Angeler DG, Heino J, Rubio-Ríos J, Casas JJ. Connecting distinct realms along multiple dimensions: A meta-ecosystem resilience perspective.
THE SCIENCE OF THE TOTAL ENVIRONMENT 2023;
889:164169. [PMID:
37196937 DOI:
10.1016/j.scitotenv.2023.164169]
[Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Resilience research is central to confront the sustainability challenges to ecosystems and human societies in a rapidly changing world. Given that social-ecological problems span the entire Earth system, there is a critical need for resilience models that account for the connectivity across intricately linked ecosystems (i.e., freshwater, marine, terrestrial, atmosphere). We present a resilience perspective of meta-ecosystems that are connected through the flow of biota, matter and energy within and across aquatic and terrestrial realms, and the atmosphere. We demonstrate ecological resilience sensu Holling using aquatic-terrestrial linkages and riparian ecosystems more generally. A discussion of applications in riparian ecology and meta-ecosystem research (e.g., resilience quantification, panarchy, meta-ecosystem boundary delineations, spatial regime migration, including early warning indications) concludes the paper. Understanding meta-ecosystem resilience may have potential to support decision making for natural resource management (scenario planning, risk and vulnerability assessments).
Collapse