1
|
Novoyatlova US, Kudryavtseva AA, Bazhenov SV, Utkina AA, Fomin VV, Nevmyanov SA, Zhoshibekova BS, Fedyaeva MA, Kolobov MY, Manukhov IV. The Assessment of Methyl Methanesulfonate Absorption by Amphipods from the Environment Using Lux-Biosensors. BIOSENSORS 2024; 14:427. [PMID: 39329802 PMCID: PMC11430740 DOI: 10.3390/bios14090427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
The ability of aquatic mesofauna representatives involved in trophic chains to sorb and accumulate toxicants is important for understanding the functioning of aquatic ecosystems and for fishing industry. This study investigated the capacity of marine amphipod Gammarus oceanicus and freshwater amphipods Eulimnogammarus vittatus and Gammarus lacustris to absorb the DNA-alkylating agent methyl methanesulfonate (MMS). The presence of alkylating agents in the environment and in the tissues of the amphipods was determined using whole-cell lux-biosensor Escherichia coli MG1655 pAlkA-lux, in which the luxCDABE genes from Photorhabdus luminescens, enabling the luminescence of the cell culture, are controlled by the PalkA promoter of DNA glycosylase. It was shown that within one day of incubation in water containing MMS at a concentration above 10 μM, the amphipods absorbed the toxicant and their tissues produce more alkylation damage to biosensor cells than the surrounding water. Concentrations of MMS above 1 mM in the environment caused the death of the amphipods before the toxicant could be significantly concentrated in their tissues. The sensitivity and the capacity to absorb MMS were found to be approximately the same for the marine amphipod G. oceanicus and the freshwater amphipods E. vittatus and G. lacustris.
Collapse
Affiliation(s)
- Uliana S Novoyatlova
- Moscow Center for Advanced Studies, Moscow 123592, Russia
- A.N. Severtsov Institute of Ecology and Evolution of the RAS, Moscow 119071, Russia
| | | | | | - Anna A Utkina
- Moscow Center for Advanced Studies, Moscow 123592, Russia
| | - Vadim V Fomin
- Moscow Center for Advanced Studies, Moscow 123592, Russia
| | | | - Bagila S Zhoshibekova
- Department of Biology, Kazakh National Women's Teacher Training University, Almaty 050000, Kazakhstan
| | - Maria A Fedyaeva
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Mikhail Y Kolobov
- A.N. Severtsov Institute of Ecology and Evolution of the RAS, Moscow 119071, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ilya V Manukhov
- Moscow Center for Advanced Studies, Moscow 123592, Russia
- Laboratory of Microbiology, BIOTECH University, Moscow 125080, Russia
| |
Collapse
|
2
|
Sentis A, Bazin S, Boukal DS, Stoks R. Ecological consequences of body size reduction under warming. Proc Biol Sci 2024; 291:20241250. [PMID: 39166384 PMCID: PMC11337126 DOI: 10.1098/rspb.2024.1250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 08/22/2024] Open
Abstract
Body size reduction is a universal response to warming, but its ecological consequences across biological levels, from individuals to ecosystems, remain poorly understood. Most biological processes scale with body size, and warming-induced changes in body size can therefore have important ecological consequences. To understand these consequences, we propose a unifying, hierarchical framework for the ecological impacts of intraspecific body size reductions due to thermal plasticity that explicitly builds on three key pathways: morphological constraints, bioenergetic constraints and surface-to-volume ratio. Using this framework, we synthesize key consequences of warming-induced body size reductions at multiple levels of biological organization. We outline how this trait-based framework can improve our understanding, detection and generalization of the ecological impacts of warming.
Collapse
Affiliation(s)
- Arnaud Sentis
- INRAE, Aix Marseille University, UMR RECOVER, 3275 Route de Cézanne-CS 40061, Aix-en-Provence Cedex 513182, France
| | - Simon Bazin
- INRAE, Aix Marseille University, UMR RECOVER, 3275 Route de Cézanne-CS 40061, Aix-en-Provence Cedex 513182, France
| | - David S. Boukal
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice37005, Czech Republic
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, Branišovská 31, České Budějovice37005, Czech Republic
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Debériotstraat 32, Leuven3000, Belgium
| |
Collapse
|
3
|
Erni-Cassola G, Ebner JN, Blattner LA, Burkhardt-Holm P. Microplastics in river sediment: Chronic exposure of the amphipod Gammarus fossarum to polyethylene terephthalate in a microcosm. JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132874. [PMID: 39491984 DOI: 10.1016/j.jhazmat.2023.132874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/10/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
Microplastics constitute a form of particulate matter in aquatic environments, where they are a widespread pollutant. The broad range of particle sizes facilitates interactions with diverse species assemblages. Exposure to microplastics can negatively impact organisms, but similar effects also arise from exposure to naturally occurring particles, such as increased oxidative stress. It therefore remains uncertain, what effects are specific to microplastic particles, and how these effects manifest as a consequence of chronic exposure. Here we show in microcosm experiments that long-term exposure (111 days) to irregularly shaped polyethylene terephthalate (PET) fragments (10-400 µm) added to riverine sediments did not negatively impact the amphipod Gammarus fossarum's group size, and oxygen consumption, and minimally affected proteome composition. We found that these results were consistent for male and female specimens when exposed to an environmentally relevant concentration (0.004% of sediment dry weight; dw) and an environmentally less realistic one (4% dw). In female specimens' whole proteomes, we identified two highly differentially abundant proteins, which have been associated with an organism's response to xenobiotics. We conclude that in this sentinel species exposure to PET microplastic fragments mixed into the sediment does not elicit significant stress, even at concentrations exceeding current exposure levels in the environment.
Collapse
Affiliation(s)
- Gabriel Erni-Cassola
- Man-Society-Environment (Programme MGU), Department of Environmental Sciences, University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland.
| | - Joshua Niklas Ebner
- Geoecology Research Group, Department of Environmental Sciences, University of Basel, Klingelbergstrasse 27, CH-4056 Basel, Switzerland
| | - Lucas André Blattner
- Geoecology Research Group, Department of Environmental Sciences, University of Basel, Klingelbergstrasse 27, CH-4056 Basel, Switzerland
| | - Patricia Burkhardt-Holm
- Man-Society-Environment (Programme MGU), Department of Environmental Sciences, University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland.
| |
Collapse
|
4
|
van den Berg SJP, Rodríguez-Sánchez P, Zhao J, Olusoiji OD, Peeters ETHM, Schuijt LM. Among-individual variation in the swimming behaviour of the amphipod Gammarus pulex under dark and light conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162177. [PMID: 36775145 DOI: 10.1016/j.scitotenv.2023.162177] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/18/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
In recent years, considerable computational advancements have been made allowing automated analysis of behavioural endpoints using video cameras. However, the results of such analyses are often confounded by a large variation among individuals, making it problematic to derive endpoints that allow distinguishing treatment effects in behavioural studies. In this study, we quantitatively analysed the effects of light conditions on the swimming behaviour of the freshwater amphipod Gammarus pulex by high-throughput tracking, and attempted to unravel among individual variation using size and sex. For this, we developed the R-package Kinematics, allowing for the rapid and reproducible analysis of the swimming behaviour (speed, acceleration, thigmotaxis, curvature and startle response) of G. pulex, as well as any other organism. Our results show a considerable amount of variation among individuals (standard deviation ranging between 5 and 115 % of the average swimming behaviour). The factors size and sex and the interaction between the two only explained a minor part of this found variation. Additionally, our study is the first to quantify the startle response in G. pulex after the light is switched on, and study the variability of this response between individuals. To analyse this startle response, we established two metrics: 1) startle response magnitude (the drop in swimming velocity directly after the light switches on), and 2) startle response duration (the time it takes to recover from the drop in swimming velocity to average swimming speed). Almost 80 % of the individuals showed a clear startle response and, therefore, these metrics demonstrate a great potential for usage in behavioural studies. The findings of this study are important for the development of appropriate experimental set-ups for behavioural experiments with G. pulex.
Collapse
Affiliation(s)
- Sanne J P van den Berg
- Aquatic Ecology and Water Quality Management group, Wageningen University and Research, P.O. box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | | | - Jiayu Zhao
- Aquatic Ecology and Water Quality Management group, Wageningen University and Research, P.O. box 47, 6700 AA Wageningen, the Netherlands
| | | | - Edwin T H M Peeters
- Aquatic Ecology and Water Quality Management group, Wageningen University and Research, P.O. box 47, 6700 AA Wageningen, the Netherlands
| | - Lara M Schuijt
- Aquatic Ecology and Water Quality Management group, Wageningen University and Research, P.O. box 47, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
5
|
Huang A, Mangold-Döring A, Guan H, Boerwinkel MC, Belgers D, Focks A, Van den Brink PJ. The effect of temperature on toxicokinetics and the chronic toxicity of insecticides towards Gammarus pulex. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158886. [PMID: 36167137 DOI: 10.1016/j.scitotenv.2022.158886] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/30/2022] [Accepted: 09/16/2022] [Indexed: 05/14/2023]
Abstract
A comprehensive understanding of chemical toxicity and temperature interaction is essential to improve ecological risk assessment under climate change. However, there is only limited knowledge about the effect of temperature on the toxicity of chemicals. To fill this knowledge gap and to improve our mechanistic understanding of the influence of temperature, the current study explored toxicokinetics and the chronic toxicity effects of two insecticides, imidacloprid (IMI) and flupyradifurone (FPF), on Gammarus pulex at different temperatures (7-24 °C). In the toxicokinetics tests, organisms were exposed to IMI or FPF for 2 days and then transferred to clean water for 3 days of elimination at 7, 18, or 24 °C. In the chronic tests, organisms were exposed to the individual insecticides for 28 days at 7, 11, or 15 °C. Our research found that temperature impacted the toxicokinetics and the chronic toxicity of both IMI and FPF, while the extent of such impact differed for each insecticide. For IMI, the uptake rate and biotransformation rate increased with temperature, and mortality and food consumption inhibition was enhanced by temperature. While for FPF, the elimination rate increased with temperature at a higher rate than the increasing uptake rate, resulting in a smaller pronounced effect of temperature on mortality compared to IMI. In addition, the adverse effects of the insecticides on sublethal endpoints (food consumption and dry weight) were exacerbated by elevated temperatures. Our results highlight the importance of including temperature in the ecological risk assessment of insecticides in light of global climate change.
Collapse
Affiliation(s)
- Anna Huang
- Aquatic Ecology and Water Quality Management Group, Wageningen University, the Netherlands.
| | - Annika Mangold-Döring
- Aquatic Ecology and Water Quality Management Group, Wageningen University, the Netherlands
| | - Huitong Guan
- Aquatic Ecology and Water Quality Management Group, Wageningen University, the Netherlands
| | | | - Dick Belgers
- Wageningen Environmental Research, Wageningen, the Netherlands
| | - Andreas Focks
- Wageningen Environmental Research, Wageningen, the Netherlands; Institute of Mathematics, Osnabrück University, Germany
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University, the Netherlands; Wageningen Environmental Research, Wageningen, the Netherlands
| |
Collapse
|
6
|
Huang A, Mangold-Döring A, Focks A, Zhang C, Van den Brink PJ. Comparing the acute and chronic toxicity of flupyradifurone and imidacloprid to non-target aquatic arthropod species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113977. [PMID: 35985198 DOI: 10.1016/j.ecoenv.2022.113977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/03/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Flupyradifurone (FPF) is a new type of butenolide insecticide. It was launched on the market in 2015 and is considered an alternative to the widely used neonicotinoids, like imidacloprid (IMI), some of which are banned from outdoor use in the European Union. FPF is claimed to be safe for bees, but its safety for aquatic organisms is unknown. Its high water solubility, persistence in the environment, and potential large-scale use make it urgent to evaluate possible impacts on aquatic systems. The current study assessed the acute and chronic toxicity of FPF for aquatic arthropod species and compared these results with those of imidacloprid. Besides, toxicokinetics and toxicokinetic-toxicodynamic models were used to understand the mechanisms of the toxicity of FPF. The present study results showed that organisms take up FPF slower than IMI and eliminate it faster. In addition, the hazardous concentration 5th percentiles (HC05) value of FPF derived from a species sensitivity distribution (SSD) based on acute toxicity was found to be 0.052 µmol/L (corresponding to 15 µg/L), which was 37 times higher than IMI (0.0014 µmol/L, corresponding to 0.36 µg/L). The chronic 28 days EC10 of FPF for Cloeon dipterum and Gammarus pulex were 7.5 µg/L and 2.9 µg/L, respectively. For G. pulex, after 28 days of exposure, the no observed effect concentration (NOEC) of FPF for food consumption was 0.3 µg/L. A toxicokinetic-toxicodynamic (TKTD) model parameterised on the acute toxicity data well predicted the observed chronic effects of FPF on G. pulex, indicating that toxicity mechanisms of FPF did not change with prolonged exposure time, which is not the case for IMI.
Collapse
Affiliation(s)
- Anna Huang
- Aquatic Ecology and Water Quality Management Group, Wageningen University, the Netherlands.
| | - Annika Mangold-Döring
- Aquatic Ecology and Water Quality Management Group, Wageningen University, the Netherlands
| | - Andreas Focks
- Institute of Mathematics, Osnabrück University, Germany; Wageningen Environmental Research, Wageningen, the Netherlands
| | - Chong Zhang
- Aquatic Ecology and Water Quality Management Group, Wageningen University, the Netherlands
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University, the Netherlands; Wageningen Environmental Research, Wageningen, the Netherlands
| |
Collapse
|
7
|
Huang A, Roessink I, van den Brink NW, van den Brink PJ. Size- and sex-related sensitivity differences of aquatic crustaceans to imidacloprid. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113917. [PMID: 35908530 DOI: 10.1016/j.ecoenv.2022.113917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Field collected aquatic invertebrates are often used as test organisms in the refinement of the standard Tier 1 risk assessment of various pollutants. This approach can provide insights into the effects of pollutants on the natural environment. However, researchers often pragmatically select test organisms of a specific sex and/or size, which may not represent the sensitivity of the whole population. To investigate such intraspecies sensitivity differences, we performed standard acute toxicity and toxicokinetic tests with different size classes and sex of Gammarus pulex and Asellus aquaticus. Furthermore, toxicokinetics and toxicodynamics models were used to understand the mechanism of the intraspecies sensitivity differences. We used neonates, juveniles and male and female adults in separate dedicated experiments, in which we exposed the animals to imidacloprid and its bioactive metabolite, imidacloprid-olefin. For both species, we found that neonates were the most sensitive group. For G. pulex, the sensitivity decreased linearly with size, which can be explained by the size-related uptake rate constant in the toxicokinetic process and size-related threshold value in the toxicodynamic process. For A. aquaticus, female adults were least sensitive to imidacloprid, which could be explained by a low internal biotransformation of imidacloprid to imidacloprid-olefin. Besides, imidacloprid-olefin was more toxic than imidacloprid to A. aquaticus, with differences being 8.4 times for females and 2.7 times for males. In conclusion, we established size-related sensitivity differences for G. pulex and sex-related sensitivity for A. aquaticus, and intraspecies differences can be explained by both toxicokinetic and toxicodynamic processes. Our findings suggest that to protect populations in the field, we should consider the size and sex of focal organisms and that a pragmatic selection of test organisms of equal size and/or sex can underestimate the sensitivities of populations in the field.
Collapse
Affiliation(s)
- Anna Huang
- Aquatic Ecology and Water Quality Management Group, Wageningen University, Wageningen, the Netherlands.
| | - Ivo Roessink
- Wageningen Environmental Research, Wageningen, the Netherlands
| | - Nico W van den Brink
- Sub-department of Toxicology, Wageningen University, Wageningen, the Netherlands
| | - Paul J van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University, Wageningen, the Netherlands; Wageningen Environmental Research, Wageningen, the Netherlands
| |
Collapse
|