Fu YM, Zhang XY, Qi DD, Feng FJ. Changes in leaf litter decomposition of primary Korean pine forests after degradation succession into secondary broad-leaved forests.
Ecol Evol 2021;
11:12335-12348. [PMID:
34594503 PMCID:
PMC8462155 DOI:
10.1002/ece3.7903]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/12/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022] Open
Abstract
Forest degradation succession often leads to changes in forest ecosystem functioning. Exactly how the decomposition of leaf litter is affected in a disturbed forest remains unknown. Therefore, in our study, we selected a primary Korean pine forest (PK) and a secondary broad-leaved forest (SF) affected by clear-cutting degradation, both in Northeast China. The aim was to explore the response to changes in the leaf litter decomposition converting PK to SF. The mixed litters of PK and SF were decomposed in situ (1 year). The proportion of remaining litter mass, main chemistry, and soil biotic and abiotic factors were assessed during decomposition, and then, we made an in-depth analysis of the changes in the leaf litter decomposition. According to our results, leaf litter decomposition rate was significantly higher in the PK than that in the SF. Overall, the remaining percent mass of leaf litter's main chemical quality in SF was higher than in PK, indicating that leaf litter chemical turnover in PK was relatively faster. PK had a significantly higher amount of total phospholipid fatty acids (PLFAs) than SF during decomposition. Based on multivariate regression trees, the forest type influenced the soil habitat factors related to leaf litter decomposition more than decomposition time. Structural equation modeling revealed that litter N was strongly and positively affecting litter decomposition, and the changes in actinomycetes PLFA biomass played a more important role among all the functional groups. Selected soil abiotic factors were indirectly driving litter decomposition through coupling with actinomycetes. This study provides evidence for the complex interactions between leaf litter substrate and soil physical-chemical properties in affecting litter decomposition via soil microorganisms.
Collapse