1
|
Dai S, Zou L, Wang Q. Toxicity of organophosphate flame retardant in marine rotifers: Evidence from the population, individual, biochemical and molecular levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177256. [PMID: 39477105 DOI: 10.1016/j.scitotenv.2024.177256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/03/2024]
Abstract
Tris (1-chloro-2-propyl) phosphoric acid (TCPP), a widely used organophosphate flame retardant, has been detected in various aquatic environments due to its extensive industrial application. TCPP is well-known to negatively impact large aquatic organisms. However, the effects of TCPP on zooplankton remain poorly understood. This study explored the ecological risk of TCPP in low-trophic marine organisms by evaluating the marine rotifer Brachionus plicatilis at the molecular, biochemical, individual, and population levels after exposure to TCPP concentrations of 14.79, 44.37, and 73.94 μM. Results showed that exposure to TCPP inhibited body size, feeding behavior, life expectancy, generation time, net reproductive rate, reproduction rate, and population growth rate of rotifers, thus impairing their growth, survival, reproduction, and population expansion. Environmental concentrations surpassing 0.031 μM and 0.23 μM adversely impact rotifer reproduction and survival, respectively. Biochemically, TCPP induced oxidative stress, increased amylase activity, decreased lipase activity, and total protein content. Transcriptome analysis revealed that TCPP could induce abnormal mitochondrial function, impaired energy metabolism, programmed cell death by generating excessive reactive oxygen species, and affect cellular DNA replication. Results indicate that TCPP disrupts homeostasis in rotifers by inducing oxidative stress, significantly suppressing individual and population parameters. These findings provide critical insights for assessing the ecological risk posed by TCPP to zooplankton and the stability of aquatic ecosystems.
Collapse
Affiliation(s)
- Shiyu Dai
- Department of Ecology, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
| | - Ligong Zou
- Department of Ecology, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
| | - Qing Wang
- Department of Ecology, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
2
|
Wang A, Huang Y, Song X, Zeng J, Zhu L, Wang B, Wu Y, Xu Z, Zheng R, Qin Y, Wang J, Yao W, Wan X, Li H, Zhuang P, Jiao J, Zhang Y, Wu Y. Parental exposure to acrylamide disrupts sphingolipid metabolism and impairs transgenerational neurodevelopment in zebrafish (Danio rerio) offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175134. [PMID: 39084380 DOI: 10.1016/j.scitotenv.2024.175134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Acrylamide exposure has become an emerging environmental and food safety issue, and its toxicity poses a potential threat to public health worldwide. However, limited studies have paid attention to the detrimental effects of parental exposure to acrylamide on the neurodevelopment in zebrafish offspring. In this study, the embryos were life-cycle exposed to acrylamide (0.125 and 0.25 mM) for 180 days. Subsequently, these zebrafish (F0) were allowed to mate, and their offspring (F1) were collected to culture in clean water from embryos to adults. We employed developmental and morphological observations, behavioral profiles, metabolomics analyses, and transcriptional level examinations to investigate the transgenerational neurotoxicity with parental exposure to acrylamide. Our results showed that parental exposure to acrylamide harms the birth, development, and behavior characterization of the F1 zebrafish larvae, including poor egg quality, increased mortality rates, abnormal heart rates, slowed swimming activity, and heightened anxiety behavior, and continuously disturbs mental health in F1 adult zebrafish. The transcriptional analysis showed that parental chronic exposure to acrylamide deteriorates the neurodevelopment in F1 larvae. In addition, metabolomics analyses revealed that sphingolipid metabolism disruption may be associated with the observed abnormal development and behavioral response in unexposed F1 offspring. Overall, the present study provides pioneer evidence that acrylamide induces transgenerational neurotoxicity via targeting and disrupting sphingolipid metabolism, which reveals intergenerational transmission of acrylamide exposure and unravels its spatiotemporal toxicological effect on neurodevelopment.
Collapse
Affiliation(s)
- Anli Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yingyu Huang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiaoran Song
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jia Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Li Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Binjie Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, Zhejiang, China
| | - Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, Zhejiang, China
| | - Zhongshi Xu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, Zhejiang, China
| | - Ruonan Zheng
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, Zhejiang, China
| | - Yazhou Qin
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, Zhejiang, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, Zhejiang, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, Zhejiang, China
| | - Xuzhi Wan
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Haoyu Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Pan Zhuang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jingjing Jiao
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Yu Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| |
Collapse
|
3
|
Debroy A, Saravanan JS, Nirmala MJ, Pulimi M, Mukherjee A. Algal EPS modifies the toxicity potential of the mixture of polystyrene nanoplastics (PSNPs) and triphenyl phosphate in freshwater microalgae Chlorella sp. CHEMOSPHERE 2024; 366:143471. [PMID: 39368491 DOI: 10.1016/j.chemosphere.2024.143471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/07/2024]
Abstract
Triphenyl phosphate (TPP) and polystyrene nanoplastics (PSNPs) are prevalent freshwater contaminants obtained mainly from food packaging, textiles and electronics. Algal extracellular polymeric substances (EPS), a part of natural organic matter, may influence these pollutants' behaviour and toxicity. The presence of EPS can enhance the aggregation of TPP-PSNP mixtures, and reduce the bioavailability, and thus the toxicity potential. Understanding the mutual interactions between TPP, PSNPs, and EPS in the aquatic environment is a prerequisite for the environmental risk assessment of these chemicals. The study examines the toxicity effects of various surface-modified PSNPs (1 mg/L of plain, animated, and carboxylated) and TPP (0.05, 0.5, and 5 mg/L) in pristine and combined forms on freshwater microalgae, Chlorella sp., as a model organism. The physical-chemical interactions of algal EPS (10 mg/L) with PSNPs and TPP and their mixtures were studied. The toxicity potential of the PSNPs was estimated by quantifying growth inhibition, oxidative stress, antioxidant activity, and photosynthesis in the cells. TPP toxicity increased in the presence of the PSNPs, however the addition of algal EPS reduced the combined toxic effects. EPS plays a protective role by reducing oxidative stress and enhancing photosynthetic efficiency in the algal cells. The Pearson modeling analysis indicated a positive correlation between growth inhibition, and reactive oxygen species, malondialdehyde production. The cluster heatmap and correlation mapping revealed a strong correlation among the oxidative stress, growth inhibition, and photosynthetic parameters. The study clearly highlights the potential of EPS in mitigating the risk of mixed emerging pollutants in the aquatic environment.
Collapse
Affiliation(s)
- Abhrajit Debroy
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | | | - M Joyce Nirmala
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Mrudula Pulimi
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
4
|
Li Y, Zhang Y, Zhang H, Xu M, Cao Q, Wang Y. Energy strategy alteration, rather than toxicity itself, interferes with the population fluctuation of Brachionus plicatilis exposed to water-accommodated fractions (WAFs) of crude oil. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:106984. [PMID: 38901220 DOI: 10.1016/j.aquatox.2024.106984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/22/2024]
Abstract
Oil spills are reported to have conflicting impacts of either injury or resilience on zooplankton communities, and physiological plasticity is speculated to be the possible causative factor. But how? An explanation was sought by exposing the marine rotifer Brachionus plicatilis to a series of water-accommodated fractions (WAFs) of crude oil under controlled laboratory conditions, and population dynamics, which is the core issue for zooplankton facing external stress, were analyzed. The total hydrocarbon concentration of WAFs was quickly degraded from a concentration of 5.0 mg L-1 to half within 24 h and then remained stable. No acute lethality was observed; only motion inhibition was observed in the group treated with 10 %, 50 % and 100 % WAFs, which occurred simultaneously with inhibition of feeding and filtration. However, sublethal exposure to the WAFs concentration series presented stimulation impacts on reproduction and even the population of B. plicatilis. The negative correlation between motion and reproduction seemed to indicate that a shift in the distribution of individual energy toward reproduction rather than motion resulted in increased reproduction after exposure to WAFs. More evidence from transmission electron microscopy (TEM) revealed ultrastructural impairment in both the ovaries and cilia in each treated group, and imbalance in mitochondrial numbers was one of the distinct features of alteration. WAFs stress may alter the energy utilization and storage paradigm, as indicated by the significant elevation in glycogen and the significant decrease in lipid content after WAFs exposure. Further evidence from metabolomics analysis showed that WAFs stress increased the level of lipid metabolism and inhibited some of the pathways in glucose metabolism. Sublethal acute toxicity was observed only in the first 24 h with WAFs exposure, and an energy strategy consisting of changes in the utilization and storage paradigm and reallocation is responsible for the population resilience of B. plicatilis during oil spills.
Collapse
Affiliation(s)
- Yuanyuan Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yaya Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Hui Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Mengxue Xu
- Marine Science Research Institute of Shandong Province, Qingdao, China; Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Qingdao Shandong, China
| | - Qiyue Cao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - You Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| |
Collapse
|
5
|
Yang JM, Cao ZH, Tang HB, Yang AN, Liu JH, Zhang JH, Lu HL. Exposure to high concentrations of triphenyl phosphate altered functional performance, liver metabolism and intestinal bacterial composition of aquatic turtles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116488. [PMID: 38776782 DOI: 10.1016/j.ecoenv.2024.116488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/26/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Organophosphorus flame retardants, such as triphenyl phosphate (TPhP), exist ubiquitously in various environments owing to their widespread usage. Potential toxic effects of residual flame retardants on cultured non-fish species are not concerned commonly. TPhP-induced physiological and biochemical effects in an aquatic turtle were evaluated here by systematically investigating the changes in growth and locomotor performance, hepatic antioxidant ability and metabolite, and intestinal microbiota composition of turtle hatchlings after exposure to different TPhP concentrations. Reduced locomotor ability and antioxidant activity were only observed in the highest concentration group. Several metabolic perturbations that involved in amino acid, energy and nucleotide metabolism, in exposed turtles were revealed by metabolite profiles. No significant among-group difference in intestinal bacterial diversity was observed, but the composition was changed markedly in exposed turtles. Increased relative abundances of some bacterial genera (e.g., Staphylococcus, Vogesella and Lawsonella) probably indicated adverse outcomes of TPhP exposure. Despite having only limited impacts of exposure at environmentally relevant levels, our results revealed potential ecotoxicological risks of residual TPhP for aquatic turtles considering TPhP-induced metabolic perturbations and intestinal bacterial changes.
Collapse
Affiliation(s)
- Jia-Meng Yang
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhi-Hao Cao
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Huo-Bin Tang
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - An-Ni Yang
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jia-Hui Liu
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jin-Hui Zhang
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hong-Liang Lu
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
6
|
Zhang X, Tong X, Tang X, Yang Y, Zhang L, Zhan X, Zhang X. Behavioral toxicity of TDCPP in marine zooplankton: Evidence from feeding and swimming responses, molecular dynamics and metabolomics of rotifers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:170864. [PMID: 38401740 DOI: 10.1016/j.scitotenv.2024.170864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 02/26/2024]
Abstract
As new organic flame retardants, chlorinated organophosphate esters (Cl-OPEs) have high water solubility and structural similarity to organophosphate pesticides, posing risks to aquatic organisms. The potential neurotoxicity of Cl-OPEs has attracted attention, especially in marine invertebrates with a relatively simple nervous system. In this study, a marine rotifer with a cerebral ganglion, Brachionus plicatilis, was exposed to tris (1,3-dichloro-2-propyl) phosphate (TDCPP) (two environmental concentrations and one extreme level), and the changes in feeding and swimming behaviors and internal mechanism were explored. Exposure to 1.05 nM TDCPP did not change the filtration and ingestion rates of rotifers and average linear velocity. But 0.42 and 4.20 μM TDCPP inhibited these three parameters and reduced unsaturated fatty acid content, reproduction and population growth. All TDCPP test concentrations suppressed AChE activity, causing excessive accumulation of acetylcholine within rotifers, thereby disturbing the neural innervation of corona cilia. Molecular docking and molecular dynamics revealed that this inhibition was because TDCPP can bind to the catalytic active site of rotifer AChE through van der Waals forces and electrostatic interactions. TRP420 was the leading amino residue in the binding, and GLY207 contributed to a hydrogen bond. Nontargeted metabolomics using LC-MS and GC-MS identified differentially expressed metabolites in TDCPP treatments, mainly from lipid and lipid-like molecules, especially sphingolipids. TDCPP decreased ganglioside content but stimulated ceramide generation and the expression levels of 3 genes related to ceramide de novo synthesis. The mitochondrial membrane potential (MMP) and ATP content decreased, and the electron respiratory chain complex and TCA cycle were deactivated. An inhibitor of ceramide synthase, fumonisin, alleviated MMP and ATP, implying a critical role of ceramide in mitochondrial dysfunction. Thus, TDCPP exposure caused an energy supply deficit affecting ciliary movement and ultimately inhibiting rotifer behaviors. Overall, this study promotes the understanding of the neurotoxicity of Cl-OPEs in marine invertebrates.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Xin Tong
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Xuexi Tang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yixin Yang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Luyuchen Zhang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Xiaotong Zhan
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Xinxin Zhang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
7
|
Chen T, Xu XP, Li JC, Tao KY, Zhao CS. Adequate nutrient intake mitigate the toxic effects of bromate on the rotifer Brachionus calyciflorus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11727-11734. [PMID: 38224435 DOI: 10.1007/s11356-024-31871-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
Bromate is receiving increased attention as a typical disinfection by-product in aquatic environments, but bromate toxicity tests on invertebrate such as Brachionus calyciflorus rotifer are inadequate. In the present study, the long-term toxicity tests on B. calyciflorus were performed during 21 days under the exposure of different bromate concentrations and two algal density conditions. Furthermore, we evaluated the feeding behaviors of the rotifers under the impact of bromate. The maximum population density of rotifers was significantly reduced at 100 and 200 mg/L bromate exposure at the two algal density conditions. However, we observed that the maximum population density and population growth rate of rotifers were higher at 3.0 × 106 cells/mL algal density than those at 1.0 × 106 cells/mL under the same conditions of bromate exposure. These results suggest that higher food density may have alleviated the negative effects of bromate on rotifers. Meanwhile, the ingestion rate at an algal density of 3.0 × 106 cells/mL was higher than that at 1.0 × 106 cells/mL. The present study provides a basic reference to comprehensively evaluate the toxic effects of bromate on aquatic organisms.
Collapse
Affiliation(s)
- Tao Chen
- College of Civil Engineering and Architecture, Anhui Polytechnic University, Wuhu, 241000, China
| | - Xiao-Ping Xu
- College of Civil Engineering and Architecture, Anhui Polytechnic University, Wuhu, 241000, China.
- Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded, Anhui Province and Ministry of Education, Wuhu, 241000, China.
| | - Jin-Cheng Li
- College of Civil Engineering and Architecture, Anhui Polytechnic University, Wuhu, 241000, China
| | - Kai-Yan Tao
- College of Civil Engineering and Architecture, Anhui Polytechnic University, Wuhu, 241000, China
| | - Chang-Shuang Zhao
- College of Civil Engineering and Architecture, Anhui Polytechnic University, Wuhu, 241000, China
| |
Collapse
|
8
|
Jannuzzi AT, Yilmaz Goler AM, Alpertunga B. Ubiquitin proteasomal system is a potential target of the toxic effects of organophosphorus flame retardant triphenyl phosphate. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:104005. [PMID: 36367495 DOI: 10.1016/j.etap.2022.104005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/16/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The consumption of the widely used flame retardant Triphenyl phosphate (TPP) is increasing. It is now frequently detected in the environment and also domestically. Although the possibility of dermal exposure to TPP is quite high, little is known about its potential molecular toxicity mechanisms. In this study, we found that TPP caused cytotoxicity on human skin keratinocytes (HaCaT) and significantly inhibited the proliferation and cell migration in a concentration-dependent manner. Additionally, HaCaT cells were sensitive to TPP-induced apoptosis. Reactive oxygen species production was induced with TPP, which increased the protein carbonylation and lipid peroxidation levels. Moreover, TPP inhibited proteasome activity and increased the accumulation of ubiquitinated proteins. Exposure to TPP significantly increased the HSP90, HSP70, GRP94 and GRP78 protein levels. Overall, our findings indicate that TPP may pose a risk to human health and contribute to the current understanding of the risks of TPP at the molecular level.
Collapse
Affiliation(s)
- Ayse Tarbin Jannuzzi
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey.
| | - Ayse Mine Yilmaz Goler
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey
| | - Buket Alpertunga
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey; Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul Health and Technology University, Istanbul, Turkey.
| |
Collapse
|