1
|
Swailem M, Täuber UC. Computing macroscopic reaction rates in reaction-diffusion systems using Monte Carlo simulations. Phys Rev E 2024; 110:014124. [PMID: 39160995 DOI: 10.1103/physreve.110.014124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/21/2024] [Indexed: 08/21/2024]
Abstract
Stochastic reaction-diffusion models are employed to represent many complex physical, biological, societal, and ecological systems. The macroscopic reaction rates describing the large-scale, long-time kinetics in such systems are effective, scale-dependent renormalized parameters that need to be either measured experimentally or computed by means of a microscopic model. In a Monte Carlo simulation of stochastic reaction-diffusion systems, microscopic probabilities for specific events to happen serve as the input control parameters. To match the results of any computer simulation to observations or experiments carried out on the macroscale, a mapping is required between the microscopic probabilities that define the Monte Carlo algorithm and the macroscopic reaction rates that are experimentally measured. Finding the functional dependence of emergent macroscopic rates on the microscopic probabilities (subject to specific rules of interaction) is a very difficult problem, and there is currently no systematic, accurate analytical way to achieve this goal. Therefore, we introduce a straightforward numerical method of using lattice Monte Carlo simulations to evaluate the macroscopic reaction rates by directly obtaining the count statistics of how many events occur per simulation time step. Our technique is first tested on well-understood fundamental examples, namely, restricted birth processes, diffusion-limited two-particle coagulation, and two-species pair annihilation kinetics. Next we utilize the thus gained experience to investigate how the microscopic algorithmic probabilities become coarse-grained into effective macroscopic rates in more complex model systems such as the Lotka-Volterra model for predator-prey competition and coexistence, as well as the rock-paper-scissors or cyclic Lotka-Volterra model and its May-Leonard variant that capture population dynamics with cyclic dominance motifs. Thereby we achieve a more thorough and deeper understanding of coarse graining in spatially extended stochastic reaction-diffusion systems and the nontrivial relationships between the associated microscopic and macroscopic model parameters, with a focus on ecological systems. The proposed technique should generally provide a useful means to better fit Monte Carlo simulation results to experimental or observational data.
Collapse
Affiliation(s)
- Mohamed Swailem
- Department of Physics & Center for Soft Matter and Biological Physics, MC 0435, Robeson Hall, 850 West Campus Drive, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Uwe C Täuber
- Department of Physics & Center for Soft Matter and Biological Physics, MC 0435, Robeson Hall, 850 West Campus Drive, Virginia Tech, Blacksburg, Virginia 24061, USA
- Faculty of Health Sciences, Virginia Tech, Blacksburg, Virginia 24061, USA
| |
Collapse
|
2
|
Barbalho R, Rodrigues S, Tenorio M, Menezes J. Ambush strategy enhances organisms' performance in rock-paper-scissors games. Biosystems 2024; 240:105229. [PMID: 38740124 DOI: 10.1016/j.biosystems.2024.105229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/04/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
We study a five-species cyclic system wherein individuals of one species strategically adapt their movements to enhance their performance in the spatial rock-paper-scissors game. Environmental cues enable the awareness of the presence of organisms targeted for elimination in the cyclic game. If the local density of target organisms is sufficiently high, individuals move towards concentrated areas for direct attack; otherwise, they employ an ambush tactic, maximising the chances of success by targeting regions likely to be dominated by opponents. Running stochastic simulations, we discover that the ambush strategy enhances the likelihood of individual success compared to direct attacks alone, leading to uneven spatial patterns characterised by spiral waves. We compute the autocorrelation function and measure how the ambush tactic unbalances the organisms' spatial organisation by calculating the characteristic length scale of typical spatial domains of each species. We demonstrate that the threshold for local species density influences the ambush strategy's effectiveness, while the neighbourhood perception range significantly impacts decision-making accuracy. The outcomes show that long-range perception improves performance by over 60%, although there is potential interference in decision-making under high attack triggers. Understanding how organisms' adaptation their environment enhances their performance may be helpful not only for ecologists, but also for data scientists, aiming to improve artificial intelligence systems.
Collapse
Affiliation(s)
- R Barbalho
- School of Science and Technology, Federal University of Rio Grande do Norte, 59072-970, P.O. Box 1524, Natal, RN, Brazil
| | - S Rodrigues
- School of Science and Technology, Federal University of Rio Grande do Norte, 59072-970, P.O. Box 1524, Natal, RN, Brazil
| | - M Tenorio
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Av Santos Dumont 1560, 59280-000, Macaiba, RN, Brazil
| | - J Menezes
- Research Centre for Data Intelligence, Zuyd University of Applied Sciences, Nieuw Eyckholt 300, 6419 DJ, Heerlen, The Netherlands; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
McGrane-Corrigan B, Mason O, de Andrade Moral R. Inferring stochastic group interactions within structured populations via coupled autoregression. J Theor Biol 2024; 584:111793. [PMID: 38492917 DOI: 10.1016/j.jtbi.2024.111793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
The internal behaviour of a population is an important feature to take account of when modelling its dynamics. In line with kin selection theory, many social species tend to cluster into distinct groups in order to enhance their overall population fitness. Temporal interactions between populations are often modelled using classical mathematical models, but these sometimes fail to delve deeper into the, often uncertain, relationships within populations. Here, we introduce a stochastic framework that aims to capture the interactions of animal groups and an auxiliary population over time. We demonstrate the model's capabilities, from a Bayesian perspective, through simulation studies and by fitting it to predator-prey count time series data. We then derive an approximation to the group correlation structure within such a population, while also taking account of the effect of the auxiliary population. We finally discuss how this approximation can lead to ecologically realistic interpretations in a predator-prey context. This approximation also serves as verification to whether the population in question satisfies our various assumptions. Our modelling approach will be useful for empiricists for monitoring groups within a conservation framework and also theoreticians wanting to quantify interactions, to study cooperation and other phenomena within social populations.
Collapse
Affiliation(s)
- Blake McGrane-Corrigan
- Department of Mathematics and Statistics, Maynooth University, Maynooth, Kildare, Ireland.
| | - Oliver Mason
- Department of Mathematics and Statistics, Maynooth University, Maynooth, Kildare, Ireland
| | | |
Collapse
|
4
|
Menezes J, Rangel E. Locally adaptive aggregation of organisms under death risk in rock-paper-scissors models. Biosystems 2023; 227-228:104901. [PMID: 37121500 DOI: 10.1016/j.biosystems.2023.104901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 05/02/2023]
Abstract
We run stochastic simulations of the spatial version of the rock-paper-scissors game, considering that individuals use sensory abilities to scan the environment to detect the presence of enemies. If the local dangerousness level is above a tolerable threshold, individuals aggregate instead of moving randomly on the lattice. We study the impact of the locally adaptive aggregation on the organisms' spatial organisation by measuring the characteristic length scale of the spatial domains occupied by organisms of a single species. Our results reveal that aggregation is beneficial if triggered when the local density of opponents does not exceed 30%; otherwise, the behavioural strategy may harm individuals by increasing the average death risk. We show that if organisms can perceive further distances, they can accurately scan and interpret the signals from the neighbourhood, maximising the effects of the locally adaptive aggregation on the death risk. Finally, we show that the locally adaptive aggregation behaviour promotes biodiversity independently of the organism's mobility. The coexistence probability rises if organisms join conspecifics, even in the presence of a small number of enemies. We verify that our conclusions hold for more complex systems by simulating the generalised rock-paper-scissors models with five and seven species. Our discoveries may be helpful to ecologists in understanding systems where organisms' self-defence behaviour adapts to local environmental cues.
Collapse
Affiliation(s)
- J Menezes
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; School of Science and Technology, Federal University of Rio Grande do Norte, Caixa Postal 1524, 59072-970, Natal, RN, Brazil.
| | - E Rangel
- School of Science and Technology, Federal University of Rio Grande do Norte, Caixa Postal 1524, 59072-970, Natal, RN, Brazil; Department of Computer Engineering and Automation, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho 300, Natal, 59078-970, Brazil
| |
Collapse
|
5
|
Menezes J, Batista S, Tenorio M, Triaca E, Moura B. How local antipredator response unbalances the rock-paper-scissors model. CHAOS (WOODBURY, N.Y.) 2022; 32:123142. [PMID: 36587336 DOI: 10.1063/5.0106165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Antipredator behavior is a self-preservation strategy present in many biological systems, where individuals join the effort in a collective reaction to avoid being caught by an approaching predator. We study a nonhierarchical tritrophic system, whose predator-prey interactions are described by the rock-paper-scissors game rules. We perform a set of spatial stochastic simulations where organisms of one out of the species can resist predation in a collective strategy. The drop in predation capacity is local, which means that each predator faces a particular opposition depending on the prey group size surrounding it. Considering that the interference in a predator action depends on the prey's physical and cognitive ability, we explore the role of a conditioning factor that indicates the fraction of the species apt to perform the antipredator strategy. Because of the local unbalancing of the cyclic predator-prey interactions, departed spatial domains mainly occupied by a single species emerge. Unlike the rock-paper-scissors model with a weak species because of a nonlocal reason, our findings show that if the predation probability of one species is reduced because individuals face local antipredator response, the species does not predominate. Instead, the local unbalancing of the rock-paper-scissors model results in the prevalence of the weak species' prey. Finally, the outcomes show that local unevenness may jeopardize biodiversity, with the coexistence being more threatened for high mobility.
Collapse
Affiliation(s)
- J Menezes
- School of Science and Technology, Federal University of Rio Grande do Norte, 59072-970, P.O. Box 1524, Natal, RN, Brazil
| | - S Batista
- School of Science and Technology, Federal University of Rio Grande do Norte, 59072-970, P.O. Box 1524, Natal, RN, Brazil
| | - M Tenorio
- School of Science and Technology, Federal University of Rio Grande do Norte, 59072-970, P.O. Box 1524, Natal, RN, Brazil
| | - E Triaca
- Department of Mechanical Engineering, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, 300 Lagoa Nova, 59078-970 Natal, RN, Brazil, Brasil
| | - B Moura
- Department of Biomedical Engineering, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho 300, Lagoa Nova, 59078-970, Natal, RN, Brazil
| |
Collapse
|
6
|
Mobility unevenness in rock–paper–scissors models. ECOLOGICAL COMPLEXITY 2022. [DOI: 10.1016/j.ecocom.2022.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Menezes J, Batista S, Rangel E. Spatial organisation plasticity reduces disease infection risk in rock-paper-scissors models. Biosystems 2022; 221:104777. [PMID: 36070849 DOI: 10.1016/j.biosystems.2022.104777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022]
Abstract
We study a three-species cyclic game system where organisms face a contagious disease whose virulence may change by a pathogen mutation. As a responsive defence strategy, organisms' mobility is restricted to reduce disease dissemination in the system. The impact of the collective self-preservation strategy on the disease infection risk is investigated by performing stochastic simulations of the spatial version of the rock-paper-scissors game. Our outcomes show that the mobility control strategy induces plasticity in the spatial patterns with groups of organisms of the same species inhabiting spatial domains whose characteristic length scales depend on the level of dispersal restrictions. The spatial organisation plasticity allows the ecosystems to adapt to minimise the individuals' disease contamination risk if an eventual pathogen alters the disease virulence. We discover that if a pathogen mutation makes the disease more transmissible or less lethal, the organisms benefit more if the mobility is not strongly restricted, thus forming large spatial domains. Conversely, the benefits of protecting against a pathogen causing a less contagious or deadlier disease are maximised if the average size of groups of individuals of the same species is significantly limited, reducing the dimensions of groups of organisms significantly. Our findings may help biologists understand the effects of dispersal control as a conservation strategy in ecosystems affected by epidemic outbreaks.
Collapse
Affiliation(s)
- J Menezes
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; School of Science and Technology, Federal University of Rio Grande do Norte, 59072-970, P.O. Box 1524, Natal, RN, Brazil.
| | - S Batista
- School of Science and Technology, Federal University of Rio Grande do Norte, 59072-970, P.O. Box 1524, Natal, RN, Brazil.
| | - E Rangel
- School of Science and Technology, Federal University of Rio Grande do Norte, 59072-970, P.O. Box 1524, Natal, RN, Brazil.
| |
Collapse
|
8
|
Combination of survival movement strategies in cyclic game systems during an epidemic. Biosystems 2022; 217:104689. [DOI: 10.1016/j.biosystems.2022.104689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 12/28/2022]
|