1
|
Santostasi NL, Bauduin S, Grente O, Gimenez O, Ciucci P. Simulating the efficacy of wolf-dog hybridization management with individual-based modeling. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024:e14312. [PMID: 38894638 DOI: 10.1111/cobi.14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 06/21/2024]
Abstract
Introgressive hybridization between wolves and dogs is a conservation concern due to its potentially deleterious long-term evolutionary consequences. European legislation requires that wolf-dog hybridization be mitigated through effective management. We developed an individual-based model (IBM) to simulate the life cycle of gray wolves that incorporates aspects of wolf sociality that affect hybridization rates (e.g., the dissolution of packs after the death of one/both breeders) with the goal of informing decision-making on management of wolf-dog hybridization. We applied our model by projecting hybridization dynamics in a local wolf population under different mate choice and immigration scenarios and contrasted results of removal of admixed individuals with their sterilization and release. In several scenarios, lack of management led to complete admixture, whereas reactive management interventions effectively reduced admixture in wolf populations. Management effectiveness, however, strongly depended on mate choice and number and admixture level of individuals immigrating into the wolf population. The inclusion of anthropogenic mortality affecting parental and admixed individuals (e.g., poaching) increased the probability of pack dissolution and thus increased the probability of interbreeding with dogs or admixed individuals and boosted hybridization and introgression rates in all simulation scenarios. Recognizing the necessity of additional model refinements (appropriate parameterization, thorough sensitivity analyses, and robust model validation) to generate management recommendations applicable in real-world scenarios, we maintain confidence in our model's potential as a valuable conservation tool that can be applied to diverse situations and species facing similar threats.
Collapse
Affiliation(s)
- Nina Luisa Santostasi
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Roma, Italy
- CEFE, CNRS, Univ. Montpellier, EPHE, IRD, Montpellier, France
- National Biodiversity Future Center, Palermo, Italy
| | - Sarah Bauduin
- Direction de la Recherche et Appui Scientifique, Service Conservation et Gestion des Espèces à Enjeux, Office Français de la Biodiversité, Juvignac, France
| | - Oksana Grente
- CEFE, CNRS, Univ. Montpellier, EPHE, IRD, Montpellier, France
| | - Olivier Gimenez
- CEFE, CNRS, Univ. Montpellier, EPHE, IRD, Montpellier, France
| | - Paolo Ciucci
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Roma, Italy
- National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
2
|
Jossie E, Seaborn T, Baxter CV, Burnham M. Using social-ecological models to explore stream connectivity outcomes for stakeholders and Yellowstone cutthroat trout. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2915. [PMID: 37635644 DOI: 10.1002/eap.2915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/08/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023]
Abstract
Despite growing interest in conservation and re-establishment of ecological connectivity, few studies have explored its context-specific social-ecological outcomes. We aimed to explore social and ecological outcomes to changing stream connectivity for both stakeholders and native fish species impacted by habitat fragmentation and nonnative species. We (1) investigated stakeholder perceptions of the drivers and outcomes of stream connectivity, and (2) evaluated the effects of stakeholder-identified connectivity and nonnative species scenarios on Yellowstone cutthroat trout (YCT) populations. Our study was conducted in the Teton River, Idaho, USA. We integrated two modeling approaches, mental modeling and individual-based ecological modeling, to explore social-ecological outcomes for stakeholders and YCT populations. Aggregation of mental models revealed an emergent pattern of increasing complexity as more types of stakeholders were considered, as well as gaps and linkages among different stakeholder knowledge areas. These results highlight the importance of knowledge sharing among stakeholders when making decisions about connectivity. Additionally, the results from the individual-based models suggested that the potential for a large, migratory life history form of YCT, in addition to self-preference mating where they overlap with rainbow trout, had the strongest effects on outcomes for YCT. Exploring social and ecological drivers and outcomes to changing connectivity is useful for anticipating and adapting to unintended outcomes, as well as making decisions for desirable outcomes. The results from this study can contribute to the management dialogue surrounding stream connectivity in the Teton River, as well as to our understanding of connectivity conservation and its outcomes more broadly.
Collapse
Affiliation(s)
- Elizabeth Jossie
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho, USA
| | - Travis Seaborn
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, Idaho, USA
| | - Colden V Baxter
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho, USA
| | - Morey Burnham
- Department of Sociology, Social Work, and Criminology, Idaho State University, Pocatello, Idaho, USA
| |
Collapse
|
3
|
Seaborn T, Landguth EL, Caudill CC. Simulating plasticity as a framework for understanding habitat selection and its role in adaptive capacity and extinction risk through an expansion of CDMetaPOP. Mol Ecol Resour 2023; 23:1458-1472. [PMID: 37081173 PMCID: PMC11081408 DOI: 10.1111/1755-0998.13799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/22/2023]
Abstract
Adaptive capacity can present challenges for modelling as it encompasses multiple ecological and evolutionary processes such as natural selection, genetic drift, gene flow and phenotypic plasticity. Spatially explicit, individual-based models provide an outlet for simulating these complex interacting eco-evolutionary processes. We expanded the existing Cost-Distance Meta-POPulation (CDMetaPOP) framework with inducible plasticity modelled as a habitat selection behaviour, using temperature or habitat quality variables, with a genetically based selection threshold conditioned on past individual experience. To demonstrate expected results in the new module, we simulated hypothetical populations and then evaluated model performance in populations of redband trout (Oncorhynchus mykiss gairdneri) across three watersheds where temperatures induce physiological stress in parts of the stream network. We ran simulations using projected warming stream temperature data under four scenarios for alleles that: (1) confer thermal tolerance, (2) bestow plastic habitat selection, (3) give both thermal tolerance and habitat selection preference and (4) do not provide either thermal tolerance or habitat selection. Inclusion of an adaptive allele decreased declines in population sizes, but this impact was greatly reduced in the relatively cool stream networks. As anticipated with the new module, high-temperature patches remained unoccupied by individuals with the allele operating plastically after exposure to warm temperatures. Using complete habitat avoidance above the stressful temperature threshold, habitat selection reduced the overall population size due to the opportunity cost of avoiding areas with increased, but not guaranteed, mortality. Inclusion of plasticity within CDMetaPOP will provide the potential for genetic or plastic traits and 'rescue' to affect eco-evolutionary dynamics for research questions and conservation applications.
Collapse
Affiliation(s)
- Travis Seaborn
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, Idaho, USA
- School of Natural Resource Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Erin L. Landguth
- Computational Ecology Laboratory & Center for Population Health Research, University of Montana, Missoula, Montana, USA
| | | |
Collapse
|
4
|
Bernos TA, Chang SL, Giglio RM, Davenport K, Fisher J, Lowery E, Bearlin A, Simmons R, Fortin M, Day CC, Landguth EL. Evaluating the evolutionary mechanisms maintaining alternative mating strategies in a simulated bull trout ( Salvelinus confluentus) population. Ecol Evol 2023; 13:e9965. [PMID: 37038529 PMCID: PMC10082177 DOI: 10.1002/ece3.9965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 04/12/2023] Open
Abstract
The coexistence of distinct alternative mating strategies (AMS) is often explained by mechanisms involving trade-offs between reproductive traits and lifetime fitness; yet their relative importance remains poorly understood. Here, we used an established individual-based, spatially explicit model to simulate bull trout (Salvelinus confluentus) in the Skagit River (Washington, USA) and investigated the influence of female mating preference, sneaker-specific mortality, and variation in age-at-maturity on AMS persistence using global sensitivity analyses and boosted regression trees. We assumed that two genetically fixed AMS coexisted within the population: sneaker males (characterized by younger age-at-maturity, greater AMS-specific mortality, and lower reproductive fitness) and territorial males. After 300 years, variation in relative sneaker success in the system was explained by sneaker males' reproductive fitness (72%) and, to a lesser extent, the length of their reproductive lifespan (21%) and their proportion in the initial population (8%). However, under a wide range of parameter values, our simulated scenarios predicted the extinction of territorial males or their persistence in small, declining populations. Although these results do not resolve the coexistence of AMS in salmonids, they reinforce the importance of mechanisms reducing sneaker's lifetime reproductive success in favoring AMS coexistence within salmonid populations but also limit the prediction that, without any other selective mechanisms at play, strong female preference for mating with territorial males and differences in reproductive lifespan allow the stable coexistence of distinct AMS.
Collapse
Affiliation(s)
- Thaïs A. Bernos
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
- Department of Biological SciencesUniversity of Toronto ScarboroughTorontoOntarioCanada
| | - Sarah L. Chang
- Department of BiologyUniversity of British Columbia OkanaganKelownaBritish ColumbiaCanada
| | - Rachael M. Giglio
- Department of Ecology, Evolution, and Organismal BiologyOhio State UniversityColumbusOhioUSA
- United States Department of AgricultureNational Wildlife Research CenterOttawaOntarioUSA
| | - Kaeli Davenport
- Department of Wildlife BiologyUniversity of MontanaMissoulaMontanaUSA
| | | | | | | | | | - Marie‐Josée Fortin
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
| | - Casey C. Day
- School of Public and Community Health SciencesUniversity of MontanaMissoulaMontanaUSA
| | - Erin L. Landguth
- School of Public and Community Health SciencesUniversity of MontanaMissoulaMontanaUSA
| |
Collapse
|
5
|
Lamarins A, Fririon V, Folio D, Vernier C, Daupagne L, Labonne J, Buoro M, Lefèvre F, Piou C, Oddou‐Muratorio S. Importance of interindividual interactions in eco-evolutionary population dynamics: The rise of demo-genetic agent-based models. Evol Appl 2022; 15:1988-2001. [PMID: 36540635 PMCID: PMC9753837 DOI: 10.1111/eva.13508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/29/2022] Open
Abstract
The study of eco-evolutionary dynamics, that is of the intertwinning between ecological and evolutionary processes when they occur at comparable time scales, is of growing interest in the current context of global change. However, many eco-evolutionary studies overlook the role of interindividual interactions, which are hard to predict and yet central to selective values. Here, we aimed at putting forward models that simulate interindividual interactions in an eco-evolutionary framework: the demo-genetic agent-based models (DG-ABMs). Being demo-genetic, DG-ABMs consider the feedback loop between ecological and evolutionary processes. Being agent-based, DG-ABMs follow populations of interacting individuals with sets of traits that vary among the individuals. We argue that the ability of DG-ABMs to take into account the genetic heterogeneity-that affects individual decisions/traits related to local and instantaneous conditions-differentiates them from analytical models, another type of model largely used by evolutionary biologists to investigate eco-evolutionary feedback loops. Based on the review of studies employing DG-ABMs and explicitly or implicitly accounting for competitive, cooperative or reproductive interactions, we illustrate that DG-ABMs are particularly relevant for the exploration of fundamental, yet pressing, questions in evolutionary ecology across various levels of organization. By jointly modelling the effects of management practices and other eco-evolutionary processes on interindividual interactions and population dynamics, DG-ABMs are also effective prospective and decision support tools to evaluate the short- and long-term evolutionary costs and benefits of management strategies and to assess potential trade-offs. Finally, we provide a list of the recent practical advances of the ABM community that should facilitate the development of DG-ABMs.
Collapse
Affiliation(s)
- Amaïa Lamarins
- E2S UPPA, INRAE, ECOBIOPUniversité de Pau et des Pays de l'AdourSaint‐Pée‐sur‐NivelleFrance
- Management of Diadromous Fish in their Environment, OFB, INRAE, Institut AgroUniv Pau & Pays Adour/E2S UPPARennesFrance
| | - Victor Fririon
- INRAE, UR 629 Ecologie des Forêts Méditerranéennes, URFMAvignonFrance
| | - Dorinda Folio
- E2S UPPA, INRAE, ECOBIOPUniversité de Pau et des Pays de l'AdourSaint‐Pée‐sur‐NivelleFrance
| | - Camille Vernier
- CIRAD, UMR CBGP, INRAE, IRD, Montpellier SupAgroUniv. MontpellierMontpellierFrance
| | - Léa Daupagne
- E2S UPPA, INRAE, ECOBIOPUniversité de Pau et des Pays de l'AdourSaint‐Pée‐sur‐NivelleFrance
| | - Jacques Labonne
- E2S UPPA, INRAE, ECOBIOPUniversité de Pau et des Pays de l'AdourSaint‐Pée‐sur‐NivelleFrance
| | - Mathieu Buoro
- E2S UPPA, INRAE, ECOBIOPUniversité de Pau et des Pays de l'AdourSaint‐Pée‐sur‐NivelleFrance
| | - François Lefèvre
- INRAE, UR 629 Ecologie des Forêts Méditerranéennes, URFMAvignonFrance
| | - Cyril Piou
- CIRAD, UMR CBGP, INRAE, IRD, Montpellier SupAgroUniv. MontpellierMontpellierFrance
| | - Sylvie Oddou‐Muratorio
- E2S UPPA, INRAE, ECOBIOPUniversité de Pau et des Pays de l'AdourSaint‐Pée‐sur‐NivelleFrance
| |
Collapse
|
6
|
Seaborn T, Andrews KR, Applestein CV, Breech TM, Garrett MJ, Zaiats A, Caughlin TT. Integrating genomics in population models to forecast translocation success. Restor Ecol 2021. [DOI: 10.1111/rec.13395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Travis Seaborn
- Department of Fish and Wildlife Sciences University of Idaho Moscow ID U.S.A
| | - Kimberly R. Andrews
- Institute for Bioinformatics and Evolutionary Studies (IBEST) University of Idaho Moscow ID U.S.A
| | | | - Tyler M. Breech
- Department of Biological Sciences Idaho State University Pocatello ID U.S.A
| | - Molly J. Garrett
- Department of Fish and Wildlife Sciences University of Idaho Moscow ID U.S.A
| | - Andrii Zaiats
- Biological Sciences Boise State University Boise ID U.S.A
| | | |
Collapse
|
7
|
Santostasi NL, Ciucci P, Bearzi G, Bonizzoni S, Gimenez O. Assessing the dynamics of hybridization through a matrix modelling approach. Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2020.109120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Day CC, Landguth EL, Simmons RK, Baker WP, Whiteley AR, Lukacs PM, Bearlin A. Simulating effects of fitness and dispersal on the use of Trojan sex chromosomes for the management of invasive species. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Casey C. Day
- Computational Ecology Lab University of Montana Missoula MT USA
| | | | - Ryan K. Simmons
- Seattle City Light Environment, Land and Licensing Seattle WA USA
| | | | - Andrew R. Whiteley
- Wildlife Biology Program Franke College of Forestry and Conservation University of Montana Missoula MT USA
| | - Paul M. Lukacs
- Wildlife Biology Program Franke College of Forestry and Conservation University of Montana Missoula MT USA
| | - Andrew Bearlin
- Seattle City Light Environment, Land and Licensing Seattle WA USA
| |
Collapse
|
9
|
Landguth EL, Forester BR, Eckert AJ, Shirk AJ, Menon M, Whipple A, Day CC, Cushman SA. Modelling multilocus selection in an individual‐based, spatially‐explicit landscape genetics framework. Mol Ecol Resour 2019; 20:605-615. [DOI: 10.1111/1755-0998.13121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 10/28/2019] [Accepted: 11/12/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Erin L. Landguth
- School of Public and Community Health Sciences University of Montana Missoula MT USA
| | | | - Andrew J. Eckert
- Department of Biology Virginia Commonwealth University Richmond VA USA
| | - Andrew J. Shirk
- Climate Impacts Group College of the Environment University of Washington Seattle WA USA
| | - Mitra Menon
- Integrative Life Sciences Virginian Commonwealth University Richmond VA USA
| | - Amy Whipple
- Department of Biological Sciences and Merriam‐Powell Center for Environmental Research Northern Arizona University Flagstaff AZ USA
| | - Casey C. Day
- School of Public and Community Health Sciences University of Montana Missoula MT USA
| | - Samuel A. Cushman
- USDA Forest Service Rocky Mountain Research Station Flagstaff AZ USA
| |
Collapse
|