1
|
Stock A, Murray CC, Gregr EJ, Steenbeek J, Woodburn E, Micheli F, Christensen V, Chan KMA. Exploring multiple stressor effects with Ecopath, Ecosim, and Ecospace: Research designs, modeling techniques, and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161719. [PMID: 36693571 DOI: 10.1016/j.scitotenv.2023.161719] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/04/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Understanding the cumulative effects of multiple stressors is a research priority in environmental science. Ecological models are a key component of tackling this challenge because they can simulate interactions between the components of an ecosystem. Here, we ask, how has the popular modeling platform Ecopath with Ecosim (EwE) been used to model human impacts related to climate change, land and sea use, pollution, and invasive species? We conducted a literature review encompassing 166 studies covering stressors other than fishing mostly in aquatic ecosystems. The most modeled stressors were physical climate change (60 studies), species introductions (22), habitat loss (21), and eutrophication (20), using a range of modeling techniques. Despite this comprehensive coverage, we identified four gaps that must be filled to harness the potential of EwE for studying multiple stressor effects. First, only 12% of studies investigated three or more stressors, with most studies focusing on single stressors. Furthermore, many studies modeled only one of many pathways through which each stressor is known to affect ecosystems. Second, various methods have been applied to define environmental response functions representing the effects of single stressors on species groups. These functions can have a large effect on the simulated ecological changes, but best practices for deriving them are yet to emerge. Third, human dimensions of environmental change - except for fisheries - were rarely considered. Fourth, only 3% of studies used statistical research designs that allow attribution of simulated ecosystem changes to stressors' direct effects and interactions, such as factorial (computational) experiments. None made full use of the statistical possibilities that arise when simulations can be repeated many times with controlled changes to the inputs. We argue that all four gaps are feasibly filled by integrating ecological modeling with advances in other subfields of environmental science and in computational statistics.
Collapse
Affiliation(s)
- A Stock
- Institute for Resources, Environment and Sustainability, University of British Columbia, AERL Building, 429-2202 Main Mall, Vancouver V6T 1Z4, BC, Canada.
| | - C C Murray
- Fisheries and Oceans Canada, Institute of Ocean Sciences, 9860 West Saanich Road, Sidney, BC V8L 5T5, Canada
| | - E J Gregr
- Institute for Resources, Environment and Sustainability, University of British Columbia, AERL Building, 429-2202 Main Mall, Vancouver V6T 1Z4, BC, Canada; SciTech Environmental Consulting, Vancouver, BC, Canada
| | - J Steenbeek
- Ecopath International Initiative (EII) Research Association, Barcelona, Spain
| | - E Woodburn
- Institute for Resources, Environment and Sustainability, University of British Columbia, AERL Building, 429-2202 Main Mall, Vancouver V6T 1Z4, BC, Canada
| | - F Micheli
- Hopkins Marine Station, Oceans Department, Stanford University, Pacific Grove, CA 93950, USA; Stanford Center for Ocean Solutions, Pacific Grove, CA 93950, USA
| | - V Christensen
- Ecopath International Initiative (EII) Research Association, Barcelona, Spain; Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| | - K M A Chan
- Institute for Resources, Environment and Sustainability, University of British Columbia, AERL Building, 429-2202 Main Mall, Vancouver V6T 1Z4, BC, Canada; Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Florko KRN, Tai TC, Cheung WWL, Ferguson SH, Sumaila UR, Yurkowski DJ, Auger-Méthé M. Predicting how climate change threatens the prey base of Arctic marine predators. Ecol Lett 2021; 24:2563-2575. [PMID: 34469020 DOI: 10.1111/ele.13866] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/06/2021] [Indexed: 11/29/2022]
Abstract
Arctic sea ice loss has direct consequences for predators. Climate-driven distribution shifts of native and invasive prey species may exacerbate these consequences. We assessed potential changes by modelling the prey base of a widely distributed Arctic predator (ringed seal; Pusa hispida) in a sentinel area for change (Hudson Bay) under high- and low-greenhouse gas emission scenarios from 1950 to 2100. All changes were relatively negligible under the low-emission scenario, but under the high-emission scenario, we projected a 50% decline in the abundance of the well-distributed, ice-adapted and energy-rich Arctic cod (Boreogadus saida) and an increase in the abundance of smaller temperate-associated fish in southern and coastal areas. Furthermore, our model predicted that all fish species declined in mean body size, but a 29% increase in total prey biomass. Declines in energy-rich prey and restrictions in their spatial range are likely to have cascading effects on Arctic predators.
Collapse
Affiliation(s)
- Katie R N Florko
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Travis C Tai
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| | - William W L Cheung
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steven H Ferguson
- Department of Fisheries and Oceans, Freshwater Institute, Winnipeg, Manitoba, Canada.,Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - U Rashid Sumaila
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| | - David J Yurkowski
- Department of Fisheries and Oceans, Freshwater Institute, Winnipeg, Manitoba, Canada.,Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Marie Auger-Méthé
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Statistics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Gissi E, Manea E, Mazaris AD, Fraschetti S, Almpanidou V, Bevilacqua S, Coll M, Guarnieri G, Lloret-Lloret E, Pascual M, Petza D, Rilov G, Schonwald M, Stelzenmüller V, Katsanevakis S. A review of the combined effects of climate change and other local human stressors on the marine environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142564. [PMID: 33035971 DOI: 10.1016/j.scitotenv.2020.142564] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Climate change (CC) is a key, global driver of change of marine ecosystems. At local and regional scales, other local human stressors (LS) can interact with CC and modify its effects on marine ecosystems. Understanding the response of the marine environment to the combined effects of CC and LS is crucial to inform marine ecosystem-based management and planning, yet our knowledge of the potential effects of such interactions is fragmented. At a global scale, we explored how cumulative effect assessments (CEAs) have addressed CC in the marine realm and discuss progress and shortcomings of current approaches. For this we conducted a systematic review on how CEAs investigated at different levels of biological organization ecological responses, functional aspects, and the combined effect of CC and HS. Globally, the effects of 52 LS and of 27 CC-related stressors on the marine environment have been studied in combination, such as industrial fisheries with change in temperature, or sea level rise with artisanal fisheries, marine litter, change in sediment load and introduced alien species. CC generally intensified the effects of LS at species level. At trophic groups and ecosystem levels, the effects of CC either intensified or mitigated the effects of other HS depending on the trophic groups or the environmental conditions involved, thus suggesting that the combined effects of CC and LS are context-dependent and vary among and within ecosystems. Our results highlight that large-scale assessments on the spatial interaction and combined effects of CC and LS remain limited. More importantly, our results strengthen the urgent need of CEAs to capture local-scale effects of stressors that can exacerbate climate-induced changes. Ultimately, this will allow identifying management measures that aid counteracting CC effects at relevant scales.
Collapse
Affiliation(s)
- Elena Gissi
- IUAV University of Venice, Tolentini 191, Santa Croce, 30135 Venice, Italy.
| | - Elisabetta Manea
- IUAV University of Venice, Tolentini 191, Santa Croce, 30135 Venice, Italy
| | - Antonios D Mazaris
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Simonetta Fraschetti
- Università Federico II di Napoli, Napoli, Italy; Consorzio Universitario per le Scienze del Mare, P.le Flaminio 9, 00196 Rome, Italy; Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Vasiliki Almpanidou
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stanislao Bevilacqua
- Department of Life Sciences, University of Trieste, Trieste, Italy; Consorzio Universitario per le Scienze del Mare, P.le Flaminio 9, 00196 Rome, Italy
| | - Marta Coll
- Institute of Marine Science, ICM-CSIC, Passeig Marítim de la Barceloneta, no 37-49, 08003 Barcelona, Spain; Ecopath International Initiative, Barcelona, Spain
| | - Giuseppe Guarnieri
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy; Consorzio Universitario per le Scienze del Mare, P.le Flaminio 9, 00196 Rome, Italy
| | - Elena Lloret-Lloret
- Institute of Marine Science, ICM-CSIC, Passeig Marítim de la Barceloneta, no 37-49, 08003 Barcelona, Spain; Ecopath International Initiative, Barcelona, Spain
| | - Marta Pascual
- Basque Centre for Climate Change (BC3), Edificio Sede N°1 Planta 1/Parque Científico UPV-EHU, Barrio Sarriena, s/n, 48940 Leioa, Bizkaia, Spain
| | - Dimitra Petza
- Department of Marine Sciences, University of the Aegean, University Hill, 81100 Mytilene, Greece; Directorate for Fisheries Policy & Fishery Resources Utilisation, Directorate General for Fisheries, Ministry of Rural Development & Food, 150 Syggrou Avenue, 17671 Athens, Greece
| | - Gil Rilov
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Haifa 31080, Israel
| | - Maura Schonwald
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Haifa 31080, Israel
| | | | - Stelios Katsanevakis
- Department of Marine Sciences, University of the Aegean, University Hill, 81100 Mytilene, Greece
| |
Collapse
|
4
|
Willsteed E, Gill AB, Birchenough SNR, Jude S. Assessing the cumulative environmental effects of marine renewable energy developments: Establishing common ground. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 577:19-32. [PMID: 27817927 DOI: 10.1016/j.scitotenv.2016.10.152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 06/06/2023]
Abstract
Assessing and managing the cumulative impacts of human activities on the environment remains a major challenge to sustainable development. This challenge is highlighted by the worldwide expansion of marine renewable energy developments (MREDs) in areas already subject to multiple activities and climate change. Cumulative effects assessments in theory provide decision makers with adequate information about how the environment will respond to the incremental effects of licensed activities and are a legal requirement in many nations. In practise, however, such assessments are beset by uncertainties resulting in substantial delays during the licensing process that reduce MRED investor confidence and limit progress towards meeting climate change targets. In light of these targets and ambitions to manage the marine environment sustainably, reducing the uncertainty surrounding MRED effects and cumulative effects assessment are timely and vital. This review investigates the origins and evolution of cumulative effects assessment to identify why the multitude of approaches and pertinent research have emerged, and discusses key considerations and challenges relevant to assessing the cumulative effects of MREDs and other activities on ecosystems. The review recommends a shift away from the current reliance on disparate environmental impact assessments and limited strategic environmental assessments, and a move towards establishing a common system of coordinated data and research relative to ecologically meaningful areas, focussed on the needs of decision makers tasked with protecting and conserving marine ecosystems and services.
Collapse
Affiliation(s)
- Edward Willsteed
- School of Water, Energy and Environment, Cranfield University, Cranfield, Beds MK43 0AL, UK; Cefas, Lowestoft Laboratory, Pakefield Road, Lowestoft, Suffolk NR33 0HT, UK.
| | - Andrew B Gill
- School of Water, Energy and Environment, Cranfield University, Cranfield, Beds MK43 0AL, UK.
| | | | - Simon Jude
- School of Water, Energy and Environment, Cranfield University, Cranfield, Beds MK43 0AL, UK.
| |
Collapse
|
5
|
Evans MS, Muir DCG, Keating J, Wang X. Anadromous char as an alternate food choice to marine animals: a synthesis of Hg concentrations, population features and other influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 509-510:175-194. [PMID: 25467220 DOI: 10.1016/j.scitotenv.2014.10.074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 10/06/2014] [Accepted: 10/20/2014] [Indexed: 06/04/2023]
Abstract
This study was conducted to confirm sporadic measurements made over the late 1970s to the early 1990 s which determined that mercury (Hg) concentrations were low in anadromous char across Arctic and subarctic Canada including northern Québec and Labrador. Over 2004-2013, anadromous char populations across northern Canada were investigated at 20 sites for Hg concentrations and life history characteristics. Hg concentrations were extremely low in anadromous char muscle, typically <0.05 μg/g (wet weight) and, at each location, generally increased with fish length, age and nitrogen isotope (δ(15)N) ratio and decreased with condition factor and %lipid; correlations with carbon isotope (δ(13)C) ratio were inconsistent. Location and year were significant variables influencing Hg concentrations over the study area; longitude and latitude also were significant influencing variables. Char length, weight, age, condition factor and lipid content explained additional variance. A tendency towards higher Hg concentrations with increasing latitude may be partially related to decreasing growth of char towards the north. However, Hg concentrations in char were positively correlated with growth rates suggesting that Hg concentrations in char also were higher in the more productive study areas, including to the west where mainland riverine inputs of terrestrial carbon, nutrients, and Hg were greater. The data base for assessing time trends in char was limited by the small number of years investigated at most locations, variable fish size across years, small sample size, etc. Where temporal trends were detected, they were of increase on the long term (1970s, 1980s or early 1990 s to the present) but of decrease on the short term (early 2000s to present) with Nain (Labrador) showing the converse pattern. Higher Hg concentrations were also related to lower condition factor and cooler springs. Hg concentrations in anadromous char are compared with other terrestrial, aquatic and marine vertebrates in traditional diets. The known information on anadromous char is reviewed including population features, habitat, and harvests. Future Hg trend monitoring should focus on specific locations and harvest areas within these areas to better assess trends and influencing factors.
Collapse
Affiliation(s)
- Marlene S Evans
- Environment Canada, Water Science and Technology Directorate, 11 Innovation Blvd., Saskatoon SK S7N 3H5, Canada.
| | - Derek C G Muir
- Environment Canada, Water Science and Technology Directorate, 867 Lakeshore Rd., Burlington, ON L7R 4A6, Canada
| | - Jonathan Keating
- Environment Canada, Water Science and Technology Directorate, 11 Innovation Blvd., Saskatoon SK S7N 3H5, Canada
| | - Xiaowa Wang
- Environment Canada, Water Science and Technology Directorate, 867 Lakeshore Rd., Burlington, ON L7R 4A6, Canada
| |
Collapse
|
6
|
Rose KA, Allen JI. Modeling marine ecosystem responses to global climate change: Where are we now and where should we be going? Ecol Modell 2013. [DOI: 10.1016/j.ecolmodel.2013.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|