1
|
Xu T, Li X, Zhao W, Wang X, Jin L, Feng Z, Li H, Zhang M, Tian Y, Hu G, Yue Y, Dai X, Shan C, Zhang W, Zhang C, Zhang Y. SF3B3-regulated mTOR alternative splicing promotes colorectal cancer progression and metastasis. J Exp Clin Cancer Res 2024; 43:126. [PMID: 38671459 PMCID: PMC11047005 DOI: 10.1186/s13046-024-03053-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Aberrant alternative splicing (AS) is a pervasive event during colorectal cancer (CRC) development. SF3B3 is a splicing factor component of U2 small nuclear ribonucleoproteins which are crucial for early stages of spliceosome assembly. The role of SF3B3 in CRC remains unknown. METHODS SF3B3 expression in human CRCs was analyzed using publicly available CRC datasets, immunohistochemistry, qRT-PCR, and western blot. RNA-seq, RNA immunoprecipitation, and lipidomics were performed in SF3B3 knockdown or overexpressing CRC cell lines. CRC cell xenografts, patient-derived xenografts, patient-derived organoids, and orthotopic metastasis mouse models were utilized to determine the in vivo role of SF3B3 in CRC progression and metastasis. RESULTS SF3B3 was upregulated in CRC samples and associated with poor survival. Inhibition of SF3B3 by RNA silencing suppressed the proliferation and metastasis of CRC cells in vitro and in vivo, characterized by mitochondria injury, increased reactive oxygen species (ROS), and apoptosis. Mechanistically, silencing of SF3B3 increased mTOR exon-skipped splicing, leading to the suppression of lipogenesis via mTOR-SREBF1-FASN signaling. The combination of SF3B3 shRNAs and mTOR inhibitors showed synergistic antitumor activity in patient-derived CRC organoids and xenografts. Importantly, we identified SF3B3 as a critical regulator of mTOR splicing and autophagy in multiple cancers. CONCLUSIONS Our findings revealed that SF3B3 promoted CRC progression and metastasis by regulating mTOR alternative splicing and SREBF1-FASN-mediated lipogenesis, providing strong evidence to support SF3B3 as a druggable target for CRC therapy.
Collapse
Affiliation(s)
- Tong Xu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Xichuan Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300382, China
| | - Wennan Zhao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Xue Wang
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, 96813, USA
| | - Leixin Jin
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 30021, China
| | - Zhiqiang Feng
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 30021, China
| | - Huixiang Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Mingzhe Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Yiqing Tian
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Ge Hu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Yuan Yue
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300382, China
| | - Xintong Dai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Changliang Shan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | | | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 30021, China.
| | - Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
2
|
Zhang B, Zhang Y, Zuo Z, Xiong G, Luo H, Song B, Zhao L, Zhou Z, Chang X. Paraquat-induced neurogenesis abnormalities via Drp1-mediated mitochondrial fission. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114939. [PMID: 37087969 DOI: 10.1016/j.ecoenv.2023.114939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Neurogenesis is a fundamental process in the development and plasticity of the nervous system, and its regulation is tightly linked to mitochondrial dynamics. Imbalanced mitochondrial dynamics can result in oxidative stress, which has been implicated in various neurological disorders. Paraquat (PQ), a commonly used agricultural chemical known to be neurotoxic, induces oxidative stress that can lead to mitochondrial fragmentation. In this study, we investigated the effects of PQ on neurogenesis in primary murine neural progenitor cells (mNPCs) isolated from neonatal C57BL/6 mice. We treated the mNPCs with 0-40 μM PQ for 24 h and observed that PQ inhibited their proliferation, migration, and differentiation into neurons in a concentration-dependent manner. Moreover, PQ induced excessive mitochondrial fragmentation and upregulated the expression of Drp-1, p-Drp1, and Fis-1, while downregulating the expression of Mfn2 and Opa1. To confirm our findings, we used Mdivi-1, an inhibitor of mitochondrial fission, which reversed the adverse effects of PQ on neurogenesis, particularly differentiation into neurons and migration of mNPCs. Additionally, we found that Mito-TEMPO, a mitochondria-targeted antioxidant, ameliorated excessive mitochondrial fragmentation caused by PQ. Our study suggests that PQ exposure impairs neurogenesis by inducing excessive mitochondrial fission and abnormal mitochondrial fragmentation via oxidative stress. These findings identify mitochondrial fission as a potential therapeutic target for PQ-induced neurotoxicity. Further research is needed to elucidate the underlying mechanisms of mitochondrial dynamics and neurogenesis in the context of oxidative stress-induced neurological disorders.
Collapse
Affiliation(s)
- Bing Zhang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Yuwei Zhang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Zhenzi Zuo
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Guiya Xiong
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Huan Luo
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Bo Song
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Lina Zhao
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Zhijun Zhou
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Xiuli Chang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China.
| |
Collapse
|