1
|
Zheng T, Zheng M, Li S, Liu C, Li X, Wang M. In vivo tracing of cyromazine and three neonicotinoids in cowpea under field conditions by solid-phase microextraction combined with ultra-performance liquid chromatography-tandem mass spectrometry. Anal Chim Acta 2024; 1314:342796. [PMID: 38876515 DOI: 10.1016/j.aca.2024.342796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Excessive pesticide residues in agricultural products could accumulate in organisms through the food chain, causing potential harm to human health. The investigation of dissipation kinetics and residues of pesticides in crops is crucial for the scientific application of pesticides and the mitigation of their adverse effects on human health. In vivo solid-phase microextraction (in vivo SPME) has unique advantages, but the research on field plants is still lacking and the quantitative correction methods need to be further developed. RESULTS A method combining in vivo solid-phase microextraction with ultra-performance liquid chromatography-tandem mass spectrometry (in vivo SPME-UPLC-MS/MS) was developed to monitor the presence of acetamiprid, cyromazine, thiamethoxam and imidacloprid in cowpea fruits grown in the field. The sampling rates (Rs) were determined using both in vitro SPME in homogenized cowpea samples and in vivo SPME in intact cowpea fruit samples. The in vivo-Rs values were significantly higher than the in vitro-Rs for the same analyte, which were used for in vivo SPME correction. The accuracy of this method was confirmed by comparison with a QuEChERS-based approach and subsequently applied to trace pesticide residues in field-grown cowpea fruits. The residual concentrations of each pesticide positively correlated with application doses. After 7 days of application at two different doses, all of the pesticides had residual concentrations below China's maximum residue limits. Both experimental data and predictions indicated that a safe preharvest interval for these pesticides is 7 days; however, if the European Union standards are to be met, a safe preharvest interval for cyromazine should be at least 13 days. SIGNIFICANCE This study highlights the advantages of in vivo SPME for simultaneous analysis and tracking of multiple pesticides in crops under field conditions. This technique is environmentally friendly, minimally invasive, highly sensitive, accurate, rapid, user-friendly, cost-effective, and capable of providing precise and timely data for long-term pesticide surveillance. Consequently, it furnishes valuable insights to guide the safe utilization of pesticides in agricultural production.
Collapse
Affiliation(s)
- Tengfei Zheng
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, 430070, China; Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan, 571101, China
| | - Meijie Zheng
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, 430070, China; Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan, 571101, China
| | - Shuhuai Li
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan, 571101, China
| | - Chunhua Liu
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan, 571101, China
| | - Xiujuan Li
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Environment Correlative Dietology (Ministry of Education), Wuhan, 430070, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, 430070, China.
| | - Mingyue Wang
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan, 571101, China.
| |
Collapse
|
2
|
Pan W, Chen Z, Wang X, Wang F, Liu J, Li L. Occurrence, dissipation and processing factors of multi-pesticides in goji berry. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134696. [PMID: 38788586 DOI: 10.1016/j.jhazmat.2024.134696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
As medicine and food homology substance, goji berry is consumed worldwide in the form of fresh, dried and juice; however, pesticide residues have become one of the problems that essentially threaten its quality during cultivation and processing. In this study, a total of 75 dried goji berries were sampled from markets across China, and for the determination of 62 analytes, 28 pesticides were identified. Nine pesticides with high detectable rates and residual levels were selected for folia spraying, and their half-lives were found to range from 1.04 to 2.21 d. The processing factors (PFs) of juice were between 0.25 and 1.02, and this was mainly related with their octanol-water partition coefficient (logKow values). Washing could reduce pesticides residues to varying degrees with the removal rates between 17.00% and 74.05%. Sun drying with higher PF values in the range of 0.61-5.91 exhibited more obvious enrichment effect compared to oven drying. Commercial goji berry had cumulative chronic dietary risks with the hazard index (HI) values of 1.61%-4.97%. Its acute risk quotients (HQas) for consumers were 543.32%-585.92% and were mainly due to insecticides. These results provide important references for rationalizing pesticide application during goji berry cultivation and for the improvement of process to ensure food safety.
Collapse
Affiliation(s)
- Wei Pan
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Zenglong Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xi Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fuyun Wang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Jin Liu
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Li Li
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China.
| |
Collapse
|
3
|
Wang L, Li F, Meng L, Wang K, Li W, Fan F, Zhang X, Jiang X, Mu W, Pang X. Assessment of the Dissipation Behaviors, Residues, and Dietary Risk of Oxine-Copper in Cucumber and Watermelon by UPLC-MS/MS. ACS OMEGA 2024; 9:29471-29477. [PMID: 39005790 PMCID: PMC11238219 DOI: 10.1021/acsomega.4c01970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/15/2024] [Accepted: 05/16/2024] [Indexed: 07/16/2024]
Abstract
During production, agricultural products are often susceptible to potential harm caused by residual traces of pesticides. Oxine-copper is a broad spectrum and efficient protective fungicide widely used in the production of fruits and vegetables. The present study was carried out to profile the dissipation behaviors and residues of oxine-copper on cucumber and watermelon using QuEChERS pretreatment and UPLC-MS/MS. Its storage stability and dietary risk assessment were also estimated. The method validation displayed good linearity (R 2 ≥ 0.9980), sensitivity (limits of quantification ≤0.01 mg/kg), and recoveries (75.5-95.8%) with relative standard deviations of 2.27-8.26%. According to first-order kinetics, the half-lives of oxine-copper in cucumber and watermelon were 1.77-2.11 and 3.57-4.68 d, respectively. The terminal residues of oxine-copper in cucumber and watermelon samples were within <0.01-0.264 and <0.01-0.0641 mg/kg, respectively. Based on dietary risk assessment, the estimated long-term dietary risk probability value of oxine-copper in cucumber and watermelon is 64.11%, indicating that long-term consumption of cucumber and watermelon contaminated with oxine-copper would not pose dietary risks to the general population. The results provide scientific guidance for the rational utilization of oxine-copper in field ecosystems of cucumber and watermelon.
Collapse
Affiliation(s)
- Lu Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Fengyu Li
- College of Science, China Agricultural University, Beijing 100193, China
| | - Lingtao Meng
- Shandong Binnong Technology Co., Ltd., Binzhou 256600, China
| | - Kai Wang
- Shandong Binnong Technology Co., Ltd., Binzhou 256600, China
| | - Wenying Li
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an 271018, China
| | - Fangming Fan
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an 271018, China
| | - Xiaobing Zhang
- Shandong Weifang Rainbow Chemical Co., Ltd., Weifang 261108, China
| | - Xinyue Jiang
- University of Wisconsin-Madison, Madison, Wisconsin 53703, United States
| | - Wei Mu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an 271018, China
| | - Xiuyu Pang
- Department of Nutrition and Food Hygiene, School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| |
Collapse
|
4
|
Alhewairini SS, Abd El-Hamid RM, Ahmed NS, Abdel Ghani SB, Abdallah OI. Bifenthrin Residues in Table Grapevine: Method Optimization, Dissipation and Removal of Residues in Grapes and Grape Leaves. PLANTS (BASEL, SWITZERLAND) 2024; 13:1695. [PMID: 38931127 PMCID: PMC11207924 DOI: 10.3390/plants13121695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
The QuEChERS method was adjusted to determine bifenthrin residues in grapes and grape leaves. Extraction and cleanup procedures were optimized to decrease co-extracted materials and enhance the detection of bifenthrin. The method was validated per the European Union (EU) Guidelines criteria. Accuracy ranged from 98.8% to 93.5% for grapes and grape leaves, respectively. Precision values were 5.5 and 6.4 (RSDr) and 7.4 and 6.7 (RSDR) for grapes and grape leaves, respectively. LOQs (the lowest spiking level) were 2 and 20 µg/kg for grapes and grape leaves, respectively. Linearity as determination coefficient (R2) values were 0.9997 and 0.9964 for grapes and grape leaves, respectively, in a matrix over 1-100 µg/L range of analyte concentration. This was very close to the value in the pure solvent (0.9999), showing the efficiency of the cleanup in removing the co-extracted and co-injected materials; the matrix effect was close to zero in both sample matrices. Dissipation of bifenthrin was studied in a supervised trial conducted in a grapevine field during the summer of 2023 at the recommended dose and double the dose. Dissipation factor k values were 0.1549 and 0.1672 (recommended dose) and 0.235 and 0.208 (double dose) for grapes and grape leaves, respectively. Pre-harvest interval (PHI) was calculated for the Maximum Residue Limit (MRL) values of the EU database. Residues of bifenthrin were removed effectively from grapes using simple washing with tap water in a laboratory study. Residues reached the MRL level of 0.3 mg/kg in both washing treatments, running or soaking in tap water treatments for 5 min. Removal from leaves did not decrease residue levels to the MRL in grape leaves.
Collapse
Affiliation(s)
- Saleh S. Alhewairini
- Department of Plant Protection, College of Agriculture and Food, Qassim University, P.O. Box 6622, Buraydah 51452, Saudi Arabia;
| | - Rania M. Abd El-Hamid
- Department of Pesticide Residues and Environmental Pollution, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza 12618, Egypt; (R.M.A.E.-H.); (N.S.A.)
| | - Nevein S. Ahmed
- Department of Pesticide Residues and Environmental Pollution, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza 12618, Egypt; (R.M.A.E.-H.); (N.S.A.)
| | - Sherif B. Abdel Ghani
- Department of Plant Protection, College of Agriculture and Food, Qassim University, P.O. Box 6622, Buraydah 51452, Saudi Arabia;
- Department of Plant Protection, Faculty of Agriculture, Ain Shams University, P.O. Box 68 Hadayek Shoubra, Cairo 11241, Egypt
| | - Osama I. Abdallah
- Department of Pesticide Residues and Environmental Pollution, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza 12618, Egypt; (R.M.A.E.-H.); (N.S.A.)
| |
Collapse
|
5
|
Wang T, Li T, Ma W, Wang Y, Yao Z, Zhang W, Feng X, Mei J, Lin M. Thiamethoxam dynamics in pepper plants: Deciphering deposition and dissipation pattern across diverse planting modes and regions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115842. [PMID: 38104434 DOI: 10.1016/j.ecoenv.2023.115842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/03/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023]
Abstract
To reduce the application dosage of thiamethoxam (TMX), we investigated the deposition and dissipation patterns in a pepper-planted ecosystem under different planting modes across four regions in China, namely Hainan (HN), Zhejiang (ZJ), Anhui (AH) and Hebei (HB). This study focused on the deposition and dissipation of TMX at concentrations of 63.00, 47.25, 31.50, 23.63 and 15.75 g a.i.hm-2. As the application dose increased, the deposition amount of TMX initially increased in the plants and cultivated soil, showing obvious geographic differences in four cultivation areas. Surprisingly, the initial amount of TMX deposited the pepper-cultivated greenhouse of ZJ and AH was 1.1-2.1-fold and 1.0-3.6-fold higher than that in the open field system at the same application dose, respectively. In pepper leaves, stems, fruits and soil, the dissipation exhibited rapid growth and then slowed. However, the residual concentration showed an increasing trend, followed by a subsequent decrease in the pepper roots. In different planting regions, the dissipation rate of TMX followed the order HN > ZJ > AH > HB in pepper plants and cultivated soil. In comparison to the open field, the total TMX retention rate in greenhouse was higher, indicating overall greater persistence in the greenhouse conditions. These findings reveal the deposition and dissipation characteristics of TMX within the pepper-field ecosystem, offering a significant contribution to the risk assessment of pesticides.
Collapse
Affiliation(s)
- Tianyu Wang
- Zhejiang Citrus Research Institute/Key Laboratory of Fruit and Vegetable Function and Health Research of Taizhou, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China
| | - Tongxin Li
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Weibin Ma
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Yue Wang
- Zhejiang Citrus Research Institute/Key Laboratory of Fruit and Vegetable Function and Health Research of Taizhou, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China
| | - Zhoulin Yao
- Zhejiang Citrus Research Institute/Key Laboratory of Fruit and Vegetable Function and Health Research of Taizhou, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China
| | - Weiqing Zhang
- Zhejiang Citrus Research Institute/Key Laboratory of Fruit and Vegetable Function and Health Research of Taizhou, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China
| | - Xianju Feng
- Zhejiang Citrus Research Institute/Key Laboratory of Fruit and Vegetable Function and Health Research of Taizhou, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China
| | - Jiajia Mei
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mei Lin
- Zhejiang Citrus Research Institute/Key Laboratory of Fruit and Vegetable Function and Health Research of Taizhou, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China.
| |
Collapse
|
6
|
Sun R, Cao J, Li J, Qi Y, Qin S. Measuring the Residual Levels of Fenpyroximate and Its Z-Isomer in Citrus Using Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry and Assessing the Related Dietary Intake Risks. Molecules 2023; 28:7123. [PMID: 37894602 PMCID: PMC10609617 DOI: 10.3390/molecules28207123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Fenpyroximate is an efficient, broad-spectrum phenoxypyrazole acaricide which is used for controlling various mites. In this study, we measured the levels of terminal fenpyroximate residues in citrus fruits, and estimated the dietary intake risks posed by fenpyroximate. To this end, a QuEChERS analytical method was used in combination with ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) to determine the residual levels of fenpyroximate and its Z-isomer (Z-fenpyroximate) in citrus fruits collected from 12 fields under good agricultural practices (GAPs). The average recoveries of fenpyroximate in whole fruits and citrus flesh were 104-110% and 92-109%, respectively, with corresponding RSDs of 1-4% and 1-3%. The average recoveries of Z-fenpyroximate were 104-113% and 90-91%, respectively, with RSDs of 1-2% in both cases. Each limit of quantification (LOQ) was 0.01 mg kg-1. Fifteen days after application with 56 mg kg-1, the terminal residues of fenpyroximate in whole fruits and citrus flesh were <0.010-0.18 mg kg-1 and <0.010-0.063 mg kg-1, respectively; the corresponding values for total fenpyroximate (the sum of fenpyroximate and Z-fenpyroximate) were <0.020-0.19 and <0.020-0.053 mg kg-1. The levels of terminal fenpyroximate residues in citrus fruit were less than the maximum residue limits (MRLs) specified in all the existing international standards. In addition, the risk quotients RQc and RQa were both less than 100%, indicating that the long-term and short-term dietary intake risks posed to Chinese consumers by fenpyroximate in citrus fruit are both acceptable after a 15-day harvest interval.
Collapse
Affiliation(s)
- Ruiqing Sun
- Shanxi Center for Testing of Functional Agro-Products, Longcheng Campus, Shanxi Agricultural University, No. 79, Longcheng Street, Taiyuan 030031, China; (J.C.); (J.L.); (Y.Q.)
| | | | | | | | - Shu Qin
- Shanxi Center for Testing of Functional Agro-Products, Longcheng Campus, Shanxi Agricultural University, No. 79, Longcheng Street, Taiyuan 030031, China; (J.C.); (J.L.); (Y.Q.)
| |
Collapse
|
7
|
Lin H, Wen W, Li Z, Liu S, Yang Y, Liu L, Shao H, Guo Y, Zhang Y. Dissipation and dietary exposure risk assessment of spinosad, thiocyclam, and its metabolite nereistoxin in cucumber and groundwater for different population groups. Biomed Chromatogr 2023; 37:e5659. [PMID: 37081728 DOI: 10.1002/bmc.5659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/21/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023]
Abstract
A QuEChERS (quick, easy, cheap, effective, rugged, and safe) technique using ultrahigh-performance liquid chromatography with tandem mass spectrometry for the analysis of spinosad (spinosyn A + spinosyn D), thiocyclam, and nereistoxin in cucumber was developed with mean recoveries of 93-104%, relative standard deviations of ≤9%, and limits of quantification of 0.01 mg/kg. Field trials of spinosad and thiocyclam were performed in 12 representative cultivating areas in China. Field trial results indicate that spinosyn A and spinosyn D easily dissipated in cucumber with half-lives of 2.48-6.24 and <3 days, respectively. Nereistoxin was produced after thiocyclam application and was more persistent than its parent. The terminal residues of spinosad were all below the maximum residue limits (0.2 mg/kg) in China, whereas the terminal concentration of nereistoxin (calculated as the stoichiometric equivalent of thiocyclam), which was much higher than that of thiocyclam, was far beyond the maximum residue limits of thiocyclam in cucumber (0.01 mg/kg) established by the European Union. The predicted no-effect concentrations of spinosyn A, spinosyn D, thiocyclam, and nereistoxin leaching into groundwater were estimated using China-PEARL (Pesticide Emission Assessment at Regional and Local scales) models after application. However, the dietary (food and water) exposure risk quotient for different populations was below 1 with a preharvest interval set at 5 days after the last application, indicating that the application of spinosad and thiocyclam in cucumber was unlikely to pose unacceptable risk for human health. This study provides data for the safe use of spinosad and thiocyclam in cucumber ecosystem.
Collapse
Affiliation(s)
- Hongfang Lin
- Institute of Agro-product Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Wanting Wen
- Institute of Agro-product Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Zhixia Li
- Institute of Agro-product Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Siyu Liu
- Institute of Agro-product Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Yuanping Yang
- Center of Eco-environmental Monitoring and Scientific Research, Administration of Ecology and Environment of Haihe River Basin and Beihai Sea Area, Ministry of Ecology and Environment of the People's Republic of China, Tianjin, China
| | - Lei Liu
- Institute of Agro-product Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Hui Shao
- Institute of Agro-product Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Yongze Guo
- Institute of Agro-product Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Yuting Zhang
- Institute of Agro-product Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin, China
| |
Collapse
|
8
|
Xu M, Chen Q, Kong X, Han L, Zhang Q, Li Q, Hao B, Zhao X, Liu L, Wan H, Nie J. Heavy metal contamination and risk assessment in winter jujube (Ziziphus jujuba Mill. cv. Dongzao). Food Chem Toxicol 2023; 174:113645. [PMID: 36736610 DOI: 10.1016/j.fct.2023.113645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Winter jujube (Ziziphus jujuba Mill. cv. Dongzao) is a major fresh-eating jujube fruit with various important nutrients for humans. It can absorb heavy metals from polluted air, water and soils and applied pesticides, which may pose potential threats to consumers. Here, to evaluate the content of heavy metals in winter jujube and systematically evaluate the potential risks, we collected 212 winter jujube samples from four main producing areas in China and determined the contents of eight heavy metals (Cd, Cr, Pb, Ni, Cu, Zn, As, and Mn) using inductively coupled plasma mass spectrometer (ICP-MS). Based on the integrated pollution index (IPI) evaluation standard, more than 99.06% of samples were at safe levels. Moreover, clustering analysis divided the eight heavy metals into four groups, namely Cr/Ni, Cd/Pb, Cu/Mn/Zn, and As. Importantly, none of the analyzed heavy metals posed risks to adults as indicted by the average carcinogenic and non-carcinogenic risks. Notably, Cr and Cd could pose low carcinogenic risks to children (≤12 age group) when their concentration reached the 90th percentile. This study systematically assessed the health risks associated with heavy metal intake through winter jujube consumption and highlighted the necessity of constant heavy metal monitoring in winter jujube.
Collapse
Affiliation(s)
- Min Xu
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China.
| | - Qiusheng Chen
- Institute of Agricultural Product Quality, Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.
| | - Xiabing Kong
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China.
| | - Lingxi Han
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China.
| | - Qiang Zhang
- Institute of Agricultural Product Quality, Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.
| | - Qingjun Li
- Management Service Center of Shandong Binzhou National Agricultural Science and Technology Park, Binzhou, 256600, China.
| | - Bianqing Hao
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan, 030031, China.
| | - Xubo Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Lu Liu
- Institute of Agricultural Product Quality, Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.
| | - Haoliang Wan
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China.
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China.
| |
Collapse
|
9
|
Residue levels and risk assessment of pesticides in litchi and longan of China. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Liu M, Li X, Han L, Wang Q, Kong X, Xu M, Wang K, Xu H, Shen Y, Gao G, Nie J. Determination and risk assessment of 31 pesticide residues in apples from China's major production regions. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
11
|
Photodegradation of Profenofos in Aqueous Solution by Vacuum Ultraviolet. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|