1
|
Granja HS, Silva JDOS, Andrade YB, Farrapeira RO, Sussuchi EM, Freitas LS. Emerging carbonaceous material based on residual grape seed applied in selective and sensitive electrochemical detection of fenamiphos. Talanta 2025; 281:126784. [PMID: 39245008 DOI: 10.1016/j.talanta.2024.126784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
Fenamiphos (FNP) is a pesticide applied for soil pest control, particularly nematodes, and sucking insects, including aphids and thrips. Despite its use being banned in several countries due to its highly toxic nature for living beings, including mammals, because of its acetylcholine-inhibiting action, it is still marketed for use in agriculture. Therefore, a carbon paste electrode modified with residual grape seed biochar (bSU), served as an electrochemical sensor (E-bSU) for the quantification of fenamiphos in grape juice, tap water, and river water samples. The bSU underwent comprehensive characterization employing elemental, morphological, and spectroscopic analysis techniques. The impact of electrode modification and the electrochemical behavior of the FNP were systematically assessed through cyclic voltammetry, electrochemical impedance spectroscopy and differential pulse voltammetry. The biochar manifested a microporous surface adorned with dispersed functional groups, enhancing its affinity for organic compounds, particularly the investigated pesticide. Electrode modification and the optimization of analysis parameters resulted in a notable 6-fold amplification of the electrochemical signal of FNP relative to initial conditions, underscoring the efficacy of the E-bSU. The developed methodology attained limits of detection and quantification of 0.3 and 0.9 nmol L⁻1, respectively. Repeatability and reproducibility assays demonstrated relative standard deviations below 5%, underscoring the reliability of the applied electrode. The sensor showcased recoveries ranging from 99.75% to 109.9% across the analyzed samples, highlighting the utility of this selective, stable, and reproducible sensor for fenamiphos determination.
Collapse
Affiliation(s)
- Honnara S Granja
- Programa de Pós-Graduação Em Química, Universidade Federal de Sergipe, Av. Marcelo Déda Chagas, S/n - Rosa Elze, São Cristóvão, SE, 49107-230, Brazil.
| | - Jonatas de Oliveira S Silva
- Programa de Pós-Graduação Em Química, Instituto de Química, Universidade Federal da Bahia, R. Barão de Jeremoabo, S/n - Ondina, Salvador, BA, 40170-280, Brazil.
| | - Yasmine B Andrade
- Programa de Pós-Graduação Em Biotecnologia Industrial, Universidade Tiradentes, Av. Murilo Dantas, 300 - Farolândia, Aracaju, SE, 49032-490, Brazil.
| | - Rafael O Farrapeira
- NUESC - Núcleo de Estudos Em Sistemas Coloidais - ITP, Universidade Tiradentes, Av. Murilo Dantas, 300 - Farolândia, Aracaju, SE, 49032-490, Brazil.
| | - Eliana M Sussuchi
- Programa de Pós-Graduação Em Química, Universidade Federal de Sergipe, Av. Marcelo Déda Chagas, S/n - Rosa Elze, São Cristóvão, SE, 49107-230, Brazil.
| | - Lisiane S Freitas
- Programa de Pós-Graduação Em Química, Universidade Federal de Sergipe, Av. Marcelo Déda Chagas, S/n - Rosa Elze, São Cristóvão, SE, 49107-230, Brazil.
| |
Collapse
|
2
|
Wang L, Shao H, Guo Y, Bi H, Lei X, Dai S, Mao X, Xiao K, Liao X, Xue H. Ecological restoration for eutrophication mitigation in urban interconnected water bodies: Evaluation, variability and strategy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121475. [PMID: 38905792 DOI: 10.1016/j.jenvman.2024.121475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Abstract
Many urban water bodies grapple with low flow flux and weak hydrodynamics. To address these issues, projects have been implemented to form integrated urban water bodies via interconnecting artificial lake or ponds with rivers, but causing pollution accumulation downstream and eutrophication. Despite it is crucial to assess eutrophication, research on this topic in urban interconnected water bodies is limited, particularly regarding variability and feasible strategies for remediation. This study focused on the Loucun river in Shenzhen, comprising an pond, river and artificial lake, evaluating water quality changes pre-(post-)ecological remediation and establishing a new method for evaluating the water quality index (WQI). The underwater forest project, involving basement improvement, vegetation restoration, and aquatic augmentation, in the artificial lake significantly reduced total nitrogen (by 43.58%), total phosphorus (by 79.17%) and algae density (by 36.90%) compared to pre-remediation, effectively controlling algal bloom. Rainfall, acting as a variable factor, exacerbated downstream nutrient accumulation, increasing total phosphorus by 4.56 times and ammonia nitrogen by 1.30 times compared to the dry season, and leading to algal blooms in the non-restoration pond. The improved WQI method effectively assesses water quality status. The interconnected water body exhibits obvious nutrient accumulation in downstream regions. A combined strategy that reducing nutrient and augmenting flux was verified to alleviate accumulation of nutrients downstream. This study provides valuable insights into pollution management strategies for interconnected pond-river-lake water bodies, offering significant reference for nutrient mitigation in such urban water bodies.
Collapse
Affiliation(s)
- Linlin Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Huaihao Shao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yuehua Guo
- China Communications First Harbor Bureau Ecological Engineering Co., LTD, Shenzhen, 518055, China
| | - Hongsheng Bi
- University of Maryland Center for Environmental Science, Chesapeake Bay Laboratory, Solomons, MD, 20688, USA
| | - Xiaoyu Lei
- Department of Research Affairs, Shenzhen MSU-BIT University, Shenzhen, 518055, China
| | - Shuangliang Dai
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xianzhong Mao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Kai Xiao
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaomei Liao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| | - Hao Xue
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
3
|
Yaashikaa PR, Kumar PS. Bioremediation of hazardous pollutants from agricultural soils: A sustainable approach for waste management towards urban sustainability. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120031. [PMID: 36041569 DOI: 10.1016/j.envpol.2022.120031] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/08/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Soil contamination is perhaps the most hazardous issue all over the world; these emerging pollutants ought to be treated to confirm the safety of our living environment. Fast industrialization and anthropogenic exercises have resulted in different ecological contamination and caused serious dangerous health effects to humans and animals. Agro wastes are exceptionally directed because of their high biodegradability. Effluents from the agro-industry are a possibly high environmental risk that requires suitable, low-cost, and extensive treatment. Soil treatment using a bioremediation method is considered an eco-accommodating and reasonable strategy for removing toxic pollutants from agricultural fields. The present review was led to survey bioremediation treatability of agro soil by microbes, decide functional consequences for microbial performance and assess potential systems to diminish over potentials. The presence of hazardous pollutants in agricultural soil and sources, and toxic health effects on humans has been addressed in this review. The present review emphasizes an outline of bioremediation for the effective removal of toxic contaminants in the agro field. In addition, factors influencing recent advancements in the bioremediation process have been discussed. The review further highlights the roles and mechanisms of micro-organisms in the bioremediation of agricultural fields.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai - 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai - 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai - 603110, India.
| |
Collapse
|