1
|
Jiang X, Zhu Y, Dong S, Lin R, Zhu P, Mao J, Cao Y, Yin X, Dong F, He K, Wang N. Combination of biotransformation and metabolomics reveals tolfenpyrad-induced hepatocytotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175320. [PMID: 39111429 DOI: 10.1016/j.scitotenv.2024.175320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/10/2024] [Accepted: 08/04/2024] [Indexed: 08/18/2024]
Abstract
Tolfenpyrad (TFP) is an extensively used pesticide that inevitably leads to human exposure to both TFP and its transformation product residues. However, the biotransformation of TFP in humans has not been elucidated, and the toxicity of TFP along with its biotransformation products remains largely unknown. In this study, the biotransformation process of TFP was investigated using human liver microsomes and human hepatic cells. Endogenous metabolic changes in the cells were studied to investigate the hepatocytotoxicity of TFP at environmentally relevant concentrations. Fourteen phase I biotransformation products and four phase II TFP products were characterized, among which twelve products were identified for the first time. The oxidative product tolfenpyrad-benzoic acid (PT-CA) was particularly abundant and stable. Further hepatotoxicity assessments and metabolic studies demonstrated comparable metabolic profiles for TFP and PT-CA in HepG2 cells, with both significantly disrupting purine and glutathione metabolism. These processes are closely associated with oxidative stress, mitochondrial damage, and cell death. Our results provide novel perspectives on the biotransformation, metabolism, and hepatotoxicity of TFP, thereby highlighting the non-negligible toxicity of its crucial biotransformation product PT-CA in environmental risk assessments.
Collapse
Affiliation(s)
- Xin Jiang
- National Center of Biomedical Analysis, Beijing 100039, China
| | - Yingjie Zhu
- National Center of Biomedical Analysis, Beijing 100039, China
| | - Suhe Dong
- National Center of Biomedical Analysis, Beijing 100039, China
| | - Runfeng Lin
- National Center of Biomedical Analysis, Beijing 100039, China
| | - Peihong Zhu
- National Center of Biomedical Analysis, Beijing 100039, China
| | - Jie Mao
- National Center of Biomedical Analysis, Beijing 100039, China
| | - Yanqing Cao
- National Center of Biomedical Analysis, Beijing 100039, China
| | - Xiaoyao Yin
- National Center of Biomedical Analysis, Beijing 100039, China
| | - Fangting Dong
- National Center of Biomedical Analysis, Beijing 100039, China
| | - Kun He
- National Center of Biomedical Analysis, Beijing 100039, China.
| | - Na Wang
- National Center of Biomedical Analysis, Beijing 100039, China.
| |
Collapse
|
2
|
Zhang T, Yuan Y, Teng H, Wang D, Gu H. Exposure to Cyantraniliprole Adversely Impacts Fitness of Harmonia axyridis: Acute Toxicity and Sublethal Effects on Development, Fecundity and Antioxidant Responses. INSECTS 2024; 15:773. [PMID: 39452349 PMCID: PMC11508540 DOI: 10.3390/insects15100773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024]
Abstract
Extensive utilization of pesticides and their persistent residues inadvertently pose threats to the effectiveness and fitness of biocontrol agents in agroecosystems. However, these ecological consequences are generally disregarded when executing integrated pest management strategies (IPM). Cyantraniliprole (CNAP) serves as a wide-spectrum diamide insecticide and its sublethal effects have been well characterized on multiple insect pests, whereas its impacts on beneficial natural enemies remain unfathomed. Herein we exposed Harmonia axyridis, a predacious generalist, to lethal and sublethal concentrations of CNAP via dipping treatment (egg stage) and topical applications (1st-instar stage + adult stage). The acute toxicity tests revealed that LC50 of CNAP were 90.11, 86.11 and 240.50 mg/L against embryos, 1st instar nymphs and female adults, respectively, with safety factors ranging from 1.14 to 5.34, suggesting its medium toxicity for H. axyridis and larval stage was the most susceptible. The embryonic, larval and pupal durations of coccinellids ecdysed from CNAP-treated eggs and 1st instars were all elongated under sublethal concentrations, of which LC30 triggered more pronounced and significant retardations relative to control. Besides, exposed coccinellids displayed substantially diminished pupal mass and pupation rate, most notably for insects molted from the 1st-instar stage upon CNAP sublethal treatments. With respect to reproductive performance, LC10 and LC30 of CNAP all significantly suppressed female fecundity, as evidenced by reduced vitellin content, a prolonged pre-oviposition period (POP), mitigated laid eggs and the egg hatching rate. Specifically, there existed positive correlations between vitellin level (Vn) and number of eggs deposited by per female, indicative of CNAP affecting fecundity by regulation of Vn. In addition, the antioxidant system was also profoundly disrupted by CNAP, with compromised POD activity at different concentrations over time and induced hormesis of SOD/CAT activities post LC10 exposure. Activities of SOD and TAC were enhanced to exert protective functions during the first 48 h, while defense collapsed at 72 h following LC30 treatments that depleted all enzymatic activities. We speculated that fitness trade-offs may occur between reproductive capacity and antioxidant defenses to sustain physiological homeostasis in response to CNAP stress. Collectively, this study evaluated the ecological risk of CNAP and unmasked its adverse implications for overall fitness of H. axyridis, which highlighted rational application of agrochemicals to conserve biocontrol agents when implementing IPM strategies for sustainable pest control.
Collapse
Affiliation(s)
- Tianshu Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (T.Z.); (Y.Y.); (H.T.); (D.W.)
- Shanghai Engineering Research Centre of Low-Carbon Agriculture (SERCLA), Shanghai 201415, China
| | - Yongda Yuan
- Shanghai Key Laboratory of Protected Horticultural Technology, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (T.Z.); (Y.Y.); (H.T.); (D.W.)
- Shanghai Engineering Research Centre of Low-Carbon Agriculture (SERCLA), Shanghai 201415, China
| | - Haiyuan Teng
- Shanghai Key Laboratory of Protected Horticultural Technology, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (T.Z.); (Y.Y.); (H.T.); (D.W.)
- Shanghai Engineering Research Centre of Low-Carbon Agriculture (SERCLA), Shanghai 201415, China
| | - Dongsheng Wang
- Shanghai Key Laboratory of Protected Horticultural Technology, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (T.Z.); (Y.Y.); (H.T.); (D.W.)
- Shanghai Engineering Research Centre of Low-Carbon Agriculture (SERCLA), Shanghai 201415, China
| | - Haotian Gu
- Shanghai Key Laboratory of Protected Horticultural Technology, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (T.Z.); (Y.Y.); (H.T.); (D.W.)
- Shanghai Engineering Research Centre of Low-Carbon Agriculture (SERCLA), Shanghai 201415, China
| |
Collapse
|
3
|
Guo Y, Zhang T, Wang X, Zhang J, Miao W, Li QX, Fan Y. Toxic effects of the insecticide tolfenpyrad on zebrafish embryos: Cardiac toxicity and mitochondrial damage. ENVIRONMENTAL TOXICOLOGY 2024; 39:2583-2595. [PMID: 38205909 DOI: 10.1002/tox.24133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/07/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
Tolfenpyrad, a highly effective and broad-spectrum insecticide and acaricide extensively utilized in agriculture, presents a potential hazard to nontarget organisms. This study was designed to explore the toxic mechanisms of tolfenpyrad on zebrafish embryos. Between 24 and 96 h after exposure of the fertilized embryos to tolfenpyrad at concentrations ranging from 0.001 to 0.016 mg/L (96 h-LC50 = 0.017 mg/L), lethal effects were apparent, accompanied with notable anomalies including pericardial edema, increased pericardial area, diminished heart rate, and an elongated distance between the venous sinus and the arterial bulb. Tolfenpyrad elicited noteworthy alterations in the expression of genes pertinent to cardiac development and apoptosis, with the most pronounced changes observed in the cardiac development-related genes of bone morphogenetic protein 2b (bmp2b) and p53 upregulated modulator of apoptosis (puma). The findings underscore that tolfenpyrad induces severe cardiac toxicity and mitochondrial damage in zebrafish embryos. This data is imperative for a comprehensive assessment of tolfenpyrad risks to aquatic ecosystems, particularly considering the limited knowledge regarding its detrimental impact on aquatic vertebrates.
Collapse
Affiliation(s)
- Yuzhao Guo
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Taiyu Zhang
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Xinyu Wang
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Jie Zhang
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Weiguo Miao
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Yongmei Fan
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| |
Collapse
|
4
|
Wang ZJ, Wang NM, Yu QT, Xue CB. Sublethal effects of an indoxacarb enantiomer insecticide on Plutella xylostella caterpillar and Chrysoperla sinica predator. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114400. [PMID: 36508809 DOI: 10.1016/j.ecoenv.2022.114400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Plutella xylostella (L.) is a migratory species and an important insect pest of cruciferous crops worldwide, and Chrysoperla sinica (Tjeder) is a predaceous insect of agricultural and forest pests in the field. Indoxacarb has two enantiomers: (+)-S-indoxacarb and (-)-R-indoxacarb. This study was conducted to clarify the selective toxicity and sublethal effects of both enantiomers on P. xylostella and C. sinica. The (+)-S-indoxacarb isomer had greater acute toxicity to P. xylostella and C. sinica, while (-)-R-indoxacarb had less toxicity to P. xylostella and low toxicity to C. sinica. Lethal concentration 25 % (LC25) of (+)-S-indoxacarb had significant effects on the development, population, and fecundity of P. xylostella and C. sinica. The LC25 concentration of (-)-R-indoxacarb had a significant effect on the oviposition of P. xylostella. The field recommended concentration of (-)-R-indoxacarb significantly affected the pupal stage, adult survival rate, oviposition, and larval survival rate of C. sinica. Both enantiomers could significantly affect the search efficiency, successful attack rate, prey handling time, and maximum predation of C. sinica larvae, and the effects of (+)-S-indoxacarb alone were greater than those of (-)-R-indoxacarb. This study provided evidence of the different selective toxicity, sublethal effects of indoxacarb enantiomers on P. xylostella and C. sinica, which of the results could provide a basis for more rational use of indoxacarb in ecosystems.
Collapse
Affiliation(s)
- Zi-Jian Wang
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Nian-Meng Wang
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Qi-Tong Yu
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Chao-Bin Xue
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
5
|
Wang Q, Sun Z, Huang Z, Ma S, Chen K, Ju X. Effects of tolfenpyrad exposure on development and response mechanism in the silkworm, Bombyx mori. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 189:105280. [PMID: 36549810 DOI: 10.1016/j.pestbp.2022.105280] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/16/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Tolfenpyrad is a broad spectrum of insecticide that can effectively kill different types of pests, including Lepidoptera. However, due to improper use, the adverse effects of tolfenpyrad on beneficial or economic insects have not been well studied. In this study, we systematically investigated the toxic effect of sublethal tolfenpyrad on silkworms. Sublethal tolfenpyrad exposure can affect the body weight, developments days, cocooning rate, eclosion rate and pupation rate. To further study the response mechanism of silkworms to tolfenpyrad stimulation, we compared the different expression genes by transcriptome sequencing and verified them by qRT-PCR. We found that significant changes in the genes expression was involved in xenobiotics biodegradation and metabolism, immune system and digestive system after tolfenpyrad treatment. To further investigate the possible mechanisms by which intestinal microbia in the response to tolfenpyrad, we analysed the microbia changes in the midgut of silkworms by 16S rRNA gene sequencing. The results showed that the relative abundances of Enterobacter and Staphylococcus were increased whereas the Tyzzerella and Methylobacterium-Methylorubrum were decreased after tolfenpyrad stimulation. Taken together, these results indicated that low concentration of tolfenpyrad affect the growth and development of silkworms. Silkworms respond to the toxicity of tolfenpyrad by inducing immune and detoxification-related gene expression or altering microbial composition in the midgut.
Collapse
Affiliation(s)
- Qiang Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Zhonghe Sun
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Zengqing Huang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Shangshang Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Xiaoli Ju
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
6
|
Liu KX, Guo Y, Zhang CX, Xue CB. Sublethal effects and reproductive hormesis of emamectin benzoate on Plutella xylostella. Front Physiol 2022; 13:1025959. [PMID: 36338483 PMCID: PMC9627195 DOI: 10.3389/fphys.2022.1025959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/10/2022] [Indexed: 12/02/2022] Open
Abstract
The diamondback moth (DBM), Plutella xylostella L., is an important pest of cruciferous vegetables, and population control mainly depends on chemical pesticides. Emamectin benzoate is a highly effective insecticide used for controlling DBM. However, it is unknown how the sublethal effects of low concentration residues of emamectin benzoate on DBM. So the population development sublethal effects of emamectin benzoate, at LC5, LC10, and LC20 with concentrations of 0.014 mg/L, 0.024 mg/L and 0.047 mg/L, respectively, on adult DBM and their progeny were investigated in this study. The pupal weight, pupal period, female fecundity, and vitellin content of the F0 DBM generation increased significantly compared to the control. And the single female oviposition number of DBM was increased by 20.21% with LC20 treatment. The pupation rate, adult longevity and ovariole length of the treatment groups decreased significantly. The fecundity of DBM in the treatment groups increased, and this increased the population by a presumptive 13.84%. Treatment also led to the shortening of ovarioles and the reduction of egg hatching, and increased pupal weight in the F1 generation. We concluded that the effects of sublethal/low concentration emamectin benzoate on the different life stages of DBM were variable, and the reproductive hormesis on DBM adults were attractive findings.
Collapse
|