1
|
Woodward AP. Bayesian estimation in veterinary pharmacology: A conceptual and practical introduction. J Vet Pharmacol Ther 2024; 47:322-352. [PMID: 38385655 DOI: 10.1111/jvp.13433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/23/2024]
Abstract
Sophisticated mathematical and computational tools have become widespread and important in veterinary pharmacology. Although the theoretical basis and practical applications of these have been widely explored in the literature, statistical inference in the context of these models has received less attention. Optimization methods, often with frequentist statistical inference, have been predominant. In contrast, Bayesian statistics have not been widely applied, but offer both practical utility and arguably greater interpretability. Veterinary pharmacology applications are generally well supported by relevant prior information, from either existing substantive knowledge, or an understanding of study and model design. This facilitates practical implementation of Bayesian analyses that can take advantage of this knowledge. This essay will explore the specification of Bayesian models relevant to veterinary pharmacology, including demonstration of prior selection, and illustrate the capability of these models to generate practically useful statistics, including uncertainty statements, that are difficult or impossible to obtain otherwise. Case studies using simulated data will describe applications in clinical trials, pharmacodynamics, and pharmacokinetics, all including multilevel modeling. This content may serve as a suitable starting point for researchers in veterinary pharmacology and related disciplines considering Bayesian estimation for their applied work.
Collapse
Affiliation(s)
- Andrew P Woodward
- Faculty of Health, University of Canberra, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
2
|
Huang H, Zhao W, Qin N, Duan X. Recent Progress on Physiologically Based Pharmacokinetic (PBPK) Model: A Review Based on Bibliometrics. TOXICS 2024; 12:433. [PMID: 38922113 PMCID: PMC11209072 DOI: 10.3390/toxics12060433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Physiologically based pharmacokinetic/toxicokinetic (PBPK/PBTK) models are designed to elucidate the mechanism of chemical compound action in organisms based on the physiological, biochemical, anatomical, and thermodynamic properties of organisms. After nearly a century of research and practice, good results have been achieved in the fields of medicine, environmental science, and ecology. However, there is currently a lack of a more systematic review of progress in the main research directions of PBPK models, especially a more comprehensive understanding of the application in aquatic environmental research. In this review, a total of 3974 articles related to PBPK models from 1996 to 24 March 2024 were collected. Then, the main research areas of the PBPK model were categorized based on the keyword co-occurrence maps and cluster maps obtained by CiteSpace. The results showed that research related to medicine is the main application area of PBPK. Four major research directions included in the medical field were "drug assessment", "cross-species prediction", "drug-drug interactions", and "pediatrics and pregnancy drug development", in which "drug assessment" accounted for 55% of the total publication volume. In addition, bibliometric analyses indicated a rapid growth trend in the application in the field of environmental research, especially in predicting the residual levels in organisms and revealing the relationship between internal and external exposure. Despite facing the limitation of insufficient species-specific parameters, the PBPK model is still an effective tool for improving the understanding of chemical-biological effectiveness and will provide a theoretical basis for accurately assessing potential risks to ecosystems and human health. The combination with the quantitative structure-activity relationship model, Bayesian method, and machine learning technology are potential solutions to the previous research gaps.
Collapse
Affiliation(s)
| | | | - Ning Qin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; (H.H.); (W.Z.)
| | - Xiaoli Duan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; (H.H.); (W.Z.)
| |
Collapse
|
3
|
Zhu X, Luo T, Wang D, Zhao Y, Jin Y, Yang G. The occurrence of typical psychotropic drugs in the aquatic environments and their potential toxicity to aquatic organisms - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165732. [PMID: 37495145 DOI: 10.1016/j.scitotenv.2023.165732] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Psychotropic drugs (PDs) and their bioactive metabolites often persist in aquatic environments due to their typical physical properties, which made them resistant to removal by traditional wastewater treatment plants (WWTPs). Consequently, such drugs and/or their metabolites are frequently detected in both aquatic environments and organisms. Even at low concentrations, these drugs can exhibit toxic effects on non-target organisms including bony fish (zebrafish (Danio rerio) and fathead minnows) and bivalves (freshwater mussels and clams). This narrative review focuses on the quintessential representatives of three different categories of PDs-antiepileptics, antidepressants, and antipsychotics. The data regarding their concentrations occurring in the environment, patterns of distribution, the degree of enrichment in various tissues of aquatic organisms, and the toxicological effects on them are summarized. The toxicological assessments of these drugs included the evaluation of their effects on the reproductive, embryonic development, oxidative stress-related, neurobehavioral, and genetic functions in various experimental models. However, the mechanisms underlying the toxicity of PDs to aquatic organisms and their potential health risks to humans remain unclear. Most studies have focused on the effects caused by acute short-term exposure due to limitations in the experimental conditions, thus making it necessary to investigate the chronic toxic effects at concentrations that are in coherence with those occurring in the environment. Additionally, this review aims to raise awareness and stimulate further research efforts by highlighting the gaps in the understanding of the mechanisms behind PD-induced toxicity and potential health risks. Ultimately, the study underscores the importance of developing advanced remediation methods for the removal of PDs in WWTPs and encourages a broader discussion on mitigating their environmental impacts.
Collapse
Affiliation(s)
- Xianghai Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; Xianghu Laboratory, Hangzhou, 311231, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China; Xianghu Laboratory, Hangzhou, 311231, China.
| |
Collapse
|
4
|
Ma KL, Yang F, Zhang M, Chen JC, Duan MH, Li ZE, Dai Y, Liu Y, Jin YG, Yang F. Population Pharmacokinetics of Difloxacin in Crucian Carp ( Carassius auratus) after a Single Oral Administration. Vet Sci 2023; 10:416. [PMID: 37505822 PMCID: PMC10383650 DOI: 10.3390/vetsci10070416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
This study aimed to investigate the population pharmacokinetics of difloxacin in crucian carp (Carassius auratus) orally provided a single dose of 20 mg/kg body weight (BW). To achieve this, fish were sampled at various intervals using a sparse sampling strategy, and plasma samples were analyzed using the high-performance liquid chromatography (HPLC) method. Subsequently, naïve average data were analyzed using a non-compartmental method, and a population model was developed based on the nonlinear mixed effects approach. The covariate of BW and the relationship between covariances were sequentially incorporated into the population model. However, it was found that only covariance and not BW affected the population parameters. Therefore, the covariance model was taken as the final population model, which revealed that the typical values of the absorption rate constant (tvKa), apparent volume of distribution per bioavailability (tvV), and clearance rate per bioavailability (tvCl) were 1.18 1/h, 14.18 L/kg, and 0.20 L/h/kg, respectively. Based on the calculated free AUC/MIC values, the current oral dose of difloxacin (20 mg/kg BW) cannot generate adequate plasma concentrations to inhibit pathogens with MIC values above 0.83 μg/mL. Further study should be carried out to collect the pathogens from crucian carp and determine the MIC data of difloxacin against them. Pharmacodynamic experiments must also be further carried out to determine the optimal therapeutic dose for the treatment of Aeromonas hydrophila infection.
Collapse
Affiliation(s)
- Kai-Li Ma
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Fang Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Mei Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Jun-Cheng Chen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Ming-Hui Duan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Ze-En Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Yan Dai
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Yue Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Yang-Guang Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Fan Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
5
|
Rairat T, Hsieh MK, Ho WC, Lu YP, Fu ZY, Chuchird N, Chou CC. Effects of temperature on the pharmacokinetics, optimal dosage, tissue residue, and withdrawal time of florfenicol in asian seabass ( lates calcarifer). Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:235-246. [PMID: 36520459 DOI: 10.1080/19440049.2022.2155710] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Drug behavior in the bodies of fish is largely influenced by the water temperature. Antimicrobial drugs are needed for the control of bacterial outbreaks in farmed fish including Asian seabass (Lates calcarifer). However, little is known about the temperature effect on appropriate drug uses in this species. The purpose of this study was to investigate the differences in pharmacokinetics (PK), optimal dosages, tissue depletion, and withdrawal time (WDT) of florfenicol (FF) in Asian seabass reared at 25 and 30 °C. In the PK study, the fish were administered with a single oral dose of 10 mg/kg FF. The optimal dosing regimen was determined by the pharmacokinetic-pharmacodynamic (PK-PD) approach. In the tissue depletion and WDT study, FF was administered at the optimal dosages once daily for 5 days and the WDT was determined by linear regression analysis based on the sum of FF and its metabolite florfenicol amine (FFA) in the muscle/skin. When the temperature was increased from 25 to 30 °C, the elimination half-life of FF was significantly decreased from 11.0 to 7.2 h. While the other PK parameters were not changed significantly, the calculated optimal dosages for the target minimum inhibitory concentration (MIC) of 2 µg/mL were 10.9 and 22.0 mg/kg/day, respectively for 25 and 30 °C. The sum of FF + FFA is a preferable marker residue for WDT determination because differential FF metabolism was observed at different temperatures. The depletion half-life of the muscle/skin was shortened from 41.1 to 32.4 h by the 5 °C temperature increase. Despite different absolute amounts of FF given between the two temperature levels, the WDTs were very similar at 6-7 days. Thus, it appears that a single temperature-independent WDT can potentially be assigned when the drug was applied at the optimal dosage.
Collapse
Affiliation(s)
- Tirawat Rairat
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Ming-Kun Hsieh
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Wan-Cih Ho
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Ping Lu
- Biology Division, Animal Health Research Institute, Council of Agriculture, Executive Yuan, New Taipei City, Taiwan
| | - Zhu-Ying Fu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Niti Chuchird
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Chi-Chung Chou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
6
|
Song ZW, Yang F, Dai Y, Zhang CS, Shao HT, Wang H, Ma KL, Li ZE, Yang F. Population Pharmacokinetics of Danofloxacin in Yellow River Carp (Cyprinus carpio haematopterus) After One Single Oral Dose. Front Vet Sci 2022; 9:868966. [PMID: 35464352 PMCID: PMC9019490 DOI: 10.3389/fvets.2022.868966] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/14/2022] [Indexed: 12/02/2022] Open
Abstract
This study aimed to determine the population pharmacokinetics of danofloxacin in healthy Yellow River carp (Cyprinus carpio Haematopterus) after single oral administration at 10 mg/kg body weight (BW). A sparse sampling was applied in this study and plasma samples were randomly collected from the tail veins of six carp at 0.25, 0.5, 1, 2, 4, 6, 8, 12, 16, 24, 36, 48, 72, 96, 120 and 144 h after administration. A maximum of four plasma samples was collected from each carp. Then the concentrations of danofloxacin in plasma samples were determined through an HPLC method. Danofloxacin could be quantified in plasma up to 144 h after administration. The corresponding population pharmacokinetic modeling was developed according to the non-linear mixed effect method, including covariate and covariance models to explain some variations from unknown sources and improve the prediction ability. On the premise of sparse sampling, the typical values of the population (fixed effect) and inter-individual variation (random effect) were described by the current population pharmacokinetic model. The estimated typical values and coefficient of variation between individuals (CV%) of absorption rate constant (tvKa), apparent distribution volume (tvV) and clearance (tvCL) were 2.48 h−1 and 0.203%, 47.8 L/kg and 8.40%, 0.694 L/h/kg and 4.35%, respectively. The current danofloxacin oral dosing (10 mg/kg BW) can provide suitable plasma concentrations to inhibit those pathogens with MIC values below 0.016 μg/ml based on the calculated PK/PD indices of AUC/MIC or Cmax/MIC. Further studies are still needed to determine the in vitro and in vivo antibacterial efficacy of danofloxacin against pathogens isolated from Yellow River carp and finally draw a reasonable dosing regimen.
Collapse
|
7
|
Xu N, Li M, Lin Z, Ai X. Comparative Pharmacokinetics of Sulfadiazine and Its Metabolite N4-Acetyl Sulfadiazine in Grass Carp (Ctenopharyngodon idella) at Different Temperatures after Oral Administration. Pharmaceutics 2022; 14:pharmaceutics14040712. [PMID: 35456543 PMCID: PMC9025148 DOI: 10.3390/pharmaceutics14040712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/04/2022] Open
Abstract
In this study, the plasma pharmacokinetics and tissue disposition of sulfadiazine (SDZ) and its main metabolite, N4-acetyl sulfadiazine (ACT-SDZ), were compared between 18 and 24 °C following a single oral administration of SDZ at 50 mg/kg in grass carp (Ctenopharyngodon idella). The plasma and tissues were sampled from 0.167 h up to 96 h and analyzed by ultra-performance liquid chromatography with an ultraviolet detector. The pharmacokinetic parameters were estimated using a one-compartmental approach. Results showed that pharmacokinetics of SDZ and ACT-SDZ in plasma and tissues were notably influenced by the increase of temperature. The increased temperature shortened the absorption half-life (K01_HL) of SDZ and ACT-SDZ in gill, kidney, and plasma, but increased in liver and muscle + skin. The elimination half-life (K10_HF) and the area under concentration-time curve (AUC0–∞) of SDZ and ACT-SDZ all presented a declined trend. The apparent volume of distribution (V_F) of SDZ in plasma was increased from 0.93 to 1.64 L/kg, and the apparent systemic total body clearance (Cl_F) was also increased from 0.01 to 0.05 L/h/kg. Overall, the rise of temperature decreased K10_HF, AUC0–∞ of SDZ, and ACT-SDZ in plasma and tissues, but increased V_F and Cl_F in the plasma for SDZ.
Collapse
Affiliation(s)
- Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8 Wuda Park Road 1, Wuhan 430223, China;
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA;
- Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, 8 Wuda Park Road 1, Wuhan 430223, China
| | - Miao Li
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA;
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA;
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, 1225 Center Drive, Gainesville, FL 32610, USA
- Center for Environmental and Human Toxicology, University of Florida, 2187 Mowry Road, Gainesville, FL 32608, USA
- Correspondence: (Z.L.); (X.A.)
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8 Wuda Park Road 1, Wuhan 430223, China;
- Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, 8 Wuda Park Road 1, Wuhan 430223, China
- Correspondence: (Z.L.); (X.A.)
| |
Collapse
|