1
|
Arellano-Caicedo C, Ohlsson P, Bengtsson M, Beech JP, Hammer EC. Habitat complexity affects microbial growth in fractal maze. Curr Biol 2023; 33:1448-1458.e4. [PMID: 36933553 DOI: 10.1016/j.cub.2023.02.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/09/2023] [Accepted: 02/21/2023] [Indexed: 03/19/2023]
Abstract
The great variety of earth's microorganisms and their functions are attributed to the heterogeneity of their habitats, but our understanding of the impact of this heterogeneity on microbes is limited at the microscale. In this study, we tested how a gradient of spatial habitat complexity in the form of fractal mazes influenced the growth, substrate degradation, and interactions of the bacterial strain Pseudomonas putida and the fungal strain Coprinopsis cinerea. These strains responded in opposite ways: complex habitats strongly reduced fungal growth but, in contrast, increased the abundance of bacteria. Fungal hyphae did not reach far into the mazes and forced bacteria to grow in deeper regions. Bacterial substrate degradation strongly increased with habitat complexity, even more than bacterial biomass, up to an optimal depth, while the most remote parts of the mazes showed both decreased biomass and substrate degradation. These results suggest an increase in enzymatic activity in confined spaces, where areas may experience enhanced microbial activity and resource use efficiency. Very remote spaces showing a slower turnover of substrates illustrate a mechanism which may contribute to the long-term storage of organic matter in soils. We demonstrate here that the sole effect of spatial microstructures affects microbial growth and substrate degradation, leading to differences in local microscale spatial availability. These differences might add up to considerable changes in nutrient cycling at the macroscale, such as contributing to soil organic carbon storage.
Collapse
Affiliation(s)
| | - Pelle Ohlsson
- Department of Biomedical Engineering, Lund University, Ole Römers väg 3, 223 63 Lund, Sweden
| | - Martin Bengtsson
- Department of Biomedical Engineering, Lund University, Ole Römers väg 3, 223 63 Lund, Sweden
| | - Jason P Beech
- Division of Solid State Physics, Lund University, Sölvegatan 16, 223 63 Lund, Sweden
| | - Edith C Hammer
- Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden; Centre for Environmental and Climate Science, CEC, Lund University, Sölvegatan 37, 223 62 Lund, Sweden
| |
Collapse
|
2
|
Ruan C, Ramoneda J, Gogia G, Wang G, Johnson DR. Fungal hyphae regulate bacterial diversity and plasmid-mediated functional novelty during range expansion. Curr Biol 2022; 32:5285-5294.e4. [PMID: 36455559 DOI: 10.1016/j.cub.2022.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/20/2022] [Accepted: 11/03/2022] [Indexed: 12/05/2022]
Abstract
The amount of bacterial diversity present on many surfaces is enormous; however, how these levels of diversity persist in the face of the purifying processes that occur as bacterial communities expand across space (referred to here as range expansion) remains enigmatic. We shed light on this apparent paradox by providing mechanistic evidence for a strong role of fungal hyphae-mediated dispersal on regulating bacterial diversity during range expansion. Using pairs of fluorescently labeled bacterial strains and a hyphae-forming fungal strain that expand together across a nutrient-amended surface, we show that a hyphal network increases the spatial intermixing and extent of range expansion of the bacterial strains. This is true regardless of the type of interaction (competition or resource cross-feeding) imposed between the bacterial strains. We further show that the underlying cause is that flagellar motility drives bacterial dispersal along the hyphal network, which counteracts the purifying effects of ecological drift at the expansion frontier. We finally demonstrate that hyphae-mediated spatial intermixing increases the conjugation-mediated spread of plasmid-encoded antibiotic resistance. In conclusion, fungal hyphae are important regulators of bacterial diversity and promote plasmid-mediated functional novelty during range expansion in an interaction-independent manner.
Collapse
Affiliation(s)
- Chujin Ruan
- College of Land Science and Technology, China Agricultural University, 100193 Beijing, China; Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
| | - Josep Ramoneda
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA
| | - Guram Gogia
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Department of Environmental Systems Science, Swiss Federal Institute of Technology, 8092 Zürich, Switzerland
| | - Gang Wang
- College of Land Science and Technology, China Agricultural University, 100193 Beijing, China; National Black Soil & Agriculture Research, China Agricultural University, 100193 Beijing, China.
| | - David R Johnson
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
3
|
Microbial Involvement in the Bioremediation of Total Petroleum Hydrocarbon Polluted Soils: Challenges and Perspectives. ENVIRONMENTS 2022. [DOI: 10.3390/environments9040052] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nowadays, soil contamination by total petroleum hydrocarbons is still one of the most widespread forms of contamination. Intervention technologies are consolidated; however, full-scale interventions turn out to be not sustainable. Sustainability is essential not only in terms of costs, but also in terms of restoration of the soil resilience. Bioremediation has the possibility to fill the gap of sustainability with proper knowledge. Bioremediation should be optimized by the exploitation of the recent “omic” approaches to the study of hydrocarburoclastic microbiomes. To reach the goal, an extensive and deep knowledge in the study of bacterial and fungal degradative pathways, their interactions within microbiomes and of microbiomes with the soil matrix has to be gained. “Omic” approaches permits to study both the culturable and the unculturable soil microbial communities active in degradation processes, offering the instruments to identify the key organisms responsible for soil contaminant depletion and restoration of soil resilience. Tools for the investigation of both microbial communities, their degradation pathways and their interaction, will be discussed, describing the dedicated genomic and metagenomic approaches, as well as the interpretative tools of the deriving data, that are exploitable for both optimizing bio-based approaches for the treatment of total petroleum hydrocarbon contaminated soils and for the correct scaling up of the technologies at the industrial scale.
Collapse
|
4
|
Arellano-Caicedo C, Ohlsson P, Bengtsson M, Beech JP, Hammer EC. Habitat geometry in artificial microstructure affects bacterial and fungal growth, interactions, and substrate degradation. Commun Biol 2021; 4:1226. [PMID: 34702996 PMCID: PMC8548513 DOI: 10.1038/s42003-021-02736-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 10/01/2021] [Indexed: 11/25/2022] Open
Abstract
Microhabitat conditions determine the magnitude and speed of microbial processes but have been challenging to investigate. In this study we used microfluidic devices to determine the effect of the spatial distortion of a pore space on fungal and bacterial growth, interactions, and substrate degradation. The devices contained channels differing in bending angles and order. Sharper angles reduced fungal and bacterial biomass, especially when angles were repeated in the same direction. Substrate degradation was only decreased by sharper angles when fungi and bacteria were grown together. Investigation at the cellular scale suggests that this was caused by fungal habitat modification, since hyphae branched in sharp and repeated turns, blocking the dispersal of bacteria and the substrate. Our results demonstrate how the geometry of microstructures can influence microbial activity. This can be transferable to soil pore spaces, where spatial occlusion and microbial feedback on microstructures is thought to explain organic matter stabilization.
Collapse
Affiliation(s)
| | - Pelle Ohlsson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Martin Bengtsson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Jason P Beech
- Division of Solid State Physics, Lund University, Lund, Sweden
| | | |
Collapse
|
5
|
Ramdass AC, Rampersad SN. Molecular signatures of Janthinobacterium lividum from Trinidad support high potential for crude oil metabolism. BMC Microbiol 2021; 21:287. [PMID: 34670489 PMCID: PMC8527658 DOI: 10.1186/s12866-021-02346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022] Open
Abstract
Background Janthinobacterium lividum is considered to be a psychrotrophic bacterial species. For the first time in the literature, J. lividum strains were isolated from Trinidad presenting with atypical features - hydrocarbonoclastic and able to survive in a tropical environment. Methods Identification of the Trinidad strains was carried out through 16S rRNA phylogenetic analysis. Gene-specific primers were designed to target the VioA which encodes violacein pigment and the EstA/B gene which encodes secreted extracellular lipase. Bioinformatics analyses were carried out on the nucleotide and amino acid sequences of VioA and EstA/B genes of the Trinidad Janthinobacterium strains to assess functionality and phylogenetic relatedness to other Janthinobacterium sequences specifically and more broadly, to other members of the Oxalobacteraceae family of betaproteobacteria. Results 16S rRNA confirmed the identity of the Trinidad strains as J. lividum and resolved three of the Trinidad strains at the intra-specific level. Typical motility patterns of this species were recorded. VioAp sequences were highly conserved, however, synonymous substitutions located outside of the critical sites for enzyme function were detected for the Trinidad strains. Comparisons with PDB 6g2p model from aa231 to aa406 further indicated no functional disruption of the VioA gene of the Trinidad strains. Phylogeny of the VioA protein sequences inferred placement of all J. lividum taxa into a highly supported species-specific clade (bs = 98%). EstA/Bp sequences were highly conserved, however, synonymous substitutions were detected that were unique to the Trinidad strains. Phylogenetic inference positioned the Trinidad consensus VioA and EstA protein sequences in a clearly distinct branch. Conclusions The findings showed that the primary sequence of VioAp and EstA/Bp were unique to the Trinidad strains and these molecular signatures were reflected in phylogenetic inference. Our results supported chemotaxis, possible elective inactivation of VioA gene expression and secreted lipase activity as survival mechanisms of the Trinidad strains in petrogenic conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02346-4.
Collapse
Affiliation(s)
- Amanda C Ramdass
- Biochemistry Research Lab (Rm216), Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Sephra N Rampersad
- Biochemistry Research Lab (Rm216), Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago.
| |
Collapse
|
6
|
Abstract
Understanding the interactive dynamics between fungal and bacterial communities is important to gain predictive knowledge on ecosystem functioning. However, little is known about the mechanisms behind fungal-bacterial associations and the directionality of species interactions. Fungal-bacterial interactions play a key role in the functioning of many ecosystems. Thus, understanding their interactive dynamics is of central importance for gaining predictive knowledge on ecosystem functioning. However, it is challenging to disentangle the mechanisms behind species associations from observed co-occurrence patterns, and little is known about the directionality of such interactions. Here, we applied joint species distribution modeling to high-throughput sequencing data on co-occurring fungal and bacterial communities in deadwood to ask whether fungal and bacterial co-occurrences result from shared habitat use (i.e., deadwood’s properties) or whether there are fungal-bacterial interactive associations after habitat characteristics are taken into account. Moreover, we tested the hypothesis that the interactions are mainly modulated through fungal communities influencing bacterial communities. For that, we quantified how much the predictive power of the joint species distribution models for bacterial and fungal community improved when accounting for the other community. Our results show that fungi and bacteria form tight association networks (i.e., some species pairs co-occur more frequently and other species pairs co-occur less frequently than expected by chance) in deadwood that include common (or opposite) responses to the environment as well as (potentially) biotic interactions. Additionally, we show that information about the fungal occurrences and abundances increased the power to predict the bacterial abundances substantially, whereas information about the bacterial occurrences and abundances increased the power to predict the fungal abundances much less. Our results suggest that fungal communities may mainly affect bacteria in deadwood. IMPORTANCE Understanding the interactive dynamics between fungal and bacterial communities is important to gain predictive knowledge on ecosystem functioning. However, little is known about the mechanisms behind fungal-bacterial associations and the directionality of species interactions. Applying joint species distribution modeling to high-throughput sequencing data on co-occurring fungal-bacterial communities in deadwood, we found evidence that nonrandom fungal-bacterial associations derive from shared habitat use as well as (potentially) biotic interactions. Importantly, the combination of cross-validations and conditional cross-validations helped us to answer the question about the directionality of the biotic interactions, providing evidence that suggests that fungal communities may mainly affect bacteria in deadwood. Our modeling approach may help gain insight into the directionality of interactions between different components of the microbiome in other environments.
Collapse
|
7
|
König S, Vogel HJ, Harms H, Worrich A. Physical, Chemical and Biological Effects on Soil Bacterial Dynamics in Microscale Models. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00053] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
8
|
König S, Köhnke MC, Firle AL, Banitz T, Centler F, Frank K, Thullner M. Disturbance Size Can Be Compensated for by Spatial Fragmentation in Soil Microbial Ecosystems. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00290] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
9
|
Appolinario LR, Tschoeke D, Paixão RVS, Venas T, Calegario G, Leomil L, Silva BS, Thompson CC, Thompson FL. Metagenomics sheds light on the metabolic repertoire of oil-biodegrading microbes of the South Atlantic Ocean. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:295-304. [PMID: 30901643 DOI: 10.1016/j.envpol.2019.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 02/27/2019] [Accepted: 03/03/2019] [Indexed: 06/09/2023]
Abstract
Unplanned oil spills during offshore oil production are a serious problem for the industry and the marine environment. Here we assess the biodegradation potential of marine microorganisms from three water depths in the Campos Basin (South Atlantic Ocean): (i) 5 m (surface), (ii) ∼80 m (chlorophyll maximum layer), and (iii) ∼1200 m (near the bottom). After incubating seawater samples with or without crude oil for 52 days, we used metagenomics and classic microbiology techniques to analyze microbial abundance and diversity, and measured physical-chemical parameters to better understand biodegradation processes. We observed increased microbial abundance and concomitant decreases in dissolved oxygen and hydrocarbon concentrations, indicating oil biodegradation in the three water depths treatments within approximately 27 days. An increase in metagenomic sequences of oil-degrading archaea, fungi, and bacteria (Alcanivorax, Alteromonas, Colwellia, Marinobacter, and Pseudomonas) accompanied by a significant increase in metagenomic sequences involved in the degradation of aromatic compounds indicate that crude oil promotes the growth of microorganisms with oil degradation potential. The abundance of genes involved in biodegrading benzene, toluene, ethylbenzene, xylene, alkanes, and poly-aromatic hydrocarbons peaked approximately 3 days after oil addition. All 12 novel metagenome-assembled genomes contained genes involved in hydrocarbon degradation, indicating the oil-degrading potential of planktonic microbes in the Campos Basin.
Collapse
Affiliation(s)
- Luciana R Appolinario
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Diogo Tschoeke
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Center of Technology - Biomedical Engineer Program - COPPE, UFRJ, Rio de Janeiro, Brazil
| | - Raphael V S Paixão
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Tainá Venas
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Gabriela Calegario
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Luciana Leomil
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Bruno S Silva
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Cristiane C Thompson
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fabiano L Thompson
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Center of Technology - CT2, SAGE-COPPE, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Deveau A, Bonito G, Uehling J, Paoletti M, Becker M, Bindschedler S, Hacquard S, Hervé V, Labbé J, Lastovetsky OA, Mieszkin S, Millet LJ, Vajna B, Junier P, Bonfante P, Krom BP, Olsson S, van Elsas JD, Wick LY. Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev 2018; 42:335-352. [PMID: 29471481 DOI: 10.1093/femsre/fuy008] [Citation(s) in RCA: 336] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 02/16/2018] [Indexed: 12/14/2022] Open
Abstract
Fungi and bacteria are found living together in a wide variety of environments. Their interactions are significant drivers of many ecosystem functions and are important for the health of plants and animals. A large number of fungal and bacterial families engage in complex interactions that lead to critical behavioural shifts of the microorganisms ranging from mutualism to antagonism. The importance of bacterial-fungal interactions (BFI) in environmental science, medicine and biotechnology has led to the emergence of a dynamic and multidisciplinary research field that combines highly diverse approaches including molecular biology, genomics, geochemistry, chemical and microbial ecology, biophysics and ecological modelling. In this review, we discuss recent advances that underscore the roles of BFI across relevant habitats and ecosystems. A particular focus is placed on the understanding of BFI within complex microbial communities and in regard of the metaorganism concept. We also discuss recent discoveries that clarify the (molecular) mechanisms involved in bacterial-fungal relationships, and the contribution of new technologies to decipher generic principles of BFI in terms of physical associations and molecular dialogues. Finally, we discuss future directions for research in order to stimulate synergy within the BFI research area and to resolve outstanding questions.
Collapse
Affiliation(s)
- Aurélie Deveau
- Université de Lorraine, INRA, UMR IAM, 54280 Champenoux, France
| | - Gregory Bonito
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Jessie Uehling
- Biology Department, Duke University, Box 90338, Durham, NC 27705, USA.,Plant and Microbial Biology, University of California, Berkeley, CA 94703, USA
| | - Mathieu Paoletti
- Institut de Biologie et Génétique Cellulaire, UMR 5095 CNRS et Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux cedex, France
| | - Matthias Becker
- IGZ, Leibniz-Institute of Vegetable and Ornamental Crops, 14979 Großbeeren, Germany
| | - Saskia Bindschedler
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Stéphane Hacquard
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Vincent Hervé
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland.,Laboratory of Biogeosciences, Institute of Earth Surface Dynamics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Jessy Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Olga A Lastovetsky
- Graduate Field of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Sophie Mieszkin
- Université de Lorraine, INRA, UMR IAM, 54280 Champenoux, France
| | - Larry J Millet
- Joint Institute for Biological Science, University of Tennessee, and the Biosciences Division of Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Balázs Vajna
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Paola Bonfante
- Department of Life Science and Systems Biology, University of Torino, 10125 Torino, Italy
| | - Bastiaan P Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry, G. Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Stefan Olsson
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China
| | - Jan Dirk van Elsas
- Microbial Ecology group, GELIFES, University of Groningen, 9747 Groningen, The Netherlands
| | - Lukas Y Wick
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
11
|
Worrich A, Wick LY, Banitz T. Ecology of Contaminant Biotransformation in the Mycosphere: Role of Transport Processes. ADVANCES IN APPLIED MICROBIOLOGY 2018; 104:93-133. [PMID: 30143253 DOI: 10.1016/bs.aambs.2018.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fungi and bacteria often share common microhabitats. Their co-occurrence and coevolution give rise to manifold ecological interactions in the mycosphere, here defined as the microhabitats surrounding and affected by hyphae and mycelia. The extensive structure of mycelia provides ideal "logistic networks" for transport of bacteria and matter in structurally and chemically heterogeneous soil ecosystems. We describe the characteristics of the mycosphere as a unique and highly dynamic bacterial habitat and a hot spot for contaminant biotransformation. In particular, we emphasize the role of the mycosphere for (i) bacterial dispersal and colonization of subsurface interfaces and new habitats, (ii) matter transport processes and contaminant bioaccessibility, and (iii) the functional stability of microbial ecosystems when exposed to environmental fluctuations such as stress or disturbances. Adopting concepts from ecological theory, the chapter disentangles bacterial-fungal impacts on contaminant biotransformation in a systemic approach that interlinks empirical data from microbial ecosystems with simulation data from computational models. This approach provides generic information on key factors, processes, and ecological principles that drive microbial contaminant biotransformation in soil. We highlight that the transport processes create favorable habitat conditions for efficient bacterial contaminant degradation in the mycosphere. In-depth observation, understanding, and prediction of the role of mycosphere transport processes will support the use of bacterial-fungal interactions in nature-based solutions for contaminant biotransformation in natural and man-made ecosystems, respectively.
Collapse
Affiliation(s)
- Anja Worrich
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Lukas Y Wick
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany.
| | - Thomas Banitz
- Department of Ecological Modelling, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| |
Collapse
|
12
|
Spatiotemporal disturbance characteristics determine functional stability and collapse risk of simulated microbial ecosystems. Sci Rep 2018; 8:9488. [PMID: 29934540 PMCID: PMC6015006 DOI: 10.1038/s41598-018-27785-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 06/08/2018] [Indexed: 11/22/2022] Open
Abstract
Terrestrial microbial ecosystems are exposed to many types of disturbances varying in their spatial and temporal characteristics. The ability to cope with these disturbances is crucial for maintaining microbial ecosystem functions, especially if disturbances recur regularly. Thus, understanding microbial ecosystem dynamics under recurrent disturbances and identifying drivers of functional stability and thresholds for functional collapse is important. Using a spatially explicit ecological model of bacterial growth, dispersal, and substrate consumption, we simulated spatially heterogeneous recurrent disturbances and investigated the dynamic response of pollutant biodegradation – exemplarily for an important ecosystem function. We found that thresholds for functional collapse are controlled by the combination of disturbance frequency and spatial configuration (spatiotemporal disturbance regime). For rare disturbances, the occurrence of functional collapse is promoted by low spatial disturbance fragmentation. For frequent disturbances, functional collapse is almost inevitable. Moreover, the relevance of bacterial growth and dispersal for functional stability also depends on the spatiotemporal disturbance regime. Under disturbance regimes with moderate severity, microbial properties can strongly affect functional stability and shift the threshold for functional collapse. Similarly, networks facilitating bacterial dispersal can delay functional collapse. Consequently, measures to enhance or sustain bacterial growth/dispersal are promising strategies to prevent functional collapses under moderate disturbance regimes.
Collapse
|
13
|
König S, Worrich A, Banitz T, Harms H, Kästner M, Miltner A, Wick LY, Frank K, Thullner M, Centler F. Functional Resistance to Recurrent Spatially Heterogeneous Disturbances Is Facilitated by Increased Activity of Surviving Bacteria in a Virtual Ecosystem. Front Microbiol 2018; 9:734. [PMID: 29696013 PMCID: PMC5904252 DOI: 10.3389/fmicb.2018.00734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/28/2018] [Indexed: 11/13/2022] Open
Abstract
Bacterial degradation of organic compounds is an important ecosystem function with relevance to, e.g., the cycling of elements or the degradation of organic contaminants. It remains an open question, however, to which extent ecosystems are able to maintain such biodegradation function under recurrent disturbances (functional resistance) and how this is related to the bacterial biomass abundance. In this paper, we use a numerical simulation approach to systematically analyze the dynamic response of a microbial population to recurrent disturbances of different spatial distribution. The spatially explicit model considers microbial degradation, growth, dispersal, and spatial networks that facilitate bacterial dispersal mimicking effects of mycelial networks in nature. We find: (i) There is a certain capacity for high resistance of biodegradation performance to recurrent disturbances. (ii) If this resistance capacity is exceeded, spatial zones of different biodegradation performance develop, ranging from no or reduced to even increased performance. (iii) Bacterial biomass and biodegradation dynamics respond inversely to the spatial fragmentation of disturbances: overall biodegradation performance improves with increasing fragmentation, but bacterial biomass declines. (iv) Bacterial dispersal networks can enhance functional resistance against recurrent disturbances, mainly by reactivating zones in the core of disturbed areas, even though this leads to an overall reduction of bacterial biomass.
Collapse
Affiliation(s)
- Sara König
- Department of Ecological Modelling, The UFZ – Helmholtz Centre for Environmental Research, Leipzig, Germany
- Department of Environmental Microbiology, The UFZ – Helmholtz Centre for Environmental Research, Leipzig, Germany
- Institute of Environmental Systems Research, University of Osnabrück, Osnabrück, Germany
| | - Anja Worrich
- Department of Environmental Microbiology, The UFZ – Helmholtz Centre for Environmental Research, Leipzig, Germany
- Department of Environmental Biotechnology, The UFZ – Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Thomas Banitz
- Department of Ecological Modelling, The UFZ – Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, The UFZ – Helmholtz Centre for Environmental Research, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Matthias Kästner
- Department of Environmental Biotechnology, The UFZ – Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Anja Miltner
- Department of Environmental Biotechnology, The UFZ – Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Lukas Y. Wick
- Department of Environmental Microbiology, The UFZ – Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Karin Frank
- Department of Ecological Modelling, The UFZ – Helmholtz Centre for Environmental Research, Leipzig, Germany
- Institute of Environmental Systems Research, University of Osnabrück, Osnabrück, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Martin Thullner
- Department of Environmental Microbiology, The UFZ – Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Florian Centler
- Department of Environmental Microbiology, The UFZ – Helmholtz Centre for Environmental Research, Leipzig, Germany
| |
Collapse
|
14
|
Campeão ME, Reis L, Leomil L, de Oliveira L, Otsuki K, Gardinali P, Pelz O, Valle R, Thompson FL, Thompson CC. The Deep-Sea Microbial Community from the Amazonian Basin Associated with Oil Degradation. Front Microbiol 2017; 8:1019. [PMID: 28659874 PMCID: PMC5468453 DOI: 10.3389/fmicb.2017.01019] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/22/2017] [Indexed: 12/05/2022] Open
Abstract
One consequence of oil production is the possibility of unplanned accidental oil spills; therefore, it is important to evaluate the potential of indigenous microorganisms (both prokaryotes and eukaryotes) from different oceanic basins to degrade oil. The aim of this study was to characterize the microbial response during the biodegradation process of Brazilian crude oil, both with and without the addition of the dispersant Corexit 9500, using deep-sea water samples from the Amazon equatorial margin basins, Foz do Amazonas and Barreirinhas, in the dark and at low temperatures (4°C). We collected deep-sea samples in the field (about 2570 m below the sea surface), transported the samples back to the laboratory under controlled environmental conditions (5°C in the dark) and subsequently performed two laboratory biodegradation experiments that used metagenomics supported by classical microbiological methods and chemical analysis to elucidate both taxonomic and functional microbial diversity. We also analyzed several physical–chemical and biological parameters related to oil biodegradation. The concomitant depletion of dissolved oxygen levels, oil droplet density characteristic to oil biodegradation, and BTEX concentration with an increase in microbial counts revealed that oil can be degraded by the autochthonous deep-sea microbial communities. Indigenous bacteria (e.g., Alteromonadaceae, Colwelliaceae, and Alcanivoracaceae), archaea (e.g., Halobacteriaceae, Desulfurococcaceae, and Methanobacteriaceae), and eukaryotic microbes (e.g., Microsporidia, Ascomycota, and Basidiomycota) from the Amazonian margin deep-sea water were involved in biodegradation of Brazilian crude oil within less than 48-days in both treatments, with and without dispersant, possibly transforming oil into microbial biomass that may fuel the marine food web.
Collapse
Affiliation(s)
- Mariana E Campeão
- Institute of Biology, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Luciana Reis
- Institute of Biology, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Luciana Leomil
- Institute of Biology, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Louisi de Oliveira
- Institute of Biology, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Koko Otsuki
- Institute of Biology, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Piero Gardinali
- Department of Chemistry, Florida International University, MiamiFL, United States
| | - Oliver Pelz
- BP Exploration & Production Inc., HoustonTX, United States
| | - Rogerio Valle
- SAGE/COPPE, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Fabiano L Thompson
- Institute of Biology, Federal University of Rio de JaneiroRio de Janeiro, Brazil.,SAGE/COPPE, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Cristiane C Thompson
- Institute of Biology, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| |
Collapse
|
15
|
Catch me if you can: dispersal and foraging of Bdellovibrio bacteriovorus 109J along mycelia. ISME JOURNAL 2016; 11:386-393. [PMID: 27824344 DOI: 10.1038/ismej.2016.135] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/17/2016] [Accepted: 08/29/2016] [Indexed: 11/08/2022]
Abstract
To cope with heterogeneous environments and resource distributions, filamentous fungi have evolved a spatially extensive growth enabling their hyphae to penetrate air-water interfaces and pass through air-filled pores. Such mycelia are also known to act as dispersal networks for the mobilisation of bacteria ('fungal highways') and connection of microbial microhabitats. Hitherto, however, nothing is known about the effect of mycelia-based dispersal on interactions between bacterial predators and their prey and concomitant effects on biomass formation. We here hypothesise that mycelia enable the contact between predators and their prey and shape a prey's population. We investigated the impact of predation by Bdellovibrio bacteriovorus 109J on the growth of its potential prey Pseudomonas fluorescens LP6a in the presence of mycelia. Our data give evidence that hyphae increase the accessibility of the prey to B. bacteriovorus 109J and, hence, allow for efficient foraging and shaping of prey populations not seen in the absence of mycelia. To test our hypothesis tailored microbial landscapes were used for better reduction of emerging properties in complex systems. Our data suggest that mycelia have substantial influence on prey-predator relationship and hereby may promote the structure of prey and predator populations and, hence, may be a determinant for biomass formation in heterogeneous environments.
Collapse
|
16
|
Worrich A, König S, Banitz T, Centler F, Frank K, Thullner M, Harms H, Miltner A, Wick LY, Kästner M. Bacterial Dispersal Promotes Biodegradation in Heterogeneous Systems Exposed to Osmotic Stress. Front Microbiol 2016; 7:1214. [PMID: 27536297 PMCID: PMC4971104 DOI: 10.3389/fmicb.2016.01214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/21/2016] [Indexed: 11/13/2022] Open
Abstract
Contaminant biodegradation in soils is hampered by the heterogeneous distribution of degrading communities colonizing isolated microenvironments as a result of the soil architecture. Over the last years, soil salinization was recognized as an additional problem especially in arid and semiarid ecosystems as it drastically reduces the activity and motility of bacteria. Here, we studied the importance of different spatial processes for benzoate biodegradation at an environmentally relevant range of osmotic potentials (ΔΨo) using model ecosystems exhibiting a heterogeneous distribution of the soil-borne bacterium Pseudomonas putida KT2440. Three systematically manipulated scenarios allowed us to cover the effects of (i) substrate diffusion, (ii) substrate diffusion and autonomous bacterial dispersal, and (iii) substrate diffusion and autonomous as well as mediated bacterial dispersal along glass fiber networks mimicking fungal hyphae. To quantify the relative importance of the different spatial processes, we compared these heterogeneous scenarios to a reference value obtained for each ΔΨo by means of a quasi-optimal scenario in which degraders were ab initio homogeneously distributed. Substrate diffusion as the sole spatial process was insufficient to counteract the disadvantage due to spatial degrader heterogeneity at ΔΨo ranging from 0 to -1 MPa. In this scenario, only 13.8-21.3% of the quasi-optimal biodegradation performance could be achieved. In the same range of ΔΨo values, substrate diffusion in combination with bacterial dispersal allowed between 68.6 and 36.2% of the performance showing a clear downwards trend with decreasing ΔΨo. At -1.5 MPa, however, this scenario performed worse than the diffusion scenario, possibly as a result of energetic disadvantages associated with flagellum synthesis and emerging requirements to exceed a critical population density to resist osmotic stress. Network-mediated bacterial dispersal kept biodegradation almost consistently high with an average of 70.7 ± 7.8%, regardless of the strength of the osmotic stress. We propose that especially fungal network-mediated bacterial dispersal is a key process to achieve high functionality of heterogeneous microbial ecosystems also at reduced osmotic potentials. Thus, mechanical stress by, for example, soil homogenization should be kept low in order to preserve fungal network integrity.
Collapse
Affiliation(s)
- Anja Worrich
- UFZ - Helmholtz Centre for Environmental Research, Department of Environmental MicrobiologyLeipzig, Germany; UFZ - Helmholtz Centre for Environmental Research, Department of Environmental BiotechnologyLeipzig, Germany
| | - Sara König
- UFZ - Helmholtz Centre for Environmental Research, Department of Environmental MicrobiologyLeipzig, Germany; UFZ - Helmholtz Centre for Environmental Research, Department of Ecological ModellingLeipzig, Germany
| | - Thomas Banitz
- UFZ - Helmholtz Centre for Environmental Research, Department of Ecological Modelling Leipzig, Germany
| | - Florian Centler
- UFZ - Helmholtz Centre for Environmental Research, Department of Environmental Microbiology Leipzig, Germany
| | - Karin Frank
- UFZ - Helmholtz Centre for Environmental Research, Department of Ecological ModellingLeipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzig, Germany; Institute for Environmental Systems Research, University of OsnabrückOsnabrück, Germany
| | - Martin Thullner
- UFZ - Helmholtz Centre for Environmental Research, Department of Environmental Microbiology Leipzig, Germany
| | - Hauke Harms
- UFZ - Helmholtz Centre for Environmental Research, Department of Environmental MicrobiologyLeipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzig, Germany
| | - Anja Miltner
- UFZ - Helmholtz Centre for Environmental Research, Department of Environmental Biotechnology Leipzig, Germany
| | - Lukas Y Wick
- UFZ - Helmholtz Centre for Environmental Research, Department of Environmental Microbiology Leipzig, Germany
| | - Matthias Kästner
- UFZ - Helmholtz Centre for Environmental Research, Department of Environmental Biotechnology Leipzig, Germany
| |
Collapse
|
17
|
Otto S, Banitz T, Thullner M, Harms H, Wick LY. Effects of Facilitated Bacterial Dispersal on the Degradation and Emission of a Desorbing Contaminant. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6320-6326. [PMID: 27195517 DOI: 10.1021/acs.est.6b00567] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The quantitative relationship between a compound's availability for biological removal and ecotoxicity is a key issue for retrospective risk assessment and remediation approaches. Here, we investigated the impact of facilitated bacterial dispersal at a model soil-atmosphere interface on the release, degradation, and outgassing of a semivolatile contaminant. We designed a laboratory microcosm with passive dosing of phenanthrene (PHE) to a model soil-atmosphere interface (agar surface) in the presence and absence of glass fibers known to facilitate the dispersal of PHE-degrading Pseudomonas fluorescens LP6a. We observed that glass fibers (used as a model to mimic a fungal hyphal network) resulted in (i) increased bacterial surface coverage, (ii) effective degradation of matrix-bound PHE, and (iii) substantially reduced PHE emission to locations beyond the contamination zone even at low bacterial surface coverage. Our data suggest that bacterial dispersal networks such as mycelia promote the optimized spatial arrangement of microbial populations to allow for effective contaminant degradation and reduction of potential hazard to organisms beyond a contaminated zone.
Collapse
Affiliation(s)
| | | | | | - Hauke Harms
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig , Deutscher Platz 5e, 04103 Leipzig, Germany
| | | |
Collapse
|
18
|
Mycelium-Like Networks Increase Bacterial Dispersal, Growth, and Biodegradation in a Model Ecosystem at Various Water Potentials. Appl Environ Microbiol 2016; 82:2902-2908. [PMID: 26944849 DOI: 10.1128/aem.03901-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/02/2016] [Indexed: 11/20/2022] Open
Abstract
Fungal mycelia serve as effective dispersal networks for bacteria in water-unsaturated environments, thereby allowing bacteria to maintain important functions, such as biodegradation. However, poor knowledge exists on the effects of dispersal networks at various osmotic (Ψo) and matric (Ψm) potentials, which contribute to the water potential mainly in terrestrial soil environments. Here we studied the effects of artificial mycelium-like dispersal networks on bacterial dispersal dynamics and subsequent effects on growth and benzoate biodegradation at ΔΨo and ΔΨm values between 0 and -1.5 MPa. In a multiple-microcosm approach, we used a green fluorescent protein (GFP)-tagged derivative of the soil bacterium Pseudomonas putida KT2440 as a model organism and sodium benzoate as a representative of polar aromatic contaminants. We found that decreasing ΔΨo and ΔΨm values slowed bacterial dispersal in the system, leading to decelerated growth and benzoate degradation. In contrast, dispersal networks facilitated bacterial movement at ΔΨo and ΔΨm values between 0 and -0.5 MPa and thus improved the absolute biodegradation performance by up to 52 and 119% for ΔΨo and ΔΨm, respectively. This strong functional interrelationship was further emphasized by a high positive correlation between population dispersal, population growth, and degradation. We propose that dispersal networks may sustain the functionality of microbial ecosystems at low osmotic and matric potentials.
Collapse
|
19
|
Dechesne A, Badawi N, Aamand J, Smets BF. Fine scale spatial variability of microbial pesticide degradation in soil: scales, controlling factors, and implications. Front Microbiol 2014; 5:667. [PMID: 25538691 PMCID: PMC4257087 DOI: 10.3389/fmicb.2014.00667] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/17/2014] [Indexed: 11/16/2022] Open
Abstract
Pesticide biodegradation is a soil microbial function of critical importance for modern agriculture and its environmental impact. While it was once assumed that this activity was homogeneously distributed at the field scale, mounting evidence indicates that this is rarely the case. Here, we critically examine the literature on spatial variability of pesticide biodegradation in agricultural soil. We discuss the motivations, methods, and main findings of the primary literature. We found significant diversity in the approaches used to describe and quantify spatial heterogeneity, which complicates inter-studies comparisons. However, it is clear that the presence and activity of pesticide degraders is often highly spatially variable with coefficients of variation often exceeding 50% and frequently displays non-random spatial patterns. A few controlling factors have tentatively been identified across pesticide classes: they include some soil characteristics (pH) and some agricultural management practices (pesticide application, tillage), while other potential controlling factors have more conflicting effects depending on the site or the pesticide. Evidence demonstrating the importance of spatial heterogeneity on the fate of pesticides in soil has been difficult to obtain but modeling and experimental systems that do not include soil's full complexity reveal that this heterogeneity must be considered to improve prediction of pesticide biodegradation rates or of leaching risks. Overall, studying the spatial heterogeneity of pesticide biodegradation is a relatively new field at the interface of agronomy, microbial ecology, and geosciences and a wealth of novel data is being collected from these different disciplinary perspectives. We make suggestions on possible avenues to take full advantage of these investigations for a better understanding and prediction of the fate of pesticides in soil.
Collapse
Affiliation(s)
- Arnaud Dechesne
- Department of Environmental Engineering, Technical University of DenmarkLyngby, Denmark
| | - Nora Badawi
- Department of Geochemistry, Geological Survey of Denmark and GreenlandCopenhagen, Denmark
| | - Jens Aamand
- Department of Geochemistry, Geological Survey of Denmark and GreenlandCopenhagen, Denmark
| | - Barth F. Smets
- Department of Environmental Engineering, Technical University of DenmarkLyngby, Denmark
| |
Collapse
|
20
|
Nazir R, Tazetdinova DI, van Elsas JD. Burkholderia terrae BS001 migrates proficiently with diverse fungal hosts through soil and provides protection from antifungal agents. Front Microbiol 2014; 5:598. [PMID: 25426111 PMCID: PMC4227525 DOI: 10.3389/fmicb.2014.00598] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/22/2014] [Indexed: 11/26/2022] Open
Abstract
Soil bacteria can benefit from co-occurring soil fungi in respect of the acquisition of carbonaceous nutrients released by fungal hyphae and the access to novel territories in soil. Here, we investigated the capacity of the mycosphere-isolated bacterium Burkholderia terrae BS001 to comigrate through soil along with hyphae of the soil fungi Trichoderma asperellum, Rhizoctonia solani, Fusarium oxysporum, F. oxysporum pv lini, Coniochaeta ligniaria, Phanerochaete velutina, and Phallus impudicus. We used Lyophyllum sp. strain Karsten as the reference migration-inciting fungus. Bacterial migration through presterilized soil on the extending fungal hyphae was detected with six of the seven test fungi, with only Phallus impudicus not showing any bacterial transport. Much like with Lyophyllum sp. strain Karsten, intermediate (106–108 CFU g-1 dry soil) to high (>108 CFU g-1 dry soil) strain BS001 cell population sizes were found at the hyphal migration fronts of four fungi, i.e., T. asperellum, Rhizoctonia solani, F. oxysporum and F. oxysporum pv lini, whereas for two fungi, Coniochaeta ligniaria and Phanerochaete velutina, the migration responses were retarded and population sizes were lower (103–106 CFU g-1 dry soil). Consistent with previous data obtained with the reference fungus, migration with the migration-inciting fungi occurred only in the direction of the hyphal growth front. Remarkably, Burkholderia terrae BS001 provided protection from several antifungal agents to the canonical host Lyophyllum sp. strain Karsten. Specifically, this host was protected from Pseudomonas fluorescens strain CHA0 metabolites, as well as from the anti-fungal agent cycloheximide. Similar protection by strain BS001was observed for T. asperellum, and, to a lower extent, F. oxysporum and Rhizoctonia solani. The protective effect may be related to the consistent occurrence of biofilm-like cell layers or agglomerates at the surfaces of the protected fungi. The current study represents the first report of protection of soil fungi against antagonistic agents present in the soil provided by fungal-associated Burkholderia terrae cells.
Collapse
Affiliation(s)
- Rashid Nazir
- Department of Microbial Ecology, Centre for Ecological and Evolutionary Studies, University of Groningen Groningen, The Netherlands
| | - Diana I Tazetdinova
- Department of Microbial Ecology, Centre for Ecological and Evolutionary Studies, University of Groningen Groningen, The Netherlands
| | - Jan Dirk van Elsas
- Department of Microbial Ecology, Centre for Ecological and Evolutionary Studies, University of Groningen Groningen, The Netherlands
| |
Collapse
|
21
|
Ellegaard-Jensen L, Knudsen BE, Johansen A, Albers CN, Aamand J, Rosendahl S. Fungal-bacterial consortia increase diuron degradation in water-unsaturated systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 466-467:699-705. [PMID: 23973535 DOI: 10.1016/j.scitotenv.2013.07.095] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/25/2013] [Accepted: 07/25/2013] [Indexed: 06/02/2023]
Abstract
Bioremediation of pesticide-polluted soil may be more efficient using mixed fungal-bacterial cultures rather than the individual strains alone. This may be due to cooperative catabolism, where the first organism transforms the pollutant to products which are then used by the second organism. In addition, fungal hyphae may function as transport vectors for bacteria, thereby facilitating a more effective spreading of degrader organisms in the soil. A more rapid mineralization of the phenylurea herbicide diuron was found in sand with added microbial consortia consisting of both degrading bacteria and fungi. Facilitated transport of bacteria by fungal hyphae was demonstrated using a system where herbicide-spiked sand was separated from the consortium by a layer of sterile glass beads. Several fungal-bacterial consortia were investigated by combining different diuron-degrading bacteria (Sphingomonas sp. SRS2, Variovorax sp. SRS16, and Arthrobacter globiformis D47) and fungi (Mortierella sp. LEJ702 and LEJ703). The fastest mineralization of (14)C-labeled diuron was seen in the consortium consisting of Mortierella LEJ702, Variovorax SRS16, and A. globiformis D47, as measured by evolved (14)CO2. In addition, the production of diuron metabolites by this consortium was minimal. Analyses of 16S rDNA suggested that bacteria were transported more efficiently by LEJ702 than by LEJ703. Finally, it was determined that the fungal growth differed for LEJ702 and LEJ703 in the three-member consortia. This study demonstrates new possibilities for applying efficient fungal-bacterial consortia for bioremediation of polluted soil.
Collapse
Affiliation(s)
- Lea Ellegaard-Jensen
- Department of Biology, Copenhagen University, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark; Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, DK-1350 Copenhagen K, Denmark.
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
The maintenance of energetically costly flagella by bacteria in non-water-saturated media, such as soil, still presents an evolutionary conundrum. Potential explanations have focused on rare flooding events allowing dispersal. Such scenarios, however, overlook bacterial dispersal along mycelia as a possible transport mechanism in soils. The hypothesis tested in this study is that dispersal along fungal hyphae may lead to an increase in the fitness of flagellated bacteria and thus offer an alternative explanation for the maintenance of flagella even in unsaturated soils. Dispersal along fungal hyphae was shown for a diverse array of motile bacteria. To measure the fitness effect of dispersal, additional experiments were conducted in a model system mimicking limited dispersal, using Pseudomonas putida KT2440 and its nonflagellated (ΔfliM) isogenic mutant in the absence or presence of Morchella crassipes mycelia. In the absence of the fungus, flagellar motility was beneficial solely under conditions of water saturation allowing dispersal, while under conditions limiting dispersal, the nonflagellated mutant exhibited a higher level of fitness than the wild-type strain. In contrast, in the presence of a mycelial network under conditions limiting dispersal, the flagellated strain was able to disperse using the mycelial network and had a higher level of fitness than the mutant. On the basis of these results, we propose that the benefit of mycelium-associated dispersal helps explain the persistence of flagellar motility in non-water-saturated environments.
Collapse
|
23
|
Banitz T, Johst K, Wick LY, Schamfuß S, Harms H, Frank K. Highways versus pipelines: contributions of two fungal transport mechanisms to efficient bioremediation. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:211-218. [PMID: 23584964 DOI: 10.1111/1758-2229.12002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 09/19/2012] [Accepted: 09/23/2012] [Indexed: 06/02/2023]
Abstract
Based on experimental studies, two different fungus-mediated transport mechanisms have been suggested to facilitate the bacterial degradation of organic soil pollutants: bacteria may use liquid films around fungal hyphae for quick dispersal ('fungal highways'), and fungi may take up and translocate pollutants through their mycelial network ('fungal pipelines'). Both mechanisms are anticipated to enhance the bioavailability of pollutants to degrading bacteria. Using a microbial simulation model, we therefore investigated their respective efficiency in increasing biodegradation performance. We analysed networks that act either as bacterial dispersal vectors or as pollutant translocation vectors or as a combination of both. Our results suggest that each mechanism can improve biodegradation performance. The degree of improvement, however, varies distinctly depending on the environmental conditions, and is even negligible under certain conditions. Mycelial networks acting as 'highways' allow bacteria to overcome motility restrictions and reach remote areas, whereas networks acting as 'pipelines' may initiate degradation by bringing remote pollutants to bacteria. As a consequence, highest biodegradation improvements often emerge from the combination of both mechanisms. We conclude that 'fungal highways' as well as 'fungal pipelines' should be considered for developing novel bioremediation strategies based on fungus-mediated transport in soils.
Collapse
Affiliation(s)
- Thomas Banitz
- Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
24
|
Furuno S, Foss S, Wild E, Jones KC, Semple KT, Harms H, Wick LY. Mycelia promote active transport and spatial dispersion of polycyclic aromatic hydrocarbons. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:5463-5470. [PMID: 22559873 DOI: 10.1021/es300810b] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
To cope with heterogeneous subsurface environments mycelial microorganisms have developed a unique ramified growth form. By extending hyphae, they can obtain nutrients from remote places and transport them even through air gaps and in small pore spaces, repectively. To date, studies have been focusing on the role that networks play in the distribution of nutrients. Here, we investigated the role of mycelia for the translocation of nonessential substances, using polycyclic aromatic hydrocarbons (PAHs) as model compounds. We show that the hyphae of the mycelial soil oomycete Pythium ultimum function as active translocation vectors for a wide range of PAHs. Visualization by two-photon excitation microscopy (TPEM) demonstrated the uptake and accumulation of phenanthrene (PHE) in lipid vesicles and its active transport by cytoplasmic streaming of the hyphae ('hyphal pipelines'). In mycelial networks, contaminants were translocated over larger distances than by diffusion. Given their transport capacity and ubiquity, hyphae may substantially distribute remote hydrophobic contaminants in soil, thereby improving their bioavailability to bacterial degradation. Hyphal contaminant dispersal may provide an untapped potential for future bioremediation approaches.
Collapse
Affiliation(s)
- Shoko Furuno
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ , Permoserstrasse 15, 04318 Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Banitz T, Johst K, Wick LY, Fetzer I, Harms H, Frank K. The relevance of conditional dispersal for bacterial colony growth and biodegradation. MICROBIAL ECOLOGY 2012; 63:339-47. [PMID: 21826490 DOI: 10.1007/s00248-011-9927-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 07/23/2011] [Indexed: 05/24/2023]
Abstract
Bacterial degradation is an ecosystem service that offers a promising method for the remediation of contaminated soils. To assess the dynamics and efficiency of bacterial degradation, reliable microbial simulation models, along with the relevant processes, are required. We present an approach aimed at improving reliability by studying the relevance and implications of an important concept from theoretical ecology in the context of a bacterial system: conditional dispersal denoting that the dispersal strategy depends on environmental conditions. Different dispersal strategies, which either incorporate or neglect this concept, are implemented in a bacterial model and results are compared to data obtained from laboratory experiments with Pseudomonas putida colonies growing on glucose agar. Our results show that, with respect to the condition of resource uptake, the model's correspondence to experimental data is significantly higher for conditional than for unconditional bacterial dispersal. In particular, these results support the hypothesis that bacteria disperse less when resources are abundant. We also show that the dispersal strategy has a considerable impact on model predictions for bacterial degradation of resources: disregarding conditional bacterial dispersal can lead to overestimations when assessing the performance of this ecosystem service.
Collapse
Affiliation(s)
- Thomas Banitz
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Furuno S, Remer R, Chatzinotas A, Harms H, Wick LY. Use of mycelia as paths for the isolation of contaminant-degrading bacteria from soil. Microb Biotechnol 2011; 5:142-8. [PMID: 22014110 PMCID: PMC3815281 DOI: 10.1111/j.1751-7915.2011.00309.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Mycelia of fungi and soil oomycetes have recently been found to act as effective paths boosting bacterial mobility and bioaccessibility of contaminants in vadose environments. In this study, we demonstrate that mycelia can be used for targeted separation and isolation of contaminant‐degrading bacteria from soil. In a ‘proof of concept’ study we developed a novel approach to isolate bacteria from contaminated soil using mycelia of the soil oomycete Pythium ultimum as translocation networks for bacteria and the polycyclic aromatic hydrocarbon naphthalene (NAPH) as selective carbon source. NAPH‐degrading bacterial isolates were affiliated with the genera Xanthomonas, Rhodococcus and Pseudomonas. Except for Rhodococcus the NAPH‐degrading isolates exhibited significant motility as observed in standard swarming and swimming motility assays. All steps of the isolation procedures were followed by cultivation‐independent terminal 16S rRNA gene terminal fragment length polymorphism (T‐RFLP) analysis. Interestingly, a high similarity (63%) between both the cultivable NAPH‐degrading migrant and the cultivable parent soil bacterial community profiles was observed. This suggests that mycelial networks generally confer mobility to native, contaminant‐degrading soil bacteria. Targeted, mycelia‐based dispersal hence may have high potential for the isolation of bacteria with biotechnologically useful properties.
Collapse
Affiliation(s)
- Shoko Furuno
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, 04318 Leipzig, Germany
| | | | | | | | | |
Collapse
|
28
|
Selected papers presented in oral and poster sessions at the 2009 conference of the International Society for Ecological Modelling (ISEM) in Quebec City, Canada, October 6–9, 2009. Ecol Modell 2011. [DOI: 10.1016/j.ecolmodel.2011.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|