1
|
McCaughan KJ, Scott Z, Rock C, Kniel KE. Evaluation of aqueous chlorine and peracetic acid sanitizers to inactivate protozoa and bacteria of concern in agricultural water. Appl Environ Microbiol 2024:e0165324. [PMID: 39641604 DOI: 10.1128/aem.01653-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Agricultural water is a potential source of microbial contamination whereby Escherichia coli, Salmonella, Cryptosporidium, and Cyclospora cayetenensis can enter the food supply. To reduce this risk, effective sanitization of agricultural water may be critical to food safety. As such, it is important to investigate the effects of aqueous peracetic acid (PAA) and chlorine (Cl) on bacteria and protozoa at different treatment times and temperatures in agricultural water with respect to key water characteristics. Multiple concentrations of each sanitizer, ranging from 3 to 200 ppm, were prepared in recently collected agricultural water, the solution was brought to the desired temperature, and the target organisms were added and left for the desired contact time (5 or 10 minutes) when sodium metabisulfite was added to neutralize the sanitizers. Bacterial samples were enumerated on MacConkey or XLT4 agar. Samples with protozoa were added to mammalian cell culture (HCT-8 cells for Cryptosporidium parvum and MDBK cells for Eimeria tenella). After 48 hours, the infected cells were collected, DNA extracted and infectivity assessed by quantitative PCR (qPCR). Low and high concentrations of sanitizer were effective at eliminating bacteria with Cl being significantly (P < 0.05) more effective. The greatest reductions in E. coli and Salmonella (3.48 log and 2.5 log cfu/mL, respectively) were observed after 10 minutes of exposure to 10 ppm Cl. Concentrations of sanitizer 50 ppm and lower resulted in insignificant (P > 0.05) reductions in parasite infectivity of less than 1 log for both organisms. A 200 ppm PAA treatment reduced infectious oocyst populations by 3.8 log for C. parvum and 2.6 log for E. tenella, with Cl being significantly (P < 0.05) less effective against these organisms. IMPORTANCE This research is critical to inform decisions regarding the application and use of sanitizers in pre-harvest agricultural water settings to enhance food safety. Understanding the effectiveness of chlorine (Cl) and peracetic acid (PAA) on bacteria and protozoa will allow for the more efficient and practical use of these sanitizers, thus improving agricultural practices in ways that are beneficial to both growers and consumers.
Collapse
Affiliation(s)
- Kyle J McCaughan
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, USA
| | - Zoe Scott
- Department of Environmental Science, University of Arizona, Maricopa, Arizona, USA
| | - Channah Rock
- Department of Environmental Science, University of Arizona, Maricopa, Arizona, USA
| | - Kalmia E Kniel
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
2
|
Herron CB, Tamplin M, Siddique A, Wu B, Black MT, Garner L, Huang TS, Rao S, Morey A. Estimating Salmonella Typhimurium Growth on Chicken Breast Fillets Under Simulated Less-Than-Truckload Dynamic Temperature Abuse. Foodborne Pathog Dis 2024; 21:708-716. [PMID: 39082182 DOI: 10.1089/fpd.2024.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2024] Open
Abstract
Companies may have insufficient freight to fill an entire truck/trailer, and instead only pay for space that their products occupy (i.e., "less-than-truckload" shipping; LTL). As LTL delivery vehicles make multiple stops, there is an increased opportunity for product temperature abuse, which may increase microbial food safety risk. To assess LTL effects on Salmonella Typhimurium growth, commercially produced boneless skinless chicken breast fillets were inoculated and incubated under dynamic 2-h temperature cycles (i.e., 2 h at 4°C and then 2 h at 25°C), mimicking a commercially relevant LTL scenario. Bacterial kinetics were measured over 24 h and then observations compared with predictions of three published Salmonella secondary models by bias and accuracy factor measurement. One model produced more "fail-safe" estimates of Salmonella growth than the other models, although all models were defined as "acceptable." These developed tertiary models can help shippers assess supply chain performance and produce proactive food safety risk management systems.
Collapse
Affiliation(s)
- Charles B Herron
- Department of Poultry Science, Auburn University, Auburn, Alabama, USA
| | - Mark Tamplin
- Centre of Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Aftab Siddique
- Department of Poultry Science, Auburn University, Auburn, Alabama, USA
| | - Bet Wu
- Department of Poultry Science, Auburn University, Auburn, Alabama, USA
| | - Micah Telah Black
- Department of Poultry Science, Auburn University, Auburn, Alabama, USA
| | - Laura Garner
- Department of Poultry Science, Auburn University, Auburn, Alabama, USA
| | - Tung-Shi Huang
- Department of Poultry Science, Auburn University, Auburn, Alabama, USA
| | - Shashank Rao
- Department of Supply Chain Management, Auburn University, Auburn, Alabama, USA
| | - Amit Morey
- Department of Poultry Science, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
3
|
Jiang Y, Zhou C, Khan A, Zhang X, Mamtimin T, Fan J, Hou X, Liu P, Han H, Li X. Environmental risks of mask wastes binding pollutants: Phytotoxicity, microbial community, nitrogen and carbon cycles. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135058. [PMID: 38986403 DOI: 10.1016/j.jhazmat.2024.135058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
The increasing contamination of mask wastes presents a significant global challenge to ecological health. However, there is a lack of comprehensive understanding regarding the environmental risks that mask wastes pose to soil. In this study, a total of 12 mask wastes were collected from landfills. Mask wastes exhibited negligible morphological changes, and bound eight metals and four types of organic pollutants. Masks combined with pollutants inhibited the growth of alfalfa and Elymus nutans, reducing underground biomass by 84.6 %. Mask wastes decreased the Chao1 index and the relative abundances (RAs) of functional bacteria (Micrococcales, Gemmatimonadales, and Sphingomonadales). Metagenomic analysis showed that mask wastes diminished the RAs of functional genes associated with nitrification (amoABC and HAO), denitrification (nirKS and nosZ), glycolysis (gap2), and TCA cycle (aclAB and mdh), thereby inhibiting the nitrogen transformation and ATP production. Furthermore, some pathogenic viruses (Herpesviridae and Tunggulvirus) were also found on the mask wastes. Structural equation models demonstrated that mask wastes restrained soil enzyme activities, ultimately affecting nitrogen and carbon cycles. Collectively, these evidences indicate that mask wastes contribute to soil health and metabolic function disturbances. This study offers a new perspective on the potential environmental risks associated with the improper disposal of masks.
Collapse
Affiliation(s)
- Yuchao Jiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China; Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Chunxiu Zhou
- Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Aman Khan
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xueyao Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Tursunay Mamtimin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jingwen Fan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiaoxiao Hou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Huawen Han
- Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, China.
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
4
|
Wang L, Fang J, Wang H, Zhang B, Wang N, Yao X, Li H, Qiu J, Deng X, Leng B, Wang J, Tan W, Zhang Q. Natural medicine can substitute antibiotics in animal husbandry: protective effects and mechanisms of rosewood essential oil against Salmonella infection. Chin J Nat Med 2024; 22:785-796. [PMID: 39326973 DOI: 10.1016/s1875-5364(24)60576-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Indexed: 09/28/2024]
Abstract
Aniba rosaeodora essential oil (RO) has been traditionally used in natural medicine as a substitute for antibiotics due to its notable antidepressant and antibacterial properties. Salmonella, a prevalent pathogen in foodborne illnesses, presents a major challenge to current antibiotic treatments. However, the antibacterial efficacy and mechanisms of action of RO against Salmonella spp. remain underexplored. This study aims to elucidate the chemical composition of RO, evaluate its antibacterial activity and mechanisms against Salmonella in vitro, and further delineate its anti-inflammatory mechanisms in vivo during Salmonella infection. Gas chromatography-mass spectrometry (GC-MS) was utilized to characterize the chemical constituents of RO. The antibacterial activity of RO was assessed using minimal inhibitory concentration (MIC) and time-kill assays. Various biochemical assays were employed to uncover the potential bactericidal mechanisms. Additionally, mouse and chick models of Salmonella infection were established to investigate the prophylactic effects of RO treatment. RO exhibited significant antibacterial activity against both Gram-positive and Gram-negative bacteria, with an MIC of 4 mg·mL-1 for Salmonella spp. RO treatment resulted in bacterial damage through the disruption of lipid and purine metabolism. Moreover, RO reduced injury and microbial colonization in infected mice and chicks. RO treatment also modulated the host inflammatory response by inhibiting proinflammatory pathways. In conclusion, our findings demonstrate that RO is effective against Salmonella infection, highlighting its potential as an alternative to antibiotics for antibacterial therapy.
Collapse
Affiliation(s)
- Lanqiao Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Juan Fang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Heng Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Baoyu Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Nan Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xinyu Yao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - He Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xuming Deng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Bingfeng Leng
- Shenzhen Beichen Biotech Co., Ltd., Shenzhen 518057, China
| | - Jianfeng Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wenxi Tan
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China.
| | - Qiaoling Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
5
|
Woodford L, Fellows R, White HL, Ormsby MJ, Pow CJ, Quilliam RS. Survival and transfer potential of Salmonella enterica serovar Typhimurium colonising polyethylene microplastics in contaminated agricultural soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51353-51363. [PMID: 39107647 PMCID: PMC11374834 DOI: 10.1007/s11356-024-34491-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/22/2024] [Indexed: 09/06/2024]
Abstract
Agricultural environments are becoming increasingly contaminated with plastic pollution. Plastics in the environment can also provide a unique habitat for microbial biofilm, termed the 'plastisphere', which can also support the persistence of human pathogens such as Salmonella. Human enteric Salmonella enterica serovar Typhimurium can enter agricultural environments via flooding or from irrigation with contaminated water. Using soil mesocosms we quantified the ability of S. Typhimurium to persist on microplastic beads in two agriculturally relevant soils, under ambient and repeat flood scenarios. S. Typhimurium persisted in the plastisphere for 35 days in both podzol and loamy soils; while during multiple flood events was able to survive in the plastisphere for up to 21 days. S. Typhimurium could dissociate from the plastisphere during flooding events and migrate through soil in leachate, and importantly could colonise new plastic particles in the soil, suggesting that plastic pollution in agricultural soils can aid S. Typhimurium persistence and facilitate further dissemination within the environment. The potential for increased survival of enteric human pathogens in agricultural and food production environments due to plastic contamination poses a significant public health risk, particularly in potato or root vegetable systems where there is the potential for direct contact with crops.
Collapse
Affiliation(s)
- Luke Woodford
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - Rosie Fellows
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Hannah L White
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Michael J Ormsby
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Chloe J Pow
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
6
|
Hou Y, Diao W, Jia R, Sun W, Feng W, Li B, Zhu J. Variations in antibiotic resistomes associated with archaeal, bacterial, and viral communities affected by integrated rice-fish farming in the paddy field ecosystem. ENVIRONMENTAL RESEARCH 2024; 251:118717. [PMID: 38518910 DOI: 10.1016/j.envres.2024.118717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
Antibiotic resistance genes (ARGs) serving as a newly recognized pollutant that poses potential risks to global human health, which in the paddy soil can be potentially altered by different agricultural production patterns. To elucidate the impacts and mechanisms of the widely used and sustainable agricultural production pattern, namely integrated rice-fish farming, on the antibiotic resistomes, we applied metagenomic sequencing to assess ARGs, mobile genetic elements (MGEs), bacteria, archaea, and viruses in paddy soil. There were 20 types and 359 subtypes of ARGs identified in paddy soil. The integrated rice-fish farming reduced the ARG and MGE diversities and the abundances of dominant ARGs and MGEs. Significantly decreased ARGs were mainly antibiotic deactivation and regulator types and primarily ranked level IV based on their potential threat to human health. The integrated rice-fish farming decreased the alpha diversities and altered microbial community compositions. MGEs, bacteria, archaea, and virus exhibited significant correlations with ARGs, while integrated rice-fish farming effectively changed their interrelationships. Viruses, bacteria, and MGEs played crucial roles in affecting the ARGs by the integrated rice-fish farming. The most crucial pathway by which integrated rice-fish farming affected ARGs was through the modulation of viral communities, thereby directly or indirectly influencing ARG abundance. Our research contributed to the control and restoration of ARGs pollution from a new perspective and providing theoretical support for the development of clean and sustainable agricultural production.
Collapse
Affiliation(s)
- Yiran Hou
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Weixu Diao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Rui Jia
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Wei Sun
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Wenrong Feng
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Bing Li
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
| | - Jian Zhu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
| |
Collapse
|
7
|
Hobbelen P, Hagenaars T, Peri Markovich M, Bellaiche M, Giovannini A, De Massis F, de Koeijer A. The optimisation of Salmonella surveillance programmes for pullet and layer farms using local farm density as a risk factor. PLoS One 2024; 19:e0291896. [PMID: 38630759 PMCID: PMC11023578 DOI: 10.1371/journal.pone.0291896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/23/2024] [Indexed: 04/19/2024] Open
Abstract
Human salmonellosis cases are often caused by Salmonella serovars Enteritidis and Typhimurium and associated with the consumption of eggs and egg products. Many countries therefore implemented general surveillance programmes on pullet and layer farms. The identification of risk factors for Salmonella infection may be used to improve the performance of these surveillance programmes. The aims of this study were therefore to determine 1) whether local farm density is a risk factor for the infection of pullet and layer farms by Salmonella Enteritidis and Typhimurium and 2) whether the sampling effort of surveillance programmes can be reduced by accounting for this risk factor, while still providing sufficient control of these serovars. We assessed the importance of local farm density as a risk factor by fitting transmission kernels to Israeli surveillance data during the period from June 2017 to April 2019. The analysis shows that the risk of infection by serovars Enteritidis and Typhimurium significantly increased if infected farms were present within a radius of approximately 4 km and 0.3 km, respectively. We subsequently optimized a surveillance programme that subdivided layer farms into low and high risk groups based on the local farm density with and allowed the sampling frequency to vary between these groups. In this design, the pullet farms were always sampled one week prior to pullet distribution. Our analysis shows that the risk-based surveillance programme is able to keep the between-farm R0 of serovars Enteritidis and Typhimurium below 1 for all pullet and layer farms, while reducing the sampling effort by 32% compared to the currently implemented surveillance programme in Israel. The results of our study therefore indicate that local farm density is an important risk factor for infection of pullet and layer farms by Salmonella Enteritidis and Typhimurium and can be used to improve the performance of surveillance programmes.
Collapse
Affiliation(s)
- Peter Hobbelen
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | | | | | | | - Armando Giovannini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Fabrizio De Massis
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | | |
Collapse
|
8
|
Johura FT, Sultana M, Sadique A, Monira S, Sack DA, Sack RB, Alam M, Chakraborty S. The Antimicrobial Resistance of Enterotoxigenic Escherichia coli from Diarrheal Patients and the Environment in Two Geographically Distinct Rural Areas in Bangladesh over the Years. Microorganisms 2024; 12:301. [PMID: 38399705 PMCID: PMC10891980 DOI: 10.3390/microorganisms12020301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Antimicrobial resistance (AMR) is an unprecedented global health challenge, involving the transfer of bacteria and genes between humans and the environment. We simultaneously and longitudinally determined the AMR of enterotoxigenic Escherichia coli (ETEC) strains isolated from diarrheal patients and an aquatic environment over two years from two geographically distinct locations, Coastal Mathbaria and Northern Chhatak in Bangladesh. A total of 60% and 72% of ETEC strains from the patients in Mathbaria and Chhatak, respectively, were multi-drug resistant (MDR) with a high proportion of ETEC resistant to nalidixic acid (80.7%), macrolides (49.1-89.7%), ampicillin (57.9-69%), and trimethoprim/sulfamethoxazole (55.2%). From the surface water, 68.8% and 30% of ETEC were MDR in Mathbaria and Chhatak, respectively, with a high proportion of ETEC strains resistant to macrolides (87.5-100%), ampicillin (50-75%), ceftriaxone (62.5%), and nalidixic acid (40%). Notably, 80-100% of the ETEC strains were susceptible to tetracycline and quinolones (ciprofloxacin and norfloxacin), both in clinical and aquatic ETEC. The AMR varied by the ETEC toxin types. The patterns of excessive or limited consumption of drugs to treat diarrhea over time in Bangladesh were reflected in the ETEC AMR from the patients and the environment. The high prevalence of MDR-ETEC strains in humans and the environment is of concern, which calls for vaccines and other preventative measures against ETEC.
Collapse
Affiliation(s)
- Fatema-Tuz Johura
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka 1212, Bangladesh; (F.-T.J.); (M.S.); (A.S.); (S.M.); (M.A.)
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; (D.A.S.); (R.B.S.)
| | - Marzia Sultana
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka 1212, Bangladesh; (F.-T.J.); (M.S.); (A.S.); (S.M.); (M.A.)
| | - Abdus Sadique
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka 1212, Bangladesh; (F.-T.J.); (M.S.); (A.S.); (S.M.); (M.A.)
| | - Shirajum Monira
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka 1212, Bangladesh; (F.-T.J.); (M.S.); (A.S.); (S.M.); (M.A.)
| | - David A. Sack
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; (D.A.S.); (R.B.S.)
| | - Richard Bradley Sack
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; (D.A.S.); (R.B.S.)
| | - Munirul Alam
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka 1212, Bangladesh; (F.-T.J.); (M.S.); (A.S.); (S.M.); (M.A.)
| | - Subhra Chakraborty
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; (D.A.S.); (R.B.S.)
| |
Collapse
|
9
|
Han B, Yang F, Shen S, Mu M, Zhang K. Effects of soil habitat changes on antibiotic resistance genes and related microbiomes in paddy fields. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165109. [PMID: 37385504 DOI: 10.1016/j.scitotenv.2023.165109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/01/2023]
Abstract
The changes of paddy soil habitat profoundly affect the structure and function of soil microorganisms, but how this process drives the growth and spread of manure- derived antibiotic resistance genes (ARGs) after entering the soil is unclear. Herein, this study explored the environmental fate and behavior of various ARGs in the paddy soil during rice growth period. Results showed that most ARG abundances in flooded soil was lower than that in non-flooded soil during rice growth (decreased by 33.4 %). And soil dry-wet alternation altered microbial community structure in paddy field (P < 0.05), showing that Actinobacteria and Firmicutes increased in proportion under non-flooded conditions, and Chloroflexi, Proteobacteria and Acidobacteria evolved into the dominant groups in flooded soil. Meanwhile, the correlation between ARGs and bacterial communities was stronger than that with mobile genetic elements (MGEs) in both flooded and non-flooded paddy soils. Furthermore, soil properties, especially oxidation reduction potential (ORP), were proved to be an essential factor in regulating the variability of ARGs in the whole rice growth stage by structural equation model, with a direct influence (λ = 0.38, P < 0.05), following by similar effects of bacterial communities and MGEs (λ = 0.36, P < 0.05; λ = 0.29, P < 0.05). This study demonstrated that soil dry-wet alternation effectively reduced the proliferation and dissemination of most ARGs in paddy fields, providing a novel agronomic measure for pollution control of antibiotic resistance in farmland ecosystem.
Collapse
Affiliation(s)
- Bingjun Han
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China.
| | - Shizhou Shen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China; Dali, Yunnan, Agro-Ecosystem, National Observation and Research Station, Dali, China
| | - Meirui Mu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China; Dali, Yunnan, Agro-Ecosystem, National Observation and Research Station, Dali, China.
| |
Collapse
|
10
|
Fang L, Chen C, Li S, Ye P, Shi Y, Sharma G, Sarkar B, Shaheen SM, Lee SS, Xiao R, Chen X. A comprehensive and global evaluation of residual antibiotics in agricultural soils: Accumulation, potential ecological risks, and attenuation strategies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115175. [PMID: 37379666 DOI: 10.1016/j.ecoenv.2023.115175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023]
Abstract
The occurrence of antibiotics in agricultural soils has raised concerns due to their potential risks to ecosystems and human health. However, a comprehensive understanding of antibiotic accumulation, distribution, and potential risks to terrestrial ecosystems on a global scale is still limited. Therefore, in this study, we evaluated the accumulation of antibiotics and their potential risks to soil microorganisms and plants, and highlighted the driving factors of antibiotic accumulation in agricultural soils based on 134 peer-reviewed studies (between 2000 and 2022). The results indicated that 56 types of antibiotics were detected at least once in agricultural soils with concentrations ranging from undetectable to over 7000 µg/kg. Doxycycline, tylosin, sulfamethoxazole, and enrofloxacin, belonging to the tetracyclines, macrolides, sulfonamides, and fluoroquinolones, respectively, were the most accumulated antibiotics in agricultural soil. The accumulation of TCs, SAs, and FQs was found to pose greater risks to soil microorganisms (average at 29.3%, 15.4%, and 21.8%) and plants (42.4%, 26.0%, and 38.7%) than other antibiotics. East China was identified as a hot spot for antibiotic contamination due to high levels of antibiotic concentration and ecological risk to soil microorganisms and plants. Antibiotic accumulation was found to be higher in vegetable fields (245.5 µg/kg) and orchards (212.4 µg/kg) compared to croplands (137.2 µg/kg). Furthermore, direct land application of manure resulted in a greater accumulation of TCs, SAs, and FQs accumulation in soils than compost fertilization. The level of antibiotics decreased with increasing soil pH and organic matter content, attributed to decreasing adsorption and enhancing degradation of antibiotics. In conclusion, this study highlights the need for further research on the impacts of antibiotics on soil ecological function in agricultural fields and their interaction mechanisms. Additionally, a whole-chain approach, consisting of antibiotic consumption reduction, manure management strategies, and remediation technology for soil contaminated with antibiotics, is needed to eliminate the potential environmental risks of antibiotics for sustainable and green agriculture.
Collapse
Affiliation(s)
- Linfa Fang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, China
| | - Chengyu Chen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - ShiYang Li
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Pingping Ye
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yujia Shi
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Gaurav Sharma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212 Himachal Pradesh, India
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Sabry M Shaheen
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212 Himachal Pradesh, India; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia.
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea.
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, China.
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, China
| |
Collapse
|
11
|
Han B, Shen S, Yang F, Wang X, Gao W, Zhang K. Exploring antibiotic resistance load in paddy-upland rotation fields amended with commercial organic and chemical/slow release fertilizer. Front Microbiol 2023; 14:1184238. [PMID: 37125153 PMCID: PMC10140351 DOI: 10.3389/fmicb.2023.1184238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Agricultural fertilization caused the dissemination of antibiotic resistance genes (ARGs) in agro-ecological environment, which poses a global threat to crop-food safety and human health. However, few studies are known about the influence of different agricultural fertilization modes on antibiotic resistome in the paddy-upland rotation soils. Therefore, we conducted a field experiment to compare the effect of different fertilization (chemical fertilizer, slow release fertilizer and commercial organic fertilizer replacement at various rates) on soil antibiotic resistome in paddy-upland rotation fields. Results revealed that a total of 100 ARG subtypes and 9 mobile genetic elements (MGEs) occurred in paddy-upland rotation soil, among which MDR-ARGs, MLSB-ARGs and tet-ARGs were the dominant resistance determinants. Long-term agricultural fertilization remarkably facilitated the vertical accumulation of ARGs, in particular that bla ampC and tetO in relative abundance showed significant enrichment with increasing depth. It's worth noting that slow release fertilizer significantly increased soil ARGs, when comparable to manure with 20% replacing amount, but chemical fertilizer had only slight impact on soil ARGs. Fertilization modes affected soil microbial communities, mainly concentrated in the surface layer, while the proportion of Proteobacteria with the highest abundance decreased gradually with increasing depth. Furthermore, microbial community and MGEs were further proved to be essential factors in regulating the variability of ARGs of different fertilization modes by structural equation model, and had strong direct influence (λ = 0.61, p < 0.05; λ = 0. 55, p < 0.01). The results provided scientific guidance for reducing the spreading risk of ARGs and control ARG dissemination in agricultural fertilization.
Collapse
Affiliation(s)
- Bingjun Han
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Shizhou Shen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
- Dali, Yunnan, Agro-Ecosystem, National Observation and Research Station, Dali, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
- Dali, Yunnan, Agro-Ecosystem, National Observation and Research Station, Dali, China
- *Correspondence: Fengxia Yang,
| | - Xiaolong Wang
- School of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Wenxuan Gao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
- Dali, Yunnan, Agro-Ecosystem, National Observation and Research Station, Dali, China
- Keqiang Zhang,
| |
Collapse
|