussain B, Li Y, Cheng H. State-of-the-art OMICS strategies against toxic effects of heavy metals in plants: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113952. [PMID: 35999767 DOI: 10.1016/j.ecoenv.2022.113952] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollution of heavy metals (HMs), mainly due to anthropogenic activities, has received growing attention in recent decades. HMs, especially the non-essential carcinogenic ones, including chromium (Cr), cadmium (Cd), mercury (Hg), aluminum (Al), lead (Pb), and arsenic (As), have appeared as the most significant air, water, and soil pollutants, which adversely affect the quantity, quality, and security of plant-based food all over the world. Plants exposed to HMs could experience significant decline in growth and yield. To avoid or tolerate the toxic effects of HMs, plants have developed complicated defense mechanisms, including absorption and accumulation of HMs in cell organelles, immobilization by forming complexes with organic chelates, extraction by using numerous transporters, ion channels, signalling cascades, and transcription elements, among others. OMICS strategies have developed significantly to understand the mechanisms of plant transcriptomics, genomics, proteomics, metabolomics, and ionomics to counter HM-mediated stress stimuli. These strategies have been considered to be reliable and feasible for investigating the roles of genomics (genomes), transcriptomic (coding), mRNA transcripts (non-coding), metabolomics (metabolites), and ionomics (metal ions) to enhance stress resistance or tolerance in plants. The recent developments in the mechanistic understandings of the HMs-plant interaction in terms of their absorption, translocation, and toxicity invasions at the molecular and cellular levels, as well as plants' response and adaptation strategies against these stressors, are summarized in the present review. Transcriptomics, genomics, metabolomics, proteomics, and ionomics for plants against HMs toxicities are reviewed, while challenges and future recommendations are also discussed.
Collapse
Affiliation(s)
- Shafeeq Ur Rahman
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China; MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Muhammad Farrakh Nawaz
- Department of Forestry and Range Management, University of Agricultureó, Faisalabad, Pakistan
| | - Sadaf Gul
- Department of Botany, University of Karachi, Karachi, Pakistan
| | - Ghulam Yasin
- Department of Forestry and Range Management, Bahauddin Zakariya University Multan, Pakistan
| | - Babar Hussain
- Department of Plant Science Karakoram International University (KIU), Gilgit 15100, Gilgit-Baltistan, Pakistan
| | - Yanliang Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China; Dongguan Key Laboratory of Water Pollution and Ecological Safety Regulation, Dongguan, Guangdong 523808, China.
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
14
|
Zheng B, Zhao W, Ren T, Zhang X, Ning T, Liu P, Li G. Low Light Increases the Abundance of Light Reaction Proteins: Proteomics Analysis of Maize ( Zea mays L.) Grown at High Planting Density. Int J Mol Sci 2022; 23:ijms23063015. [PMID: 35328436 PMCID: PMC8955883 DOI: 10.3390/ijms23063015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/27/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023] Open
Abstract
Maize (Zea mays L.) is usually planted at high density, so most of its leaves grow in low light. Certain morphological and physiological traits improve leaf photosynthetic capacity under low light, but how light absorption, transmission, and transport respond at the proteomic level remains unclear. Here, we used tandem mass tag (TMT) quantitative proteomics to investigate maize photosynthesis-related proteins under low light due to dense planting, finding increased levels of proteins related to photosystem II (PSII), PSI, and cytochrome b6f. These increases likely promote intersystem electron transport and increased PSI end electron acceptor abundance. OJIP transient curves revealed increases in some fluorescence parameters under low light: quantum yield for electron transport (φEo), probability that an electron moves beyond the primary acceptor QA- (ψo), efficiency/probability of electron transfer from intersystem electron carriers to reduction end electron acceptors at the PSI acceptor side (δRo), quantum yield for reduction of end electron acceptors at the PSI acceptor side (φRo), and overall performance up to the PSI end electron acceptors (PItotal). Thus, densely planted maize shows elevated light utilization through increased electron transport efficiency, which promotes coordination between PSII and PSI, as reflected by higher apparent quantum efficiency (AQE), lower light compensation point (LCP), and lower dark respiration rate (Rd).
Collapse
|
15
|
Basit F, Akhter Bhat J, Han J, Guan Y, Latief Jan B, Shakoor A, Alansi S. Screening of rice cultivars for Cr-stress response by using the parameters of seed germination, morpho-physiological and antioxidant analysis. Saudi J Biol Sci 2022; 29:3918-3928. [PMID: 35844371 PMCID: PMC9280261 DOI: 10.1016/j.sjbs.2022.02.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 01/07/2023] Open
Abstract
Rice is the most important crop for the majority of population across the world with sensitive behavior toward heavy metals such as chromium (Cr) in polluted regions. Although, there is no information on the Cr resistance phenotyping in rice. Herein, two different groups of rice cultivars (normal, and hybrid) were used, each group with 14 different rice cultivars. Firstly, seed germination analysis was conducted by evaluating various seed germination indices to identify the rice cultivars with greatest seed germination vigor. Furthermore, exposure of chromium (Cr) toxicity to 28 different rice varieties (NV1-NV14, HV1-HV14) caused noticeable plant biomass reduction. Subsequently, NV2, NV6, NV10, NV12, NV13 (normal type), HV1, HV4, HV8, and HV9 (hybrid types) were pragmatic as moderately sensitive varieties, while NV3, NV4, NV9, and NV14 (normal type), HV3, HV6, HV7, and HV13 were observed as moderately tolerant. Although, NV7, and HV10 were ranked most sensitive cultivars, and NV11, and HV14 were considered as most tolerant varieties as compared to the other rice (both groups) genotypes. Afterward, Cr induced reduction in chlorophyll pigments were significantly lesser in HV14 relative to NV11, NV7, and especially HV10, and as a result HV14 modulated the total soluble sugar level as well as reduced ROS accumulation, and MDA contents production by stimulating the antioxidant defense mechanism conspicuously which further reduced the electrolyte leakage as well. Our outcomes provide support to explore the Cr tolerance mechanism in cereal crops as well as knowledge about rice breeding with increased tolerance against Cr stress.
Collapse
|
16
|
Kim YO, Gwon Y, Kim J. Exogenous Cysteine Improves Mercury Uptake and Tolerance in Arabidopsis by Regulating the Expression of Heavy Metal Chelators and Antioxidative Enzymes. FRONTIERS IN PLANT SCIENCE 2022; 13:898247. [PMID: 35755654 PMCID: PMC9231614 DOI: 10.3389/fpls.2022.898247] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/24/2022] [Indexed: 05/04/2023]
Abstract
Cysteine (Cys) is an essential amino acid component of the major heavy metal chelators, such as glutathione (GSH), metallothioneins (MTs), and phytochelatins (PCs), which are involved in the pathways of mercury (Hg) tolerance in plants. However, the mechanism through which Cys facilitates Hg tolerance in plants remains largely unclear. In this study, we investigated the effects of exogenous Cys on Hg uptake in the seedlings, roots, and shoots of Arabidopsis throughout 6 and 36 h of Hg exposure and on the regulation of Hg detoxification by heavy metal chelators and antioxidative enzymes. The results showed that exogenous Cys significantly improved Hg tolerance during the germination and seedling growth stages in Arabidopsis. Exogenous Cys significantly promoted Hg uptake in Arabidopsis roots by upregulating the expression of the Cys transporter gene AtLHT1, resulting in increased Hg accumulation in the roots and seedlings. In Arabidopsis seedlings, exogenous Cys further increased the Hg-induced glutathione synthase (GS1 and GS2) transcript levels, and the Hg and Hg + Cys treatments greatly upregulated MT3 expression after 36 h exposure. In the roots, MT3 was also significantly upregulated by treatment of 36 h of Hg or Hg + Cys. Notably, in the shoots, MT2a expression was rapidly induced (10-fold) in Hg presence and further markedly increased (20-fold) by exogenous Cys. Moreover, in the seedlings, exogenous Cys upregulated the transcripts of all superoxide dismutase (CuSOD1, CuSOD2, MnSOD1, FeSOD1, FeSOD2, and FeSOD3) within 6 h and subsequently increased the Hg-induced GR1 and GR2 transcript levels at 36 h, all of which could eliminate the promotion of reactive oxygen species production and cell damage caused by Hg. Additionally, exogenous Cys upregulated all the antioxidative genes rapidly in the roots and subsequently increased the expression of CuSOD1, CuSOD2, and MnSOD1 in the shoots. These results indicate that exogenous Cys regulates the transcript levels of heavy metal chelators and antioxidative enzymes differently in a time- and organ-specific manner under Hg stress. Taken together, our study elucidates the positive functional roles of exogenous Cys in the Hg uptake and tolerance mechanisms of Arabidopsis.
Collapse
Affiliation(s)
- Yeon-Ok Kim
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, South Korea
- *Correspondence: Yeon-Ok Kim, ;
| | - Yonghyun Gwon
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, South Korea
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, South Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, South Korea
| | - Jangho Kim
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, South Korea
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, South Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, South Korea
- Jangho Kim,
| |
Collapse
|
17
|
The Importance of Nitric Oxide as the Molecular Basis of the Hydrogen Gas Fumigation-Induced Alleviation of Cd Stress on Ganoderma lucidum. J Fungi (Basel) 2021; 8:jof8010010. [PMID: 35049950 PMCID: PMC8780922 DOI: 10.3390/jof8010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/23/2022] Open
Abstract
Whether or not hydrogen gas (H2) can reduce cadmium (Cd) toxicity in Ganoderma lucidum has remained largely unknown. Here, we report that Cd-induced growth inhibition in G. lucidum was significantly alleviated by H2 fumigation or hydrogen-rich water (HRW), evaluated by lower oxidative damage and Cd accumulation. Moreover, the amelioration effects of H2 fumigation were better than of HRW in an optimum concentration of H2 under our experimental conditions. Further results showed that H2-alleviated growth inhibition in G. lucidum was accompanied by increased nitric oxide (NO) level and nitrate reductase (NR) activity under Cd stress. On the other hand, the mitigation effects were reversed after removing endogenous NO with its scavenger cPTIO or inhibiting H2-induced NR activity with sodium tungstate. The role of NO in H2-alleviated growth inhibition under Cd stress was proved to be achieved through a restoration of redox balance, an increase in cysteine and proline contents, and a reduction in Cd accumulation. In summary, these results clearly revealed that NR-dependent NO might be involved in the H2-alleviated Cd toxicity in G. lucidum through rebuilding redox homeostasis, increasing cysteine and proline levels, and reducing Cd accumulation. These findings may open a new window for H2 application in Cd-stressed economically important fungi.
Collapse
|
18
|
Elkelish A, El-Mogy MM, Niedbała G, Piekutowska M, Atia MAM, Hamada MMA, Shahin M, Mukherjee S, El-Yazied AA, Shebl M, Jahan MS, Osman A, El-Gawad HGA, Ashour H, Farag R, Selim S, Ibrahim MFM. Roles of Exogenous α-Lipoic Acid and Cysteine in Mitigation of Drought Stress and Restoration of Grain Quality in Wheat. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112318. [PMID: 34834681 PMCID: PMC8619972 DOI: 10.3390/plants10112318] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 05/13/2023]
Abstract
Cysteine (Cys) and α-lipoic acid (ALA) are naturally occurring antioxidants (sulfur-containing compounds) that can protect plants against a wide spectrum of environmental stresses. However, up to now, there are no conclusive data on their integrative roles in mitigation of drought stress in wheat plants. Here, we studied the influence of ALA at 0.02 mM (grain dipping pre-cultivation treatment) and Cys (25 and 50 ppm as a foliar application) under well watered and deficit irrigation (100% and 70% of recommended dose). The results showed that deficit irrigation markedly caused obvious cellular oxidative damage as indicated by elevating the malondialdehyde (MDA) and hydrogen peroxide content (H2O2). Moreover, water stressed plants exhibited multiple changes in physiological metabolism, which affected the quantitative and qualitative variables of grain yield. The enzymatic antioxidants, including superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and peroxidase (POX) were improved by Cys application. SOD and APX had the same response when treated with ALA, but CAT and POX did not. Moreover, both studied molecules stimulated chlorophyll (Chl) and osmolytes' biosynthesis. In contrast, the Chl a/b ratio was decreased, while flavonoids were not affected by either of the examined molecules. Interestingly, all above-mentioned changes were associated with an improvement in the scavenging capacity of reactive oxygen species (ROS), leaf relative water content (RWC), grain number, total grain yield, weight of 1000 kernels, gluten index, falling number, and alveographic parameters (P, W, and P/L values). Furthermore, heatmap plot analysis revealed several significant correlations between different studied parameters, which may explore the importance of applied Cys and ALA as effective compounds in wheat cultivation under water deficit conditions.
Collapse
Affiliation(s)
- Amr Elkelish
- Botany Department, Faculty of Science, Suez Canal University Ismailia, Ismailia 41522, Egypt;
| | - Mohamed M. El-Mogy
- Vegetable Crops Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
- Correspondence: (M.M.E.-M); (M.F.M.I.); Tel.: +20-1068027607 (M.M.E.-M); +20-1123403173 (M.F.M.I.)
| | - Gniewko Niedbała
- Department of Biosystems Engineering, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland;
| | - Magdalena Piekutowska
- Department of Geoecology and Geoinformation, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Partyzantów 27, 76-200 Słupsk, Poland;
| | - Mohamed A. M. Atia
- Molecular Genetics and Genome Mapping Laboratory, Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Maha M. A. Hamada
- Department of Agronomy, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (M.M.A.H.); (M.S.)
| | - Mostafa Shahin
- Department of Agronomy, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (M.M.A.H.); (M.S.)
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, Kalyani 742213, India;
| | - Ahmed Abou El-Yazied
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (A.A.E.-Y.); (H.G.A.E.-G.)
| | - Mohamed Shebl
- Food Science Department, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt;
| | - Mohammad Shah Jahan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;
- Department of Horticulture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Ali Osman
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Hany G. Abd El-Gawad
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (A.A.E.-Y.); (H.G.A.E.-G.)
| | - Hatem Ashour
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (H.A.); (R.F.)
| | - Reham Farag
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (H.A.); (R.F.)
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Mohamed F. M. Ibrahim
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (H.A.); (R.F.)
- Correspondence: (M.M.E.-M); (M.F.M.I.); Tel.: +20-1068027607 (M.M.E.-M); +20-1123403173 (M.F.M.I.)
| |
Collapse
|
19
|
Madeira C, Costa PM. Proteomics in systems toxicology. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 127:55-91. [PMID: 34340774 DOI: 10.1016/bs.apcsb.2021.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proteins are the ultimate product of gene expression. As they hinge between gene transcription and phenotype, they offer a more realistic perspective of toxicopathic effects, responses and even susceptibility to insult than targeting genes and mRNAs while dodging some inter-individual variability that hinders measuring downstream endpoints like metabolites or enzyme activity. Toxicologists have long focused on proteins as biomarkers but the advent of proteomics shifted risk assessment from narrow single-endpoint analyses to whole-proteome screening, enabling deriving protein-centric adverse outcome pathways (AOPs), which are pivotal for the derivation of Systems Biology informally named Systems Toxicology. Especially if coupled pathology, the identification of molecular initiating events (MIEs) and AOPs allow predictive modeling of toxicological pathways, which now stands as the frontier for the next generation of toxicologists. Advances in mass spectrometry, bioinformatics, protein databases and top-down proteomics create new opportunities for mechanistic and effects-oriented research in all fields, from ecotoxicology to pharmacotoxicology.
Collapse
Affiliation(s)
- Carolina Madeira
- UCIBIO-Applied Molecular Biosciences Unit, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Caparica, Portugal
| | - Pedro M Costa
- UCIBIO-Applied Molecular Biosciences Unit, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Caparica, Portugal.
| |
Collapse
|