1
|
Sun Q, Dong J, Su Z, Huang X, Gao X, Hu K, Gong X. Study on low concentration deltamethrin toxicity mediated by phospholipase D in Chinese mitten crab (Eriocheir sinensis) ovary. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107090. [PMID: 39277993 DOI: 10.1016/j.aquatox.2024.107090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
This study evaluates the impact of environmentally relevant, low-concentration deltamethrin exposure to Eriocheir sinensis ovaries. Our findings revealed that even at a concentration of 0.05 µg/L, deltamethrin exposure can induce significant ovarian toxicity through a 5-day exposure, with gradual amplification detected with time, demonstrating the toxicity amplification effect. Hematoxylin and Eosin staining revealed that low-concentration deltamethrin exposure produces pathological damage consistent with acute toxicity-yolk granules were dissolved and oocyte membranes were ruptured. High-throughput RNA-sequencing data indicated that the acute and low-concentration exposure groups involved completely different pathways and molecular functions, suggesting distinct mechanisms for their toxic effects. Following the identification of phospholipase D (PLD) as a potential core factor regulating the toxicity amplification effect of low concentration deltamethrin, we delved into subsequent mechanism studies using quantitative real-time PCR, immunofluorescence and enzyme-linked immunosorbent assay. Through the GnRH signaling pathway, increased PLD indirectly stimulates augmented estradiol secretion, subsequently inducing apoptosis by upregulating Cathepsin D, which can activate the key executioners of apoptosis-caspases (CASP3 and CASP7). In conclusion, low-concentration deltamethrin exposures can induce significant ovarian damage through apoptosis mediated by the upregulation of PLD in the ovaries of Eriocheir sinensis at environmentally relevant concentrations, which lays the preliminary theoretical groundwork for further elucidating the mechanism of toxicity amplification effect of pesticide exposure at low concentrations.
Collapse
Affiliation(s)
- Qi Sun
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai Ocean University, Shanghai 201306, China
| | - Jun Dong
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Zehui Su
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Xuanyun Huang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Xiaoning Gao
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Kun Hu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Xiaoling Gong
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
2
|
Zeng J, Dong S, Chen C, Zheng Y, Zuo Y, Liu Y, Ding T, Liu F, Shen Q, Du Y, Wang X, Xie W, Zhou C, Lu H. Benzalkonium chloride induces hematopoietic stem cell reduction and immunotoxicity in zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116902. [PMID: 39173224 DOI: 10.1016/j.ecoenv.2024.116902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
Benzalkonium chloride (BAC) is a broad-spectrum antibacterial agent that possesses cleaning and bactericidal properties, but impact of BAC on wellbeing of aquatic organisms remains uncertain. Consequently, in this current study, we have examined the immunotoxic potential of BAC in zebrafish embryos, thus marking it as the pioneering effort in this field. According to the findings, zebrafish embryos exposed to BAC exhibited a decline in yolk area that varied with the concentration, along with a significant decrease in the count of neutrophils, macrophages, red blood cells, and thymus T-cells. We observed significantly up-regulated expression of immune-related signaling genes such as cxcl-c1c, il-8, tir4 and inf-γ, but expression of nf-κb was downregulated. In addition, we observed a marked reduction in the number of hematopoietic stem cells in zebrafish larvae after BAC exposure, which could be the result of oxidative stress-mediated apoptosis. We found that compared with the control group, the number of red blood cells in juvenile zebrafish in BAC-exposure group was significantly down-regulated, which could be attributed to hematopoietic stem cell defect. Astaxanthin restored immune cells and hematopoietic stem cells after BAC exposure, whereas Inhibitor of Wnt Response-1(IWR-1) restored neutrophils after BAC exposure. The research findings demonstrated that exposure to BAC displayed harmful effects on the development and immune system of zebrafish embryos. These effects might be associated with alterations in reactive oxygen species(ROS) levels and activation of the Wnt signaling pathway caused by BAC.
Collapse
Affiliation(s)
- Junquan Zeng
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Si Dong
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an, Jiangxi 343009, China; First Affiliated Hospital Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Chao Chen
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Yongliang Zheng
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Yuhua Zuo
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an, Jiangxi 343009, China; Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Yuxin Liu
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Ting Ding
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Fasheng Liu
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Qinyuan Shen
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Yunyun Du
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Xiaoping Wang
- Comprehensive Teaching and Research Office, Ji'an College, Ji'an, Jiangxi 343000, China
| | - Wenguo Xie
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Chenjun Zhou
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Huiqiang Lu
- First Affiliated Hospital Gannan Medical University, Ganzhou, Jiangxi 341000, China.
| |
Collapse
|
3
|
Li L, Li X, Zeng L, Wang Z, Deng N, Huang P, Hou J, Jian S, Zhao D. Molecular mechanism of the NOS/NOX regulation of antibacterial activity in Eriocheir sinensis. Comp Biochem Physiol B Biochem Mol Biol 2024; 271:110945. [PMID: 38278206 DOI: 10.1016/j.cbpb.2024.110945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
To elucidate the role of nitric oxide synthase (NOS), which produces the free radical nitric oxide (NO), and nicotinamide adenine dinucleotide phosphate oxidase (NOX), which produces the superoxide anion (O2-), in the innate immunity of Eriocheir sinensis, the full lengths of the NOS and NOX genes were cloned via rapid amplification of the cDNA ends and then expressed in the prokaryotic form to obtain the recombinant proteins, NOS-HIS and NOX-HIS. Through bacterial binding and stimulation experiments, the molecular mechanisms of NOS and NOX in the innate immunity of E. sinensis were explored. Based on the results, NOS and NOX were 5900 bp and 4504 bp long, respectively, and were evolutionarily conserved. Quantitative real-time PCR revealed that NOS and NOX were expressed in all studied tissues, and both were expressed in the highest amounts in hemocytes. NOS-HIS and NOX-HIS could bind to bacteria with different binding powers; their binding ability to gram-positive bacteria was higher than that of binding to gram-negative bacteria. After stimulation with Aeromonas hydrophila, NOS expression was significantly up-regulated at 3, 6, and 48 h, and NOX expression was significantly down-regulated at 3, 12, 24, and 48 h. After bacterial stimulation, the NOS enzyme activity in the serum of E. sinensis was also significantly up-regulated at 6 and 48 h, and the NOX enzyme activity was significantly down-regulated at 12 and 48 h, aligning with the gene expression trend. Moreover, the related free radical molecules, NO, O2-, and H2O2, tended to decrease after bacterial stimulation. Overall, the gene expression and enzyme activity of NOS and NOX had been changed respectively, and the contents of a series of free radical molecules (NO, O2- and H2O2) were induced in E. sinensis after bacterial stimulation, which then exert antibacterial immunity.
Collapse
Affiliation(s)
- Linjie Li
- Key Laboratory for Aquatic Germplasm Innovation and Utilization of Jiangxi Province, School of Life Sciences, Nanchang University, Jiangxi 330031, China; Laboratory of Aquatic Animal Healthy Breeding, Chongqing Research Institute of Nanchang University, Chongqing 400037, China
| | - Xiaoyong Li
- Department of Animal Husbandry and Aquatic Technology Extension and Application, Jiangxi Agricultural Technology Extension Center, Jiangxi 330046, China.
| | - Liugen Zeng
- Nanchang Academy of Agricultural Sciences, Jiangxi 330038, China
| | - Ziyu Wang
- Key Laboratory for Aquatic Germplasm Innovation and Utilization of Jiangxi Province, School of Life Sciences, Nanchang University, Jiangxi 330031, China; Laboratory of Aquatic Animal Healthy Breeding, Chongqing Research Institute of Nanchang University, Chongqing 400037, China
| | - Nan Deng
- Key Laboratory for Aquatic Germplasm Innovation and Utilization of Jiangxi Province, School of Life Sciences, Nanchang University, Jiangxi 330031, China; Laboratory of Aquatic Animal Healthy Breeding, Chongqing Research Institute of Nanchang University, Chongqing 400037, China
| | - Peiying Huang
- Key Laboratory for Aquatic Germplasm Innovation and Utilization of Jiangxi Province, School of Life Sciences, Nanchang University, Jiangxi 330031, China; Laboratory of Aquatic Animal Healthy Breeding, Chongqing Research Institute of Nanchang University, Chongqing 400037, China
| | - Jiahao Hou
- Key Laboratory for Aquatic Germplasm Innovation and Utilization of Jiangxi Province, School of Life Sciences, Nanchang University, Jiangxi 330031, China; Laboratory of Aquatic Animal Healthy Breeding, Chongqing Research Institute of Nanchang University, Chongqing 400037, China
| | - Shaoqin Jian
- Key Laboratory for Aquatic Germplasm Innovation and Utilization of Jiangxi Province, School of Life Sciences, Nanchang University, Jiangxi 330031, China; Laboratory of Aquatic Animal Healthy Breeding, Chongqing Research Institute of Nanchang University, Chongqing 400037, China
| | - Daxian Zhao
- Key Laboratory for Aquatic Germplasm Innovation and Utilization of Jiangxi Province, School of Life Sciences, Nanchang University, Jiangxi 330031, China; Laboratory of Aquatic Animal Healthy Breeding, Chongqing Research Institute of Nanchang University, Chongqing 400037, China.
| |
Collapse
|
4
|
Zhang H, Xie P. The mechanisms of microcystin-LR-induced genotoxicity and neurotoxicity in fish and mammals: Bibliometric analysis and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167018. [PMID: 37709090 DOI: 10.1016/j.scitotenv.2023.167018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/03/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023]
Abstract
Microcystin-leucine arginine (MC-LR) is a typical cyanobacterial toxin, and the threat of this toxin is increasing among organisms. Despite extensive toxicological studies on MC-LR, there is no comprehensive analysis based on previously published data. Therefore, we conducted bibliometric analysis and meta-analysis to identify research hotspots and to elucidate the key mechanism of the relationship between MC-LR and genotoxicity and neurotoxicity among fish and mammals. One of the hotspots is toxic mechanisms (indicated by the frequent appearance of oxidative stress, DNA damage, apoptosis, neurotoxicity, genotoxicity, ROS, comet assay, signalling pathway, and gene expression indicate as keywords). The density visualization shows a high frequency of "microcystin-LR" and "toxicology," and the overlay visualization emphasizes the prominence of "neurotoxicity" in recent years. These findings confirm the importance of studying MC-LR toxicity. Meta-analysis indicated that in both fish and mammals, MC-LR exposure increased ROS levels by 294 % and increased DNA damage biomarkers by 174 % but decreased neurotoxicity biomarkers by 9 %. Intergroup comparisons revealed that the exposure concentration of MC-LR was significantly correlated with genotoxicity and neurotoxicity levels in both fish and mammals (p < 0.05). Furthermore, the random forest (RF) model revealed that exposure concentration was the primary determinant associated with the induction of ROS, genotoxicity, and neurotoxicity induced by MC-LR. This is likely the dominant mechanism by which excessive ROS production induced by MC-LR causes oxidative stress, ultimately leading to genotoxicity and neurotoxicity in both fish and mammals.
Collapse
Affiliation(s)
- Huixia Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes; School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes; School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
5
|
Zhang Y, Gao J, Cao L, Du J, Xu G, Xu P. Microcystin-LR-induced autophagy via miR-282-5p/PIK3R1 pathway in Eriocheir sinensis hepatopancreas. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115661. [PMID: 37948941 DOI: 10.1016/j.ecoenv.2023.115661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
With the intensifying climate warming, blue-green algae blooms have become more frequent and severe, releasing environmental hazards such as microcystin that pose potential threats to human and animal health. Autophagy has been shown to play a crucial role in regulating immune responses induced by environmental hazards, enabling cells to adapt to stress and protect against damage. Although microcystin-LR (MC-LR) has been identified to affect autophagy in mammalian, its impact on aquatic animals has been poorly studied. To investigate the toxicological effects of MC-LR in aquatic ecosystems, we constructed a microRNA profile of acute MC-LR stress in the hepatopancreas of the Chinese mitten crab. Interestingly, we found the MC-LR exposure activated autophagy in the hepatopancreas based on the following evidence. Specifically, mRNA expression level of ATG7, Beclin1 and Gabarap was significantly up-regulated, autophagy regulatory pathways were significantly enriched, and numerous autolysosomes and autophagosomes were observed. Additionally, we found that miR-282-5p and its target gene PIK3R1 played important regulatory roles in autophagy by in vivo and in vitro experiments. Overexpression of miR-282-5p mimicked MC-LR-induced autophagy by inhibiting PIK3R1 expression, while miR-282-5p silencing inhibited autophagy by promoting PIK3R1 expression. Altogether, our findings suggest that MC-LR increases miR-282-5p, which then targets inhibition of PIK3R1 to stimulate autophagy. This study focused on the stress response regulatory mechanisms of juvenile crabs to toxic pollutants in water, offering a potential target for alleviating the toxicity of MC-LR. These findings lay a foundation for reducing the toxicity of MC-LR and environmental hazards in organisms.
Collapse
Affiliation(s)
- Yuning Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jiancao Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Liping Cao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jinliang Du
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
6
|
Feng M, Xu Z, Yin D, Zhao Z, Zhou X, Song L. Toxic effects of sodium dodecyl sulfate on planarian Dugesia japonica. PeerJ 2023; 11:e15660. [PMID: 37456884 PMCID: PMC10340106 DOI: 10.7717/peerj.15660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
Sodium dodecyl sulfate (SDS) is an anionic surfactant, which is widely used in various fields in human life. However, SDS discharged into the water environment has a certain impact on aquatic organisms. In this study, planarian Dugesia japonica (D. japonica) was used to identify the toxic effects of SDS. A series of SDS solutions with different concentrations were used to treat planarians for the acute toxicity test , and the results showed that the semi-lethal concentration (LC50) of SDS to D. japonica at 24 h, 48 h, 72 h, and 96 h were 4.29 mg/L, 3.76 mg/L, 3.45 mg/L, and 3.20 mg/L respectively. After the planarians were exposed to 0.5 mg/L and 1.0 mg/L SDS solutions for 1, 3, and 5 days, the activities of superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) content were measured to detect the oxidative stress and lipid peroxidation in planarians. Random amplified polymorphic DNA (RAPD) analysis was performed to detect the genotoxicity caused by SDS to planarians. The results showed that the activities of SOD, CAT, and MDA content increased after the treatment, indicating that SDS induced oxidative stress in planarians. RAPD analysis showed that the genomic template stability (GTS) values of planarians treated by 0.5 mg/L and 1.0 mg/L SDS for 1, 3, and 5 days were 67.86%, 64.29%, 58.93%, and 64.29%, 60.71%, 48.21%, respectively. GTS values decreased with the increasing of SDS concentration and exposure time, indicating that SDS had genotoxicity to planarians in a time and dose-related manner. Fluorescent quantitative PCR (qPCR) was used to investigate the effects of SDS on gene expression of planarians. After the planarians were exposed to 1.0 mg/L SDS solution for 1, 3, and 5 days, the expression of caspase3 was upregulated, and that of piwiA, piwiB, PCNA, cyclinB, and RAD51 were downregulated. These results suggested that SDS might induce apoptosis, affect cell proliferation, differentiation, and DNA repair ability of planarian cells and cause toxic effects on planarian D. japonica.
Collapse
Affiliation(s)
- Minmin Feng
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Zhenbiao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Dandan Yin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Zelong Zhao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Xiuyuan Zhou
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Linxia Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
7
|
Huang P, Du J, Cao L, Gao J, Li Q, Sun Y, Shao N, Zhang Y, Xu G. Effects of prometryn on oxidative stress, immune response and apoptosis in the hepatopancreas of Eriocheir sinensis (Crustacea: Decapoda). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115159. [PMID: 37356403 DOI: 10.1016/j.ecoenv.2023.115159] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Prometryn, a triazine pesticide product used to control weed growth, poses a high risk to aquatic organisms in the environment. Several toxicological evaluations have been performed on bony fish and shrimp exposed to prometryn. However, there have been no reports conducted on the toxic mechanism of prometryn with regard to Eriocheir sinensis. In this study, our research evaluated the toxic effects of prometryn via in vitro and in vivo toxicity tests on E. sinensis. Firstly, we estimated the exposure toxicity of prometryn to E. sinensis, and then we constructed a 6 h transcriptional profile and conducted an enrichment analysis. To further reveal the toxicity of prometryn, the hepatopancreas (hepatopancreatic cells) was analyzed for antioxidant, immune and lipid-metabolism-related enzymes, antioxidant- and apoptosis-related gene expression, histopathology and TUNEL. From the results, we determined that the 96 h-LD50 was 70.059 mg/kg, and using RNA-seq, we identified 933 differentially expressed genes (DEGs), which were mainly enriched in the amino and fatty acid metabolism and the cell-fate-determination-related signaling pathway. The results of the biochemical assays showed that prometryn could significantly decrease the activities/levels of CAT, SOD, GSH, AKP and ACP, reduce the levels of T-AOC, TG, TCH, C3 and C4, and increase the MDA content. In addition, the expression levels of Nrf2, GSTs and HO-1 were first upregulated and then downregulated with increasing time. Histopathology showed that prometryn damaged the structure of the hepatopancreas cells and induced apoptosis, suggesting that the PI3K-Akt signaling pathway may be involved in the damage process of hepatopancreas cells (PI3K, PDK and Akt were downregulated whereas Bax was upregulated), leading to their apoptosis. The above results indicated that prometryn could cause injury of the hepatopancreas through oxidative stress, induce cell apoptosis, disrupt the lipid metabolism and cause immune damage. This study provided useful data for understanding and evaluating the toxicity of prometryn to aquatic crustacea.
Collapse
Affiliation(s)
- Peng Huang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jinliang Du
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Liping Cao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jiancao Gao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Quanjie Li
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yi Sun
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Nailin Shao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yuning Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
8
|
Zhang H, Zhao X, Li Y, Xie P. A meta-analysis on the toxicity of microcystin-LR to fish and mammals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121780. [PMID: 37150342 DOI: 10.1016/j.envpol.2023.121780] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/05/2023] [Accepted: 05/05/2023] [Indexed: 05/09/2023]
Abstract
Microcystin-leucine arginine (MC-LR), the most prevalent and dangerous microcystin, poses high risks to living organisms, especially fish and mammals. Although many studies have focused on the toxic effect on fish and mammals exposed to MC-LR, works that incorporate published data into a comprehensive comparison and analysis are still limited. Here, the adverse effects of oxidative stress markers, health, functional traits, and performance traits in fish and mammals were systematically verified by collecting data from 67 studies for the first time. Notably, we first found that the activities of malondialdehyde (MDA) (p < 0.05) and lactoperoxidase (LPO) always showed increases, whereas the growth (performance traits) always had a significant decrease (p < 0.001) under all variables of MC-LR exposure, i.e., exposure time, exposure concentration, exposure route, and even life stage. Additionally, our study first verified that the activities of MDA and LPO can be employed as oxidative stress indicators of MC-LR effects in fish and mammals instead of other biomarkers of oxidative stress, such as superoxide dismutase (SOD) and catalase (CAT), considered by previous studies. Growth may be regarded as a highly sensitive indicator of MC-LR toxicity in mammals and fish. At the same time, we first found that the impact of MC-LR exposure concentration on LPO, MDA, and growth is higher than that of exposure time, exposure route, and different life stages using the random forest (RF) model. In short, this work sheds light on the potential biochemical and individual toxicity of MC-LR exposure in fish and mammals.
Collapse
Affiliation(s)
- Huixia Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China
| | - Xu Zhao
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China
| | - Yehao Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| |
Collapse
|
9
|
Wei L, Fu J, He L, Wang H, Ruan J, Li F, Wu H. Microcystin-LR-induced autophagy regulates oxidative stress, inflammation, and apoptosis in grass carp ovary cells in vitro. Toxicol In Vitro 2023; 87:105520. [PMID: 36410616 DOI: 10.1016/j.tiv.2022.105520] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
MC-LR is one of the cyanotoxins produced by fresh water cyanobacteria. Previous studies showed that autophagy played an important role in MC-LR-induced reproduction toxicity. However, information on the toxicological mechanism is limited. In this study, MC-LR could induce autophagy and apoptosis in GCO cells in vitro. In GCO cells that had been exposed to MC-LR, the inhibitor of 3-MA effectively decreased cell viability and damaged cell ultrastructure. Oxidative stress was significantly increased in the 3-MA + MC-LR group, accompanied by significantly increased MDA content and decreased CAT activity and GST, SOD1, GPx, and GR expression levels (P < 0.05). Inflammation was more serious in the 3-MA + MC-LR group than that of MC-LR group, which was evidenced by increasing expression levels of TNFα, IL11, MyD88, TNFR1, TRAF2, JNK, CCL4, and CCL20 (P < 0.05). Interestingly, the significant decrease of Caspase-9, Caspase-7, and Bax expression and significant increase of Bcl-2 and Bcl-2/Bax ratio in 3-MA + MC-LR group compared to MC-LR group, suggesting that extent of apoptosis were reduced. Taken together, these results indicated that MC-LR induced autophagy and apoptosis in GCO cells, however, the inhibition of autophagy decreased the extent of apoptosis, induced more serious oxidative stress and inflammation, which eventually induced cell death. Our findings provided some information for exploring the toxicity of MC-LR, however, the role of autophagy require further study in vivo.
Collapse
Affiliation(s)
- Lili Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China.
| | - Jianping Fu
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi Province 330022, PR China
| | - Li He
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China
| | - Hui Wang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China
| | - Jiming Ruan
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China
| | - Fugui Li
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China
| | - Huadong Wu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China.
| |
Collapse
|