1
|
Wang T, Liu L, Zhao Q, Meng Z, Li W. The aging of polyethylene mulch films in the presence of cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115569. [PMID: 37832487 DOI: 10.1016/j.ecoenv.2023.115569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/24/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
To determine the fates of the persistent pollutants cadmium (Cd) and micro-plastics in agricultural soils, an in-depth understanding of the interactions between Cd and mulching film is required. In the present work, pot experiments are conducted under natural conditions to study the influence of various Cd concentrations on the aging process of polyethylene mulching film in soil collected from Changzhi, Shanxi Province. The results indicate that during 150 days, the aging degree of the mulch film increases gradually as the increased Cd concentration in the soil. Further, the results of attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectrometry and X-ray photoelectron spectroscopy (XPS) demonstrate that the average vinyl index (VI) of the aging mulch film increases from 1.29 to 1.82, while the oxygen-to-carbon (O/C) ratio of the mulch film decreases significantly from 0.344 to 0.045, as the Cd concentration is increased from 0 to 10 mg kg-1. When the aging time exceeds 90 days, the oxygen-containing functional groups (C-O and CO) generated consumed by the adsorbed Cd. In addition, electron paramagnetic resonance (EPR) measurements indicate that Cd both enhances the formation of hydroxyl radical (·OH) on the surface of the mulch film and prevents the combination of ·OH and electrons, thereby accelerating the aging of the mulch. Hence, the present study indicates that the presence of Cd will hasten the decomposition of mulch, which will inevitably result in the faster release of micro-plastics from the mulch into the soil environment.
Collapse
Affiliation(s)
- Teng Wang
- Department of Life Science, Changzhi University, Changzhi, Shanxi 046011, PR China
| | - Lin Liu
- Department of Life Science, Changzhi University, Changzhi, Shanxi 046011, PR China; Shanxi Agricultural University, Eco-Environment Industrial Technology Research Institute, Taigu, Shanxi 030801, PR China.
| | - Qingsong Zhao
- Department of Life Science, Changzhi University, Changzhi, Shanxi 046011, PR China
| | - Zhaofu Meng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shannxi 712100, PR China; Key Lab of Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shannxi 712100, PR China
| | - Wenbin Li
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan 637009, PR China
| |
Collapse
|
2
|
Sharma N, Vuppu S. In Silico Study of Enzymatic Degradation of Bioplastic by Microalgae: An Outlook on Microplastic Environmental Impact Assessment, Challenges, and Opportunities. Mol Biotechnol 2023:10.1007/s12033-023-00886-w. [PMID: 37758971 DOI: 10.1007/s12033-023-00886-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023]
Abstract
Microplastics are tiny pieces of non-biodegradable plastic that can take thousands of years to break down. As microplastics degrade, they release harmful compounds into the environment, which can be found in the surroundings. The microplastics found in the environment are hard to detect and remove because of their small particle sizes. Microplastics cannot decompose naturally, so they accumulate in the environment and cause pollution. As a result, bioplastics can be produced from a vast array of substrates, including biopolymers, citrus peels, leather, and feather wastes. Blue-green microalgae namely Arthrospira platensis (spirulina) contains enzymes such as laccase and catalase which can be responsible for the degradation of bioplastics. In our study, we performed molecular docking to identify the binding affinities of different enzymes such as laccase and catalase with different substrates, focusing on determining the most suitable substrate for enhancing enzyme activity for degradation of bioplastics. The analysis revealed that veratryl alcohol is the most suitable substrate for laccase, whereas lignin is the more preferred substrate for catalase with the highest binding affinity score of - 5.9 and - 8.1 kcal/mol. Moreover, degradation, challenges, opportunities, and applications of bioplastics in numerous domains such as cosmetics, electronics, agriculture, medical, textiles, and food industries have also been highlighted.
Collapse
Affiliation(s)
- Nikita Sharma
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India
| | - Suneetha Vuppu
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India.
| |
Collapse
|
3
|
Li S, Cui Y, Wen M, Ji G. Toxic Effects of Methylene Blue on the Growth, Reproduction and Physiology of Daphnia magna. TOXICS 2023; 11:594. [PMID: 37505561 PMCID: PMC10384865 DOI: 10.3390/toxics11070594] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
Methylene blue (MB) is a disinfectant used in aquaculture to prevent and treat fish diseases. However, the release of MB can pose a risk to the receiving water bodies. Zooplankton are the most sensitive organisms among aquatic life. Hence, this study examined the acute and chronic toxic effects of MB on zooplankton using Daphnia magna (D. magna) as a test organism to provide basic data for risk assessment. The results show that 48 h-EC50 and 24 h-LC50 were 61.5 ± 2.3 and 149.0 ± 2.2 μg/L, respectively. Chronic exposure to MB affected the heart rate, beat frequency of the thoracic limbs, and reproductive ability of D. magna at environmental concentrations higher than 4.7 μg/L. The cumulative molts, time to production of the first brood, and total number of living offspring were affected at different MB concentrations, while "abortions" were observed in high-exposure groups. The activity of superoxide dismutase was increased, while glutathione S-transferase activity was stimulated at low concentrations and inhibited at high concentrations. In addition, the malondialdehyde content increased with increasing concentrations of MB. Our findings demonstrate the impact of MB on the reproduction and growth of freshwater species, as well as their physiological responses. These results have implications for establishing guidelines on the use of MB in aquaculture and setting discharge standards.
Collapse
Affiliation(s)
- Shuhui Li
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yixin Cui
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China
| | - Min Wen
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China
| | - Gaohua Ji
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
4
|
Ragusa A, De Luca C, Zucchelli E, Rinaldo D, Svelato A. Plastic, microplastic, and the inconsistency of human thought. Front Public Health 2023; 11:1145240. [PMID: 37342277 PMCID: PMC10277741 DOI: 10.3389/fpubh.2023.1145240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/11/2023] [Indexed: 06/22/2023] Open
Affiliation(s)
- Antonio Ragusa
- Department of Obstetrics and Gynecology, Campus Bio-Medico University Hospital Foundation Rome, Rome, Italy
| | - Caterina De Luca
- Department of Obstetrics and Gynecology, Fatebenefratelli Gemelli Hospital, Isola Tiberina, Rome, Italy
| | - Emma Zucchelli
- Instituto de Salud Global, Universitat de Barcelona, Barcelona, Spain
| | - Denise Rinaldo
- Department of Obstetrics and Gynecology, Azienda Socio Sanitaria Territoriale (ASST) Bergamo Est, Bolognini Hospital, Seriate, Italy
| | - Alessandro Svelato
- Department of Obstetrics and Gynecology, Fatebenefratelli Gemelli Hospital, Isola Tiberina, Rome, Italy
| |
Collapse
|
5
|
Karpova SG, Olkhov AA, Varyan IA, Popov AA, Iordanskii AL. Effect of Drug Encapsulation and Hydrothermal Exposure on the Structure and Molecular Dynamics of the Binary System Poly(3-hydroxybutyrate)-chitosan. Polymers (Basel) 2023; 15:polym15102260. [PMID: 37242835 DOI: 10.3390/polym15102260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
In this work, film materials based on binary compositions of poly-(3-hydroxybutyrate) (PHB) and chitosan with different ratios of polymer components in the range from 0/100 to 100/0 wt. % were studied. Using a combination of thermal (DSC) and relaxation (EPR) measurements, the influence of the encapsulation temperature of the drug substance (DS) of dipyridamole (DPD) and moderately hot water (at 70 °C) on the characteristics of the PHB crystal structure and the diffusion rotational mobility of the stable TEMPO radical in the amorphous regions of the PHB/chitosan compositions is shown. The low-temperature extended maximum on the DSC endotherms made it possible to obtain additional information about the state of the chitosan hydrogen bond network. This allowed us to determine the enthalpies of thermal destruction of these bonds. In addition, it is shown that when PHB and chitosan are mixed, significant changes are observed in the degree of crystallinity of PHB, degree of destruction of hydrogen bonds in chitosan, segmental mobility, sorption capacity of the radical, and the activation energy of rotational diffusion in the amorphous regions of the PHB/chitosan composition. The characteristic point of polymer compositions was found to correspond to the ratio of the components of the mixture 50/50%, for which the inversion transition of PHB from dispersed material to dispersion medium is assumed. Encapsulation of DPD in the composition leads to higher crystallinity and to a decrease in the enthalpy of hydrogen bond breaking, and it also slows down segmental mobility. Exposure to an aqueous medium at 70 °C is also accompanied by sharp changes in the concentration of hydrogen bonds in chitosan, the degree of PHB crystallinity, and molecular dynamics. The conducted research made it possible for the first time to conduct a comprehensive analysis of the mechanism of action of a number of aggressive external factors (such as temperature, water, and the introduced additive in the form of a drug) on the structural and dynamic characteristics of the PHB/chitosan film material at the molecular level. These film materials have the potential to serve as a therapeutic system for controlled drug delivery.
Collapse
Affiliation(s)
- S G Karpova
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
| | - A A Olkhov
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Lane, 117997 Moscow, Russia
| | - I A Varyan
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Lane, 117997 Moscow, Russia
| | - A A Popov
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Lane, 117997 Moscow, Russia
| | - A L Iordanskii
- N. N. Semenov Federal Research Center for Chemical Physics Academy of Science, 119991 Moscow, Russia
| |
Collapse
|