1
|
Hashim NM, Mohd Husani NI, Wardani NI, Alahmad W, Shishov A, Madurani KA, Liao PC, Yahaya N, Mohamad Zain NN. Advancements in effervescent-assisted dispersive micro-solid phase extraction for the analysis of emerging pollutants. Anal Chim Acta 2024; 1325:342891. [PMID: 39244296 DOI: 10.1016/j.aca.2024.342891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 09/09/2024]
Abstract
Emerging pollutants pose an increasing threat to the environment and human well-being, requiring substantial progress in analytical methodologies. Dispersive micro-solid phase extraction (μ-dSPE) has proven successful in detecting and measuring these contaminants, particularly in trace quantities. However, challenges persist in achieving a uniform sorbent distribution and efficient separation from the sample matrix. To address these issues, effervescent-assisted dispersive micro-solid phase extraction (EA-μ-dSPE) was developed. This method uses on-site produced carbon dioxide as a dispersing agent, eliminating the need for vortexing or ultrasonication. Due to the sorbent dispersion in the sample solution, the contact surface between the analyte and the sorbent increases, resulting in increased extraction efficiency, reduced extraction time, and promotes of sustainability. Several parameters are critical to the successful execution of this procedure to extract the analytes, including the type and structure of sorbent, composition of dispersing agents, sorbent separation procedure, and type and properties of desorption solvents. The sorbent plays a critical role in successful extraction of emerging pollutants. It is clear that for the extraction of the analyte on the sorbent, proper interaction must be established between the analyte and the sorbent via physical and chemical interactions. This review thoroughly evaluates the underlying principles of the approach, its potential, and the significant advancements that have been documented. It explores the method's capacity to analyse and identify emerging pollutants, emphasising its potential across various sample matrices for enhanced pollutant identification and quantification.
Collapse
Affiliation(s)
- Nor Munira Hashim
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Nurina Izzah Mohd Husani
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Niluh Indria Wardani
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Waleed Alahmad
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Andrey Shishov
- Department of Analytical Chemistry, Institute of Chemistry, Saint Petersburg State University, SPbSU, 7/9 Universitetskaya Nab., St. Petersburg, 199034, Russia
| | - Kartika A Madurani
- Laboratory of Instrumentation and Analytical Sciences, Chemistry Department, Faculty of Science and Data Analytics, Institute Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Noorfatimah Yahaya
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Nur Nadhirah Mohamad Zain
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Kepala Batas, Pulau Pinang, Malaysia.
| |
Collapse
|
2
|
Sadighara P, Abedini AH, Mahvi AH, Esrafili A, Mohammadi AA, Tarahomi A, Yousefi M. Benzo ( a) pyrene in infant foods: a systematic review, meta-analysis, and health risk assessment. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:531-537. [PMID: 37053495 DOI: 10.1515/reveh-2022-0263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Exposure of infants to chemicals during their development will have major effects on their health. One of the major exposures of infants to chemicals is through their food. The main structure of infant food is milk, which is high in fat. There is a possibility of accumulation of environmental pollution, including benzo (a) pyrene (BaP). In this systematic review, the amount of BaP in infant milk was surveyed for this purpose. The chosen keywords were: benzo (a) pyrene, BaP, Infant formula, dried milk, powdered milk, and baby food. A total of 46 manuscripts were found in the scientific database. After initial screening and quality assessment, 12 articles were selected for extraction of data. By meta-analysis, the total estimate of BaP in baby food was calculated to be 0.078 ± 0.006 μg/kg. Estimation of daily intake (EDI) and Hazard Quotient (HQ) for noncarcinogenic risk and Margin of exposure (MOE) for carcinogenic risk were also calculated for three age groups 0-6 months, 6-12 months, and 1-3 years. HQ was lower than 1 and MOE was more than 10,000 for three age groups. Therefore, there is no potential carcinogenic and non-carcinogenic risk for infant health.
Collapse
Affiliation(s)
- Parisa Sadighara
- Department of Environmental Health Engineering, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Abedini
- Department of Environmental Health Engineering, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Mahvi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Esrafili
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Mohammadi
- Department of Environmental Health Engineering, School of Public Health, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Arian Tarahomi
- Faculty of General Medicine, Semmelwei University, Budapest, Hungary
| | - Mahmood Yousefi
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Karaket R, Detsri E, Khattiya A, Monvisade P, Mathaweesansurn A. Facile construction of magnetic solid-phase extraction of polyaniline blend poly(amidoamine) dendrimers modified graphene oxide quantum dots for efficient adsorption of polycyclic aromatic hydrocarbons in environmental water. J Chromatogr A 2024; 1717:464668. [PMID: 38278132 DOI: 10.1016/j.chroma.2024.464668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
An efficient magneto-adsorbent composed of polyaniline blend poly(amidoamine) dendrimers modified graphene oxide quantum dots and magnetic Fe3O4 particles (Fe3O4@PANI-PSS/PAMAM-QGO) for magnetic solid-phase extraction (MSPE) of polycyclic aromatic hydrocarbons (PAHs) in environmental water was synthesized. Fe3O4@PANI-PSS/PAMAM-QGO exhibited exceptional adsorption property for most PAHs analytes. The nanocomposite sorbent demonstrated a ferromagnetic behavior of 17.457 emu g-1, which is adequate for subsequent use in MSPE. Key parameters affecting the processes of adsorption and desorption, including the sorbent amount, vortex adsorption time, vortex extraction time, sample volume, a solvent for desorption and the solvent volume were all examined and optimized. The performance of MSPE using Fe3O4@PANI-PSS/PAMAM-QGO as adsorbent for four PAHs, including fluoranthene, acenaphthene, phenanthrene and pyrene were studied through high performance liquid chromatography equipped with spectrofluorometer. Under the optimal conditions, Fe3O4@PANI-PSS/PAMAM-QGO showed a wide linearity of 10-1,000 ng mL-1, low detection limit (LOD) ranging from 1.92 to 4.25 ng mL -1 and high accuracy (recoveries of 93.6-96.5 %). Enrichment factors up to 185 were achieved. Furthermore, Fe3O4@PANI-PSS/PAMAM-QGO exhibited good recyclability (10 times, RSDs ≤ 5.35%), while maintaining its high efficiency in the extraction of PAHs. The proposed method was successfully applied for environmental samples. Recoveries ranging from 81.2 to 106.2 % were obtained, indicating a low matrix effect and the robustness of the optimized MSPE method. Based on these features and under the optimal extraction conditions, Fe3O4@PANI-PSS/PAMAM-QGO was demonstrated to be a successful tool for the rapid and sensitive extraction of PAHs in the samples.
Collapse
Affiliation(s)
- Ratchanok Karaket
- Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Ekarat Detsri
- Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand; Integrated Applied Chemistry Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
| | - Akrarath Khattiya
- Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Pathavuth Monvisade
- Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand; Polymer Synthesis and Functional Materials Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Arjnarong Mathaweesansurn
- Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand; Applied Analytical Chemistry Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
| |
Collapse
|
4
|
Mohan B, Singh G, Pombeiro AJL, Solovev AA, Sharma PK, Chen Q. Metal-organic frameworks (MOFs) for milk safety and contaminants monitoring. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
5
|
Hussain CM, Hussain CG, Keçili R. White analytical chemistry approaches for analytical and bioanalytical techniques: Applications and challenges. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Separation and Enrichment of Selected Polar and Non-Polar Organic Micro-Pollutants—The Dual Nature of Quaternary Ammonium Ionic Liquid. Processes (Basel) 2022. [DOI: 10.3390/pr10081636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, the dual nature of quaternary ammonium ionic liquid–didecyldimethylammonium perchlorate, [DDA][ClO4], was evaluated. A novel and sensitive in situ ionic liquid dispersive liquid–liquid microextraction method (in situ IL-DLLME) combined with magnetic retrieval (MR) was applied to enrich and separate selected organic micro-pollutants, both polar and non-polar. The magnetic support relied on using unmodified magnetic nanoparticles (MNPs) prepared by the co-precipitation of Fe2+/Fe3+ (Fe3O4). The separation technique was on-lined with high-performance liquid chromatography (HPLC–DAD) verified by inverse gas chromatography. An anion exchanger, NaClO4, was added to form an in situ hydrophobic IL. The fine droplets of [DDA][ClO4], molded in aqueous samples, functioned as an extractant for isolating the studied compounds. Then the carrier MNPs were added to separate the IL from the water matrix. The supernatant-free sample was desorbed in acetonitrile (MeCN) and injected into the HPLC system. The applicability of [DDA][ClO4] as an extraction solvent in the MR in situ IL-DLLME method was checked by the selectivity parameters (Sij∞) at infinite dilution. The detection limit (LOD) ranged from 0.011 to 0.079 µg L−1 for PAHs and from 0.012 to 0.020 µg L−1 for benzophenones. The method showed good linearity with correlation coefficients (r2) ranging from 0.9995 to 0.9999.
Collapse
|
7
|
Gao M, Wang H, Wang J, Wang X, Wang H. Effervescence-Enhanced Microextraction Based on Acidic Ionic Liquids and In Situ Metathesis Reaction for Bisphenol Detection in Milk Samples. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02263-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Jouyban A, Nemati M, Farazajdeh MA, Yazdani A, Afshar Mogaddam MR. Salt-induced homogenous solid phase extraction of hydroxylated metabolites of polycyclic aromatic hydrocarbons from urine samples using a deep eutectic solvent as an elution solvent prior to HPLC-FLD analysis. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|