1
|
Qin SJ, Zeng QG, Zeng HX, Li SP, Andersson J, Zhao B, Oudin A, Kanninen KM, Jalava P, Jin NX, Yang M, Lin LZ, Liu RQ, Dong GH, Zeng XW. Neurotoxicity of fine and ultrafine particulate matter: A comprehensive review using a toxicity pathway-oriented adverse outcome pathway framework. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174450. [PMID: 38969138 DOI: 10.1016/j.scitotenv.2024.174450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Fine particulate matter (PM2.5) can cause brain damage and diseases. Of note, ultrafine particles (UFPs) with an aerodynamic diameter less than or equal to 100 nm are a growing concern. Evidence has suggested toxic effects of PM2.5 and UFPs on the brain and links to neurological diseases. However, the underlying mechanism has not yet been fully illustrated due to the variety of the study models, different endpoints, etc. The adverse outcome pathway (AOP) framework is a pathway-based approach that could systematize mechanistic knowledge to assist health risk assessment of pollutants. Here, we constructed AOPs by collecting molecular mechanisms in PM-induced neurotoxicity assessments. We chose particulate matter (PM) as a stressor in the Comparative Toxicogenomics Database (CTD) and identified the critical toxicity pathways based on Ingenuity Pathway Analysis (IPA). We found 65 studies investigating the potential mechanisms linking PM2.5 and UFPs to neurotoxicity, which contained 2, 675 genes in all. IPA analysis showed that neuroinflammation signaling and glucocorticoid receptor signaling were the common toxicity pathways. The upstream regulator analysis (URA) of PM2.5 and UFPs demonstrated that the neuroinflammation signaling was the most initially triggered upstream event. Therefore, neuroinflammation was recognized as the MIE. Strikingly, there is a clear sequence of activation of downstream signaling pathways with UFPs, but not with PM2.5. Moreover, we found that inflammation response and homeostasis imbalance were key cellular events in PM2.5 and emphasized lipid metabolism and mitochondrial dysfunction, and blood-brain barrier (BBB) impairment in UFPs. Previous AOPs, which only focused on phenotypic changes in neurotoxicity upon PM exposure, we for the first time propose AOP framework in which PM2.5 and UFPs may activate pathway cascade reactions, resulting in adverse outcomes associated with neurotoxicity. Our toxicity pathway-based approach not only advances risk assessment for PM-induced neurotoxicity but shines a spotlight on constructing AOP frameworks for new chemicals.
Collapse
Affiliation(s)
- Shuang-Jian Qin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing-Guo Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui-Xian Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shen-Pan Li
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | | | - Bin Zhao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Anna Oudin
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio, Finland
| | - Nan-Xiang Jin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Mo Yang
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio, Finland
| | - Li-Zi Lin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ru-Qing Liu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
2
|
Shen H, Gong M, Zhang M, Sun S, Zheng R, Yan Q, Hu J, Xie X, Wu Y, Yang J, Wu J, Yang J. Effects of PM 2.5 exposure on clock gene BMAL1 and cell cycle in human umbilical vein endothelial cells. Toxicol Res (Camb) 2024; 13:tfae022. [PMID: 38419835 PMCID: PMC10898333 DOI: 10.1093/toxres/tfae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
Background Fine particulate matter (PM2.5) exposure has been closely associated with cardiovascular diseases, which are relevant to cell cycle arrest. Brain and muscle aryl-hydrocarbon receptor nuclear translocator-like protein 1 (BMAL1) not only participates in regulating the circadian clock but also plays a role in modulating cell cycle. However, the precise contribution of the circadian clock gene BMAL1 to PM2.5-induced cell cycle change remains unclear. This study aims to explore the impact of PM2.5 exposure on BMAL1 expression and the cell cycle in human umbilical vein endothelial cells (HUVECs). Methods HUVECs was exposed to PM2.5 for 24 hours at different concentrations ((0, 12.5, 25, 75 and 100 μg.mL-1) to elucidate the potential toxic mechanism. Following exposure to PM2.5, cell viability, ROS, cell cycle, and the expression of key genes and proteins were detected. Results A remarkable decrease in cell viability is observed in the PM2.5-exposed HUVECs, as well as a significant increase in ROS production. In addition, PM2.5-exposed HUVECs have cycle arrest in G0/G1 phase, and the gene expression of p27 is also markedly increased. The protein expression of BMAL1 and the gene expression of BMAL1 are increased significantly. Moreover, the protein expressions of p-p38 MAPK and p-ERK1/2 exhibit a marked increase in the PM2.5-exposed HUVECs. Furthermore, following the transfection of HUVECs with siBMAL1 to suppress BMAL1 expression, we observed a reduction in both the protein and gene expression of the MAPK/ERK pathway in HUVECs exposed to PM2.5. Conclusions Overall, our results indicate that PM2.5 exposure significantly upregulates the circadian clock gene expression of BMAL1 and regulates G0/G1 cell cycle arrest in HUVECs through the MAPK/ERK pathway, which may provide new insights into the potential molecular mechanism regarding BMAL1 on PM2.5-induced cardiovascular diseases.
Collapse
Affiliation(s)
- Haochong Shen
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Meidi Gong
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Minghao Zhang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Shikun Sun
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Rao Zheng
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Qing Yan
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Juan Hu
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Xiaobin Xie
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Yan Wu
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Junjie Yang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Jing Wu
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Jing Yang
- School of Basic Medicine and Forensic Medicine, Baotou Medical College, Inner Mongolia University of Science and Technology, 31 Jianshe Road, Donghe District, Baotou, Inner Mongolia 014040, China
| |
Collapse
|
3
|
Wu Y, Wang Y, Zhang W, Peng J, Qin L, Zhang L, Chen R, Gu W, Sun Q, Liu C, Li R. Gestational exposure to ambient fine particulate matter disrupts maternal hepatic lipid metabolism. CHEMOSPHERE 2023; 344:140369. [PMID: 37802477 DOI: 10.1016/j.chemosphere.2023.140369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Pregnancy is a unique physiological stage for females as well as a vulnerable period for pollutant exposure. The effect of gestational ambient fine particulate matter (PM2.5) exposure on maternal lipid metabolism during pregnancy is rarely observed, and the mechanism is unknown. In the current study, pregnant C57BL/6 mice were randomly assigned to either ambient PM2.5 or filtered air exposure chambers since gestational day (GD) 0. Meanwhile, non-pregnant female mice were housed as controls in each exposure chamber. PM2.5 exposure exerted no significant effect on body weight gain or the body composition during pregnancy. Pregnant mice exposed to PM2.5 demonstrated improved glucose tolerance, whereas non-pregnant mice showed an increased fasting blood glucose level after PM2.5 exposure with no alterations in glucose tolerance. PM2.5 exposure exerted no significant effect on total lipid content in serum during pregnancy, while an increased serum total lipid level was found in non-pregnant mice exposed to PM2.5. PM2.5 exposure had no effect on total liver lipid levels, it increased several triacylglycerol (TAG) species and total cholesterol esters (CEs) in pregnant mice but lowered a considerable amount in non-pregnant mice' livers. Furthermore, gestational exposure to PM2.5 enhanced the expression of key enzymes in fatty acid uptake, de novo lipid synthesis, and β oxidation, and inhibited molecules for lipid export in mice liver. Conversely, PM2.5 exposure upregulated proteins involved in hepatic lipolysis and lipid export in non-pregnant mice. These results suggest that the interference of PM2.5 exposure during pregnancy on the lipid metabolism, particularly the hepatic lipid metabolism, differs from that during non-pregnancy. This study provides toxicological evidence that PM2.5 exposure during pregnancy disrupts the lipid metabolism of the liver and provides a basis for protecting vulnerable populations.
Collapse
Affiliation(s)
- Yunlu Wu
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yirun Wang
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenhui Zhang
- Department of Environmental and Occupational Health, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Jing Peng
- Zhuantang Community Healthcare Center, Hangzhou, Zhejiang, China
| | - Li Qin
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Zhang
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rucheng Chen
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weijia Gu
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qinghua Sun
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cuiqing Liu
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Ran Li
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
4
|
Wang W, Zhang W, Li L, Hu D, Liu S, Cui L, Liu J, Xu J, Guo X, Deng F. Obesity-related cardiometabolic indicators modify the associations of personal noise exposure with heart rate variability: A further investigation on the Study among Obese and Normal-weight Adults (SONA). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122446. [PMID: 37625771 DOI: 10.1016/j.envpol.2023.122446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Elucidating the associations between environmental noise and heart rate variability (HRV) would be beneficial for the prevention and control of detrimental cardiovascular changes. Obese people have been found to manifest heightened susceptibility to the adverse effects of noise on HRV. However, the underlying mechanisms remain unclear. Based on 53 normal-weight and 44 obese young adults aged 18-26 years in Beijing, China, this study aimed to investigate the role of obesity-related cardiometabolic indicators for associations between short-term environmental noise exposure and HRV in the real-world context. The participants underwent personal noise exposure and ambulatory electrocardiogram monitoring using portable devices at 5-min intervals for 24 continuous hours. Obesity-related blood pressure, glucose and lipid metabolism, and inflammatory indicators were subsequently examined. Generalized mixed-effect models were used to estimate the associations between noise exposure and HRV parameters. The C-peptide, homeostasis model assessment of insulin resistance (HOMA-IR), and leptin levels were higher in obese participants compared to normal-weight participants. We observed amplified associations between short-term noise exposure and decreases in HRV among participants with higher C-peptide, HOMA-IR, and leptin levels. For instance, a 1 dB(A) increment in 3 h-average noise exposure level preceding each measurement was associated with changes of -0.20% (95%CI: -0.45%, 0.04%) and -1.35% (95%CI: -1.85%, -0.86%) in standard deviation of all normal to normal intervals (SDNN) among participants with lower and higher C-peptide levels, respectively (P for interaction <0.05). Meanwhile, co-existing fine particulate matter (PM2.5) could amplify the associations between noise and HRV among obese participants and participants with higher C-peptide, HOMA-IR, and leptin levels. The more apparent associations of short-term exposure to environmental noise with HRV and the effect modification by PM2.5 may be partially explained by the higher C-peptide, HOMA-IR, and leptin levels of obese people.
Collapse
Affiliation(s)
- Wanzhou Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Wenlou Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Luyi Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Dayu Hu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Shan Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Junxiu Liu
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Junhui Xu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China; Center for Environment and Health, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| |
Collapse
|
5
|
Hao S, Chen Z, Gu Y, Chen L, Sheng F, Xu Y, Wu D, Han Y, Lu B, Chen S, Zhao W, Yin H, Wang X, Riazuddin SA, Lou X, Fu Q, Yao K. Long-term PM2.5 exposure disrupts corneal epithelial homeostasis by impairing limbal stem/progenitor cells in humans and rat models. Part Fibre Toxicol 2023; 20:36. [PMID: 37759270 PMCID: PMC10523760 DOI: 10.1186/s12989-023-00540-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/13/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Limbal stem/progenitor cells (LSPCs) play a crucial role in maintaining corneal health by regulating epithelial homeostasis. Although PM2.5 is associated with the occurrence of several corneal diseases, its effects on LSPCs are not clearly understood. METHODS In this study, we explored the correlation between PM2.5 exposure and human limbal epithelial thickness measured by Fourier-domain Optical Coherence Tomography in the ophthalmologic clinic. Long- and short-term PM2.5 exposed-rat models were established to investigate the changes in LSPCs and the associated mechanisms. RESULTS We found that people living in regions with higher PM2.5 concentrations had thinner limbal epithelium, indicating the loss of LSPCs. In rat models, long-term PM2.5 exposure impairs LSPCs renewal and differentiation, manifesting as corneal epithelial defects and thinner epithelium in the cornea and limbus. However, LSPCs were activated in short-term PM2.5-exposed rat models. RNA sequencing implied that the circadian rhythm in LSPCs was perturbed during PM2.5 exposure. The mRNA level of circadian genes including Per1, Per2, Per3, and Rev-erbα was upregulated in both short- and long-term models, suggesting circadian rhythm was involved in the activation and dysregulation of LSPCs at different stages. PM2.5 also disturbed the limbal microenvironment as evidenced by changes in corneal subbasal nerve fiber density, vascular density and permeability, and immune cell infiltration, which further resulted in the circadian mismatches and dysfunction of LSPCs. CONCLUSION This study systematically demonstrates that PM2.5 impairs LSPCs and their microenvironment. Moreover, we show that circadian misalignment of LSPCs may be a new mechanism by which PM2.5 induces corneal diseases. Therapeutic options that target circadian rhythm may be viable options for improving LSPC functions and alleviating various PM2.5-associated corneal diseases.
Collapse
Affiliation(s)
- Shengjie Hao
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang Provincial Key Lab of Ophthalmology, Zhejiang University, Hangzhou, 310009, Zhejiang Province, China
| | - Zhijian Chen
- Department of Environmental and Occupational Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, Zhejiang Province, China
| | - Yuzhou Gu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang Provincial Key Lab of Ophthalmology, Zhejiang University, Hangzhou, 310009, Zhejiang Province, China
| | - Lu Chen
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang Provincial Key Lab of Ophthalmology, Zhejiang University, Hangzhou, 310009, Zhejiang Province, China
| | - Feiyin Sheng
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang Provincial Key Lab of Ophthalmology, Zhejiang University, Hangzhou, 310009, Zhejiang Province, China
| | - Yili Xu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang Provincial Key Lab of Ophthalmology, Zhejiang University, Hangzhou, 310009, Zhejiang Province, China
| | - Di Wu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang Provincial Key Lab of Ophthalmology, Zhejiang University, Hangzhou, 310009, Zhejiang Province, China
| | - Yu Han
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang Provincial Key Lab of Ophthalmology, Zhejiang University, Hangzhou, 310009, Zhejiang Province, China
| | - Bing Lu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang Provincial Key Lab of Ophthalmology, Zhejiang University, Hangzhou, 310009, Zhejiang Province, China
| | - Shuying Chen
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang Provincial Key Lab of Ophthalmology, Zhejiang University, Hangzhou, 310009, Zhejiang Province, China
| | - Wei Zhao
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang Provincial Key Lab of Ophthalmology, Zhejiang University, Hangzhou, 310009, Zhejiang Province, China
| | - Houfa Yin
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang Provincial Key Lab of Ophthalmology, Zhejiang University, Hangzhou, 310009, Zhejiang Province, China
| | - Xiaofeng Wang
- Department of Environmental and Occupational Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, Zhejiang Province, China
| | - S Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Xiaoming Lou
- Department of Environmental and Occupational Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, Zhejiang Province, China.
| | - Qiuli Fu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang Provincial Key Lab of Ophthalmology, Zhejiang University, Hangzhou, 310009, Zhejiang Province, China.
| | - Ke Yao
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang Provincial Key Lab of Ophthalmology, Zhejiang University, Hangzhou, 310009, Zhejiang Province, China.
| |
Collapse
|
6
|
Gu W, Wang R, Cai Z, Lin X, Zhang L, Chen R, Li R, Zhang W, Ji X, Shui G, Sun Q, Liu C. Hawthorn total flavonoids ameliorate ambient fine particulate matter-induced insulin resistance and metabolic abnormalities of lipids in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114456. [PMID: 38321675 DOI: 10.1016/j.ecoenv.2022.114456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 02/08/2024]
Abstract
Recent studies have shown a strong correlation between ambient fine particulate matter (PM2.5) exposure and diabetes risk, including abnormal lipid accumulation and systemic insulin resistance (IR). Hawthorn total flavonoids (HF) are the main groups of active substances in Hawthorn, which showed anti-hyperlipidemic and anti-hyperglycemic effects. Therefore, we hypothesized that HF may attenuate PM2.5-induced IR and abnormal lipid accumulation. Female C57BL/6 N mice were randomly assigned to the filtered air exposure (FA) group, concentrated PM2.5 exposure (PM) group, PM2.5 exposure maintained on a low-dose HF diet (LHF) group, and PM2.5 exposure maintained on a high-dose HF diet (HHF) group for an 8-week PM2.5 exposure using a whole-body exposure device. Body glucose homeostasis, lipid profiles in the liver and serum, and enzymes responsible for hepatic lipid metabolism were measured. We found that exposure to PM2.5 impaired glucose tolerance and insulin sensitivity. In addition, triacylglycerol (TAG) in serum elevated, whereas hepatic TAG levels were decreased after PM2.5 exposure, accompanied by inhibited fatty acid uptake, lipogenesis, and lipolysis in the liver. HF administration, on the other hand, balanced the hepatic TAG levels by increasing fatty acid uptake and decreasing lipid export, leading to alleviated systemic IR and hyperlipidemia in PM2.5-exposed mice. Therefore, HF administration may be an effective strategy to protect against PM2.5-induced IR and metabolic abnormalities of lipids.
Collapse
Affiliation(s)
- Weijia Gu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Ruiqing Wang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ziwei Cai
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiujuan Lin
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Rucheng Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Ran Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Wenhui Zhang
- Department of Environmental and Occupational health, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Xuming Ji
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qinghua Sun
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China.
| | - Cuiqing Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China.
| |
Collapse
|
7
|
Zhang J, Chen R, Zhang G, Wang Y, Peng J, Hu R, Li R, Gu W, Zhang L, Sun Q, Liu C. PM 2.5 increases mouse blood pressure by activating toll-like receptor 3. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113368. [PMID: 35247710 DOI: 10.1016/j.ecoenv.2022.113368] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS Plenty of literature has documented that fine particulate matter (PM2.5) exposure is related to blood pressure (BP) elevation. Vascular dysfunction is the initiation of cardiovascular diseases, such as hypertension. This thesis set out to assess the role of Toll-like receptor 3 (TLR3) in the increase in BP induced by PM2.5. METHODS C57BL/6 and TLR3 deficient (TLR3-/-) male mice were randomly allocated to filtered air chamber or real-world inhaled concentrated PM2.5 chamber. BP was evaluated using non-invasive BP recordings. After euthanasia, the aortas and small mesenteric arteries (SMAs) were isolated, and vascular tone was measured using a wire myograph. Leucocytes were detached to assess myeloid-derived suppressor cells using flow cytometry. siRNA transfection was performed to silence TLR3 expression in the human vascular endothelial cells incubated with PM2.5. The gene expression levels of inflammation, adhesion molecules, and oxidative stress in the aortas were assessed by quantitative PCR. RESULTS Exposure to PM2.5 increased mouse BP, and TLR3 deficiency protected against PM2.5 exposure-induced BP increase. Additionally, the injury of vascular function in the aortas and SMAs was inhibited in TLR3-/- mice. The intercellular adhesion molecule-1 (ICAM-1) was attenuated in TLR3-/- mice, accompanied by the inhibition of inflammatory and oxidized genes of the aortas, such as F4/80, interleukin-6, interleukin-1 beta, and NADPH oxidase 4. In vitro, the enhanced mRNA expression of genes encoding inflammation, oxidative stress, and ICAM-1 by PM2.5 was inhibited by TLR3 silence as well. CONCLUSIONS PM2.5 exposure increased BP via TLR3 activation and impaired vascular function.
Collapse
Affiliation(s)
- Jinna Zhang
- School of Public Health, International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rucheng Chen
- School of Public Health, International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guoqing Zhang
- School of Public Health, International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yixuan Wang
- School of Public Health, International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Peng
- School of Public Health, International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Renjie Hu
- School of Public Health, International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ran Li
- School of Public Health, International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weijia Gu
- School of Public Health, International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Zhang
- School of Public Health, International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qinghua Sun
- School of Public Health, International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cuiqing Liu
- School of Public Health, International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
8
|
Mata C, Lappharat S, Chusiri Y, Khumjorhor M, Taneepanichskul N. Effect of residential proximity to the lignite-fired power plant on depression, sleep quality, and morning salivary cortisol in the elderly. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151346. [PMID: 34728209 DOI: 10.1016/j.scitotenv.2021.151346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/14/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Exposures to air pollution of by-products emission from the lignite-fired power plant elevated risks of carcinogenic effects, endocrine disruptors, central nervous system structural and functional changes. Residence in the proximity of the lignite-fired power plant appeared to have more chance to have higher risks of health problems. This study aimed to assess associations of residential proximity to the lignite-fired power plant on depression, sleep quality, and morning salivary cortisol among the elderly. The distance of residential proximity to the power plant was categorized into three groups (units in kilometer): <10 km, 10-15 km, and >15 km. The coefficients of log (morning salivary cortisol) was -0.320 (95%CI: -0.460, -0.179; p-value < 0.001) for those living <10 km compared to those living >15 km. Coefficients of sleep quality score were 1.350 (95%CI: 0.265, 2.436; p-value = 0.015) for those living <10 km compared to those living >15 km. Residential proximity to the lignite-fired power plant was not associated with depression. Our study concluded that living within 10 km to the lignite-fired power plant was related to negative health outcomes among the elderly. Policymakers need to reconsider the distance of the buffer zone to the power plant.
Collapse
Affiliation(s)
- Chatsuda Mata
- College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand; Community Public Health, Lampang Rajabhat University, Lampang, Thailand.
| | - Sattamat Lappharat
- Department of Research and International Relations, Sirindhorn College of Public Health, Yala, Thailand.
| | - Yaowares Chusiri
- Chemistry Program, Faculty of Science, Lampang Rajabhat University, Lampang, Thailand.
| | | | - Nutta Taneepanichskul
- College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand; HAUS IAQ Research Unit, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University King Chulalongkorn Memorial Hospital, Bangkok, Thailand.
| |
Collapse
|