1
|
Shao Z, Ding X, Zhou Y, Zhou J, Luo Y, Wu D, Dai Y, Qian L, Wang R, Yu Z. The role and mechanism of P2X7R in cirrhotic cardiomyopathy. Mol Immunol 2024; 176:49-59. [PMID: 39577339 DOI: 10.1016/j.molimm.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
In the context of liver cirrhosis, the incidence of myocardial inflammation and apoptosis escalates, contributing to the development and progression of cirrhotic cardiomyopathy. The P2X7 receptor, a purinergic receptor linked to inflammatory processes, has been identified in the etiology of a range of autoinflammatory, autoimmune, chronic inflammatory, and metabolic disorders. Despite this, the specific role of the P2X7 receptor in the etiology of cirrhotic cardiomyopathy remains to be elucidated. In our research, a cirrhotic cardiomyopathy animal model was established using mice subjected to bile duct ligation. The expression of the P2X7 receptor was suppressed via intraperitoneal administration of Brilliant Blue G. Cardiac function was evaluated using echocardiographic techniques, while histopathological examination and enzyme-linked immunosorbent assays were employed to assess the presence of inflammation and apoptosis in liver and cardiac tissues. The expression of key proteins, including P2X7, NLRP3, and IL-1β, in the myocardial tissue was quantified by Western blot analysis. Our research has unveiled significant findings in a murine model of liver fibrosis induced by two weeks of bile duct ligation. Notably, we detected escalated levels of liver fibrosis coupled with disruptions in liver blood flow dynamics. Concurrently, there was a marked increase in myocardial inflammation and apoptosis, which adversely affected heart function. Intriguingly, the expression of P2X7 receptors (P2X7R) in cardiac and hepatic tissues was found to be significantly elevated. Targeting and inhibiting the expression of P2X7R not only alleviated myocardial inflammation and apoptosis but also enhanced cardiac performance. Furthermore, this intervention resulted in a noticeable reduction in liver fibrosis. The interplay between the P2X7 and NLRP3 pathways emerges as a pivotal mechanism in the etiology and progression of cirrhotic cardiomyopathy. Our findings suggest that modulating the P2X7-NLRP3 axis could offer promising therapeutic avenues for managing cirrhotic cardiomyopathy.
Collapse
Affiliation(s)
- Zhenhao Shao
- Wuxi Medical Center, Nanjing Medical University, Wuxi, China; The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China; Wuxi People's Hospital, Wuxi, China
| | - Xu Ding
- Wuxi Medical Center, Nanjing Medical University, Wuxi, China; The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China; Wuxi People's Hospital, Wuxi, China
| | - Yiting Zhou
- Wuxi Medical Center, Nanjing Medical University, Wuxi, China; The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China; Wuxi People's Hospital, Wuxi, China
| | - Jiabin Zhou
- Wuxi Medical Center, Nanjing Medical University, Wuxi, China; The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China; Wuxi People's Hospital, Wuxi, China
| | - Yu Luo
- Wuxi Medical Center, Nanjing Medical University, Wuxi, China; The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China; Wuxi People's Hospital, Wuxi, China
| | - Dan Wu
- Wuxi Medical Center, Nanjing Medical University, Wuxi, China; The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China; Wuxi People's Hospital, Wuxi, China
| | - Yufei Dai
- Wuxi Medical Center, Nanjing Medical University, Wuxi, China; The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China; Wuxi People's Hospital, Wuxi, China
| | - Lingling Qian
- Wuxi Medical Center, Nanjing Medical University, Wuxi, China; The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China; Wuxi People's Hospital, Wuxi, China
| | - Ruxing Wang
- Wuxi Medical Center, Nanjing Medical University, Wuxi, China; The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China; Wuxi People's Hospital, Wuxi, China
| | - Zhiming Yu
- Wuxi Medical Center, Nanjing Medical University, Wuxi, China; The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China; Wuxi People's Hospital, Wuxi, China.
| |
Collapse
|
2
|
Wang Y, Li N, Hu J, Zhao Y, Zhou W, Li S, Yi G, Bian H, Cao F, Yao S. A network pharmacology approach-based decoding of Resveratrol's anti-fibrotic mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156092. [PMID: 39368340 DOI: 10.1016/j.phymed.2024.156092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/29/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Inhalation of crystalline silica (CS) frequently leads to chronic lung inflammation and pulmonary fibrosis (PF), a condition with limited effective treatments. Resveratrol (Res) has demonstrated potential in PF treatment; however, its underlying mechanisms remain incompletely elucidated. PURPOSE This study represents the first comprehensive attempt to uncover the novel mechanisms underlying Res's anti-fibrotic effects against PF through an innovative, integrated approach combining network pharmacology and experimental validation. METHODS We employed network pharmacology to investigate the holistic pharmacological mechanism of Res, then validated the predicted pharmacological effects using in vivo and in vitro studies. RESULTS In total, 216 genes were identified to be simultaneously associated with PF and Res. An integrated bioinformatics analysis implicated a crucial role of the autophagy signaling pathway in dominating PF, with AMPK and mTOR showing high docking scores. Animal studies revealed that Res significantly alleviated silica-induced lung damage in silicotic mice, with decreased collagen I (Col-I) levels and reduced expression of vimentin and α-SMA. In-depth investigation demonstrated that Res modulated CS-dysregulated autophagy by targeting the AMPK/mTOR pathway. in vitro, Res treatment significantly reduced lactate dehydrogenase (LDH), TNF-α, and TGF-β levels and improved cell viability of Raw264.7 cells post-CS exposure. Notably, Res was demonstrated to suppress fibroblast-to-myofibroblast transition via mediating macrophage autophagy through the AMPK/mTOR pathway. CONCLUSION Res can alleviate CS-induced PF by targeting AMPK in the autophagy signaling pathway, which sheds light on Res' therapeutic potential in treating PF.
Collapse
Affiliation(s)
- Yongheng Wang
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Ning Li
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Jinan (Preparatory) Key Laboratory of Women' s Diseases and Fertility Preservation, Jinan 250001, China
| | - Jiahao Hu
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Yuhan Zhao
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Wenxin Zhou
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Shuang Li
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Guan Yi
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Hongying Bian
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Fuyuan Cao
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Sanqiao Yao
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China; Xinxiang Medical University, Xinxiang 453000, China.
| |
Collapse
|
3
|
Zhang L, Tian J, Li N, Wang Y, Jin Y, Bian H, Xiong M, Zhang Z, Meng J, Han Z, Duan S. Exosomal miRNA reprogramming in pyroptotic macrophage drives silica-induced fibroblast-to-myofibroblast transition and pulmonary fibrosis. JOURNAL OF HAZARDOUS MATERIALS 2024; 483:136629. [PMID: 39603130 DOI: 10.1016/j.jhazmat.2024.136629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/04/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Silicosis is an occupational lung disease characterized by progressive pulmonary fibrosis, threatening millions of occupational workers worldwide due to a lack of effective treatments. To unveil mechanisms underlying silica-induced pulmonary fibrosis, we established in vitro and in vivo silicosis models, then employed scRNA-sequencing to profile the cellular landscape of lung tissues followed by characterization of macrophage pyroptosis and exosome therefrom in driving fibroblast-to-myofibroblast-transdifferentiation. Using hyperspectral imaging and artificial intelligence-powered pathological recognition, we found that silica nanoparticle (SiNP) triggered progressive lung fibrosis in vivo, and scRNA-seq implicated interstitial macrophage as pivotal regulators for fibroblast transdifferentiation. Mechanistically, SiNPs were demonstrated to induce macrophage pyroptosis and liberate exosomes, which upregulated pro-fibrotic markers and promoted myofibroblast transition. Subsequent high-throughput miR-sequencing revealed distinct exosomal miRNA signatures that modulated TGF-β signaling and induced fibroblast transdifferentiation. Lastly, we administered these exosomes into silicotic mice and found exacerbated inflammatory infiltration and pulmonary fibrosis. In conclusion, SiNPs exposure caused the remodeling of exosomal miRNAs by inducing interstitial macrophage pyroptosis, and exosomes derived from pyroptotic macrophage fuel fibroblast transdifferentiation by creating a pro-fibrotic microenvironment and promoting silicotic fibrosis. These findings provide critical insights into the pathogenesis of silicosis and the formulation of emerging therapeutic strategies.
Collapse
Affiliation(s)
- Lin Zhang
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Shandong University, Jinan 250001, China
| | - Jiaqi Tian
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Shandong University, Jinan 250001, China
| | - Ning Li
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Shandong University, Jinan 250001, China
| | - Yongheng Wang
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Yulan Jin
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Hongying Bian
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Min Xiong
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Zitong Zhang
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Shandong University, Jinan 250001, China; School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jiahua Meng
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Zhengpu Han
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Shandong University, Jinan 250001, China
| | - Shuyin Duan
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250001, China.
| |
Collapse
|
4
|
Liu C, Zhang Q, Zhou H, Jin L, Liu C, Yang M, Zhao X, Ding W, Xie W, Kong H. GLP-1R activation attenuates the progression of pulmonary fibrosis via disrupting NLRP3 inflammasome/PFKFB3-driven glycolysis interaction and histone lactylation. J Transl Med 2024; 22:954. [PMID: 39434134 PMCID: PMC11492558 DOI: 10.1186/s12967-024-05753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Pulmonary fibrosis is a serious interstitial lung disease with no viable treatment except for lung transplantation. Glucagon-like peptide-1 receptor (GLP-1R), commonly regarded as an antidiabetic target, exerts antifibrotic effects on various types of organ fibrosis. However, whether GLP-1R modulates the development and progression of pulmonary fibrosis remains unclear. In this study, we investigated the antifibrotic effect of GLP-1R using in vitro and in vivo models of pulmonary fibrosis. METHODS A silica-induced pulmonary fibrosis mouse model was established to evaluate the protective effects of activating GLP-1R with liraglutide in vivo. Primary cultured lung fibroblasts treated with TGF-β1 combined with IL-1β (TGF-β1 + IL-1β) were used to explore the specific effects of liraglutide, MCC950, and 3PO on fibroblast activation in vitro. Cell metabolism assay was performed to determine the glycolytic rate and mitochondrial respiration. RNA sequencing was utilized to analyse the underlying molecular mechanisms by which liraglutide affects fibroblast activation. ChIP‒qPCR was used to evaluate histone lactylation at the promoters of profibrotic genes in TGF-β1 + IL-1β- or exogenous lactate-stimulated lung fibroblasts. RESULTS Activating GLP-1R with liraglutide attenuated pulmonary inflammation and fibrosis in mice exposed to silica. Pharmacological inhibition of the NLRP3 inflammasome suppressed PFKFB3-driven glycolysis and vice versa, resulting in decreased lactate production in TGF-β1 + IL-1β-stimulated lung fibroblasts. Activating GLP-1R inhibited TGF-β1 + IL-1β-induced fibroblast activation by disrupting the interaction between the NLRP3 inflammasome and PFKFB3-driven glycolysis and subsequently prevented lactate-mediated histone lactylation to reduce pro-fibrotic gene expression. In addition, activating GLP-1R protected mitochondria against the TGF-β1 + IL-1β-induced increase in oxidative phosphorylation in fibroblasts. In exogenous lactate-treated lung fibroblasts, activating GLP-1R not only repressed NLRP3 inflammasome activation but also alleviated p300-mediated histone lactylation. Finally, GLP-1R activation blocked silica-treated macrophage-conditioned media-induced lung fibroblast activation. CONCLUSIONS The antifibrotic effects of GLP-1R activation on pulmonary fibrosis could be attributed to the inhibition of the interaction between NLRP3 inflammasome and PFKFB3-driven glycolysis, and histone lactylation in lung fibroblasts. Thus, GLP-1R is a specific therapeutic target for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Chenyang Liu
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Qun Zhang
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Hong Zhou
- Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, Jiangsu, 214023, P. R. China
| | - Linling Jin
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Chang Liu
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Mingxia Yang
- Department of Pulmonary & Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213003, P. R. China
| | - Xinyun Zhao
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Wenqiu Ding
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Weiping Xie
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China.
| | - Hui Kong
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China.
| |
Collapse
|
5
|
Kang H, Gu X, Cao S, Tong Z, Song N. Integrated multi-omics analyses reveal the pro-inflammatory and pro-fibrotic pulmonary macrophage subcluster in silicosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116899. [PMID: 39181076 DOI: 10.1016/j.ecoenv.2024.116899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 08/10/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Silicosis is a lethal occupational disease caused by long-term exposure to respirable silica dust. Pulmonary macrophages play a crucial role in mediating the initiation of silicosis. However, the phenotypic and functional heterogeneities of pulmonary macrophages in silicosis have not been well-studied. METHODS The silicosis mouse model was established by intratracheal administration of silica suspension. Bronchoalveolar lavage fluids (BALFs) of mice were collected for the multiplex cytokine analysis. Single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics were performed to reveal the heterogeneity and spatial localization of macrophages in the lung tissues. The formation of the fibrotic nodules was characterized by histology, hydroxyproline assay, and immunohistochemical staining, respectively. The expression of the pro-inflammatory or pro-fibrotic genes was investigated by quantitative polymerase chain reaction (qPCR). RESULTS We found that the level of pro-inflammatory cytokines and chemokines is significantly increased in the BALFs of silicosis mice. Apparent collagen deposition can also be observed in the silicotic lung tissues. By scRNA-seq, we have identified a subpopulation of Mmp12hi macrophages significantly expanding in the lung tissues of mice with silicosis. Spatial transcriptomics analysis further confirmed that the Mmp12hi macrophages are mainly enriched in silicosis nodules. Pseudotime trajectory showed that these Mmp12hi macrophages, highly expressing both pro-inflammatory and pro-fibrotic genes, are derived from Ly6c+ monocytes. Additionally, 4-octyl itaconate (4-OI) treatment, which can alleviate pulmonary fibrosis in silicosis mice, also reduces the enrichment of the Mmp12hi macrophages. Moreover, we found a subset of macrophages in BALFs derived from patients with silicosis exhibited similar characteristics of Mmp12hi macrophages in silicosis mice models. CONCLUSIONS Our study suggested that a group of Mmp12hi macrophages highly express both pro-inflammatory and pro-fibrotic factors in silicosis mice, and thus may contribute to the progression of fibrosis. The findings have proposed new insights for understanding the heterogeneity of lung macrophages in silicosis, suggesting that the subset of Mmp12hi macrophages may be a potential therapy target to further halt the progression of silicosis.
Collapse
Affiliation(s)
- Hanyujie Kang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xueqing Gu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Siyu Cao
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| | - Nan Song
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Medical Research Center, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
6
|
Zhang K, Luo W, Liu H, Gong J. PANX2 promotes malignant transformation of colorectal cancer and 5-Fu resistance through PI3K-AKT signaling pathway. Exp Cell Res 2024; 442:114269. [PMID: 39389335 DOI: 10.1016/j.yexcr.2024.114269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
Colorectal cancer (CRC) is the third deadliest cancer in the world, with a high incidence, aggressiveness, poor prognosis, and resistant to drugs. 5-fluorouracil (5-FU) is the most commonly used drug for the chemotherapeutic of CRC, however, CRC is resistant to 5-FU after a period of treatment. Therefore, there is an urgent need to explore the underlying molecular mechanisms of CRC resistance to 5-FU. In the present study, we found that the expression of PANX2 was increased in CRC tissues and metastatic tissues from the TCGA database. The K-M survival curve showed that the high expression of PANX2 was associated with poor cancer prognosis. GDSC database showed that the IC50 of 5-Fu in the PANX2 high expression group was significantly higher, and the results were verified in CRC cells. In vitro cell function and in vivo tumorigenesis experiments showed that PANX2 promoted CRC cell proliferation, clone formation, migration and tumorigenesis in vivo. WB result revealed that PANX2 may lead to resistance to 5-Fu in CRC by affecting the PI3K-AKT signaling pathway. Overall, PANX2 regulates CRC proliferation, clone formation, migration, and 5-Fu resistance by PI3K-AKT signaling pathway.
Collapse
Affiliation(s)
- Ke Zhang
- Jinan University, Guangzhou, 510632, China; Department of General Surgery, Changde Hospital, Xiangya School of Medicine, Central South University(The first people's hospital of Changde city), Changde, Hunan, 415000, China
| | - Wen Luo
- Department of General Surgery, Changde Hospital, Xiangya School of Medicine, Central South University(The first people's hospital of Changde city), Changde, Hunan, 415000, China
| | - Haijun Liu
- Department of General Surgery, Changde Hospital, Xiangya School of Medicine, Central South University(The first people's hospital of Changde city), Changde, Hunan, 415000, China
| | - Jin Gong
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China.
| |
Collapse
|
7
|
Liu Y, Pan R, Ouyang Y, Gu W, Xiao T, Yang H, Tang L, Wang H, Xiang B, Chen P. Pyroptosis in health and disease: mechanisms, regulation and clinical perspective. Signal Transduct Target Ther 2024; 9:245. [PMID: 39300122 DOI: 10.1038/s41392-024-01958-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Pyroptosis is a type of programmed cell death characterized by cell swelling and osmotic lysis, resulting in cytomembrane rupture and release of immunostimulatory components, which play a role in several pathological processes. Significant cellular responses to various stimuli involve the formation of inflammasomes, maturation of inflammatory caspases, and caspase-mediated cleavage of gasdermin. The function of pyroptosis in disease is complex but not a simple angelic or demonic role. While inflammatory diseases such as sepsis are associated with uncontrollable pyroptosis, the potent immune response induced by pyroptosis can be exploited as a therapeutic target for anti-tumor therapy. Thus, a comprehensive review of the role of pyroptosis in disease is crucial for further research and clinical translation from bench to bedside. In this review, we summarize the recent advancements in understanding the role of pyroptosis in disease, covering the related development history, molecular mechanisms including canonical, non-canonical, caspase 3/8, and granzyme-mediated pathways, and its regulatory function in health and multiple diseases. Moreover, this review also provides updates on promising therapeutic strategies by applying novel small molecule inhibitors and traditional medicines to regulate pyroptosis. The present dilemmas and future directions in the landscape of pyroptosis are also discussed from a clinical perspective, providing clues for scientists to develop novel drugs targeting pyroptosis.
Collapse
Affiliation(s)
- Yifan Liu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
- Department of Oncology, Xiangya Hospital, Central South University, 87th Xiangya road, Changsha, 410008, Hunan province, China
| | - Renjie Pan
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Yuzhen Ouyang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
- Department of Neurology, Xiangya Hospital, Central South University, 87th Xiangya road, Changsha, 410008, Hunan province, China
| | - Wangning Gu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Tengfei Xiao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Hongmin Yang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Ling Tang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Hui Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| | - Bo Xiang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| | - Pan Chen
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| |
Collapse
|
8
|
Zou YT, Li JY, Chai JY, Hu YS, Zhang WJ, Zhang Q. The impact of the P2X7 receptor on the tumor immune microenvironment and its effects on tumor progression. Biochem Biophys Res Commun 2024; 707:149513. [PMID: 38508051 DOI: 10.1016/j.bbrc.2024.149513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 03/22/2024]
Abstract
Cancer is a significant global health concern, and finding effective methods to treat it has been a focus of scientific research. It has been discovered that the growth, invasion, and metastasis of tumors are closely related to the environment in which they exist, known as the tumor microenvironment (TME). The immune response interacting with the tumor occurring within the TME constitutes the tumor immune microenvironment, and the immune response can lead to anti-tumor and pro-tumor outcomes and has shown tremendous potential in immunotherapy. A channel called the P2X7 receptor (P2X7R) has been identified within the TME. It is an ion channel present in various immune cells and tumor cells, and its activation can lead to inflammation, immune responses, angiogenesis, immunogenic cell death, and promotion of tumor development. This article provides an overview of the structure, function, and pharmacological characteristics of P2X7R. We described the concept and components of tumor immune microenvironment and the influence immune components has on tumors. We also outlined the impact of P2X7R regulation and how it affects the development of tumors and summarized the effects of drugs targeting P2X7R on tumor progression, both past and current, assisting researchers in treating tumors using P2X7R as a target.
Collapse
Affiliation(s)
- Yu-Ting Zou
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Jin-Yuan Li
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Jun-Yi Chai
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Yu-Shan Hu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China; The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| | - Qiao Zhang
- Orthopedics Department, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| |
Collapse
|
9
|
Tian J, Song D, Peng Y, Zhang J, Ma L, Chen Z, Liang L, Zhang Z, Yun X, Zhang L. Silica-induced macrophage pyroptosis propels pulmonary fibrosis through coordinated activation of relaxin and osteoclast differentiation signaling to reprogram fibroblasts. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116106. [PMID: 38377782 DOI: 10.1016/j.ecoenv.2024.116106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/11/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
Silica nanoparticle (SiNP) exposure induces severe pulmonary inflammation and fibrosis, but the pathogenesis remains unclear, and effective therapies are currently lacking. To explore the mechanism underlying SiNPs-induced pulmonary fibrosis, we constructed in vivo silica exposure animal models and in vitro models of silica-induced macrophage pyroptosis and fibroblast transdifferentiation. We found that SiNP exposure elicits upregulation of pulmonary proteins associated with pyroptosis, including NLRP3, ASC, IL-1β, and GSDMD, while the immunofluorescence staining co-localized NLRP3 and GSDMD with macrophage-specific biomarker F4/80 in silica-exposed lung tissues. However, the NLRP3 inhibitor MCC950 and classical anti-fibrosis drug pirfenidone (PFD) were found to be able to alleviate silica-induced collagen deposition in the lungs. In in vitro studies, we exposed the fibroblast to a conditioned medium from silica-induced pyroptotic macrophages and found enhanced expression of α-SMA, suggesting increased transdifferentiation of fibroblast to myofibroblast. In line with in vivo studies, the combined treatment of MCC950 and PFD was demonstrated to inhibit the expression of α-SMA and attenuate fibroblast transdifferentiation. Mechanistically, we adopted high throughput RNA sequencing on fibroblast with different treatments and found activated signaling of relaxin and osteoclast differentiation pathways, where the expression of the dysregulated genes in these two pathways was examined and found to be consistently altered both in vitro and in vivo. Collectively, our study demonstrates that SiNP exposure induces macrophage pyroptosis, which subsequently causes fibroblast transdifferentiation to myofibroblasts, in which the relaxin and osteoclast differentiation signaling pathways play crucial roles. These findings may provide valuable references for developing new therapies for pulmonary fibrosis.
Collapse
Affiliation(s)
- Jiaqi Tian
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Jinan 250001, China
| | - Dandan Song
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Jinan 250001, China
| | - Yanjie Peng
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Jinan 250001, China
| | - Jing Zhang
- Department of Public Health, Zhu'e Town Health Clinic, Dezhou 253000, China
| | - Lan Ma
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Jinan 250001, China
| | - Zhen Chen
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Jinan 250001, China
| | - Liyang Liang
- Department of Surgery-oncology, Tangshan Gongren Hospital, Tangshan 063000, China
| | - Zitong Zhang
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Jinan 250001, China; School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiang Yun
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Lin Zhang
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Jinan 250001, China.
| |
Collapse
|
10
|
Liao K, Zeng H, Yang X, He D, Wang B, Yuan J. KCNK5 Regulating Potassium Efflux and Inducing Pyroptosis in Corneal Epithelial Cells Through TNFSF10-Mediated Autophagy in Dry Eye. Invest Ophthalmol Vis Sci 2024; 65:34. [PMID: 38236186 PMCID: PMC10807492 DOI: 10.1167/iovs.65.1.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024] Open
Abstract
Purpose The purpose of this study was to elucidate the involvement of potassium two pore domain channel subfamily K member 5 (KCNK5)-mediated potassium efflux in the pathogenesis of dry eye and to unravel the underlying molecular mechanisms. Methods To induce experimental dry eye in adult wild-type C57BL/6 mice, scopolamine was administered via subcutaneous injection, and the mice were subjected to desiccating stress. To create an in vitro model of dry eye, desiccation stress was applied to the human corneal epithelial cell line (HCE-T). Intracellular potassium concentration was quantified using inductively coupled plasma mass spectrometry. Cellular death was assessed through lactate dehydrogenase assays. Gene expression profiling was conducted through both RNA sequencing and quantitative real-time PCR. Protein analysis was carried out through Western blotting and immunofluorescence staining. Assessment of the corneal epithelial defect area was conducted through fluorescein sodium staining. Tear secretion was quantified using the phenol red cotton thread method. Results Potassium efflux was observed to further facilitate corneal epithelial pyroptosis. KCNK5 exhibited upregulation in both in vivo and in vitro models of dry eye. The overexpression of KCNK5 was observed to induce potassium efflux and activate the NLR family pyrin domain containing 3 (NLRP3) inflammasome-mediated pyroptosis in vitro. Silencing KCNK5 effectively mitigated pyroptosis in dry eye. Additionally, the overexpression of KCNK5 results in the downregulation of TNF superfamily member 10 (TNFSF10) and subsequent impairment of autophagy. TNFSF10 supplementation could promote autophagy and mitigate pyroptosis in dry eye. Conclusions The upregulation of KCNK5 mediates TNFSF10 to impair autophagy and induce pyroptosis in dry eye. Consequently, targeting KCNK5 may represent a novel and promising approach to therapeutic intervention in the management of dry eye.
Collapse
Affiliation(s)
- Kai Liao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Hao Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xue Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Dalian He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Bowen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
11
|
Jiang F, Jiang Q, Hou L, Zhao J, Zhu Z, Jia Q, Xue W, Wang H, Wang Y, Tian L. Inhibition of macrophage pyroptosis ameliorates silica-induced pulmonary fibrosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115693. [PMID: 37976936 DOI: 10.1016/j.ecoenv.2023.115693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/20/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Macrophage pyroptosis has recently been involved in some inflammatory and fibrosis diseases, however, the role of macrophage pyroptosis in silica-induced pulmonary fibrosis has not been fully elucidated. In this study, we explored the role of macrophage pyroptosis in silicosis in vivo and in vitro. A mouse model of silicosis was established and mice were sacrificed at 7, 14, and 28 days after exposure of silica. The results revealed that the expression of GSDMD and other pyroptosis-related indicators was up-regulated obviously at 14 days after silica exposure, indicating that silica induced pyroptosis in vivo. In vitro, human monocytic leukemia cells (THP-1) and human lung fibroblasts (MRC-5) were used to detect the relationship between macrophage pyroptosis and lung fibroblasts. It showed that silica increased the levels of GSDMD and other pyroptosis-related indicators remarkably in macrophages and the supernatant of macrophage stimulated by silica could promote the upregulation of fibrosis markers in fibroblasts. However, GSDMD knockdown suppressed silica-induced macrophage pyroptosis and alleviated the upregulation of fibrosis markers in fibroblasts, suggesting the important role of macrophage pyroptosis in the activation of myofibroblasts during the progression of silicosis. Taken together, it showed that silica could induce macrophage pyroptosis and inhibiting macrophage pyroptosis could be a feasible clinical strategy to alleviate silicosis.
Collapse
Affiliation(s)
- Fuyang Jiang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qiyue Jiang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Lin Hou
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jing Zhao
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhonghui Zhu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qiyue Jia
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Wenming Xue
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Hongwei Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yan Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Lin Tian
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
12
|
de Jersey AM, Lavers JL, Zosky GR, Rivers-Auty J. The understudied global experiment of pollution's impacts on wildlife and human health: The ethical imperative for interdisciplinary research. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122459. [PMID: 37633432 DOI: 10.1016/j.envpol.2023.122459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/02/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
The global impact of pollution on human and wildlife health is a growing concern. The health impacts of pollution are significant and far-reaching yet poorly understood as no one field of research has the practices and methodologies required to encapsulate the diversity of these consequences. This paper advocates that interdisciplinary research is essential to comprehend the full extent of the impact of pollution. Medical and ecological research play a key role in investigating the health consequences of the pollution crisis, yet the wildlife experience is often neglected. This paper outlines how applying advanced techniques and expertise adapted in medical research to wildlife exposed to pollutants offers a unique perspective to understanding the full diversity of impacts to health. The challenges that impede the progress of this research include the lack of support for interdisciplinary research among funding streams, limitations in field-specific techniques, and a lack of communication between researchers from different disciplines. Of awarded funding from major national research councils across Australia, Europe, and the United States of America, only 0.5% is dedicated to pollution focused research. This is inclusive of laboratory equipment, mitigation strategies, quantification of environmental samples and health consequences research. Of that, 0.03% of funding is awarded to explaining the wildlife experience and documenting the health consequences observed despite being model organisms to environmentally and biologically relevant models for pollution exposure. This calls for a coordinated effort to overcome these hurdles and to promote interdisciplinary research in order to fully comprehend the consequences of pollution exposure and protect the health of humans, wildlife, and the environment. An interdisciplinary approach to this problem is timely given the magnitude of negative health consequences associated with exposure, the number of pollutants already present within the environment and the continual development of new compounds.
Collapse
Affiliation(s)
- Alix M de Jersey
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, 7000, Australia
| | - Jennifer L Lavers
- Bird Group, The Natural History Museum, Akeman Street, Tring, Hertfordshire, HP23 6AP, United Kingdom; Esperance Tjaltjraak Native Title Aboriginal Corporation, 11A Shelden Road, Esperance, Western Australia, 6450, Australia.
| | - Graeme R Zosky
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, 7000, Australia
| | - Jack Rivers-Auty
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, 7000, Australia
| |
Collapse
|