1
|
Mills S, Yen Nguyen TP, Ijaz UZ, Lens PNL. Process stability in expanded granular sludge bed bioreactors enhances resistance to organic load shocks. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118271. [PMID: 37269726 DOI: 10.1016/j.jenvman.2023.118271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
Environmental perturbations such as changes in organic loading rate (OLR) can have deleterious effects on the anaerobic digestion process, leading to VFA accumulation and process failure. However, the operational history of a reactor, such as prior exposure to VFA build up, can impact a reactor's resistance to shock loads. In the present study, the effects of long term (>100 days) bioreactor (un)stability on OLR shock resistance were assessed. Three 4 L EGSB bioreactors were subjected to varying levels of process stability. Operational conditions such as OLR, temperature and pH were maintained stable in R1; R2 was subjected to a series of minor OLR perturbations and R3 was subjected to a series of non-OLR perturbations, including ammonium, temperature, pH and sulfide. The effect of these different operational histories on each reactor's resistance to a sudden 8-fold increase in OLR were assessed by monitoring COD removal efficiency and biogas production. The microbial communities of each reactor were monitored using 16S rRNA gene sequencing to understand the relationship between microbial diversity and reactor stability. It was determined that the stable (un-perturbed) reactor performed best in terms of its resistance to a large OLR shock, despite its lower microbial community diversity.
Collapse
Affiliation(s)
- Simon Mills
- National University of Ireland, Galway, University Road, Galway, H91 TK33, Ireland.
| | - Thi Phi Yen Nguyen
- National University of Ireland, Galway, University Road, Galway, H91 TK33, Ireland
| | - Umer Zeeshan Ijaz
- National University of Ireland, Galway, University Road, Galway, H91 TK33, Ireland; Water & Environment Research Group, University of Glasgow, Mazumdar-Shaw Advanced Research Centre, Glasgow G11 6EW, United Kingdom; Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 7BE, United Kingdom
| | - Piet N L Lens
- National University of Ireland, Galway, University Road, Galway, H91 TK33, Ireland.
| |
Collapse
|
2
|
Puig-Castellví F, Midoux C, Guenne A, Conteau D, Franchi O, Bureau C, Madigou C, Jouan-Rimbaud Bouveresse D, Kroff P, Mazéas L, Rutledge DN, Gaval G, Chapleur O. Metataxonomics, metagenomics and metabolomics analysis of the influence of temperature modification in full-scale anaerobic digesters. BIORESOURCE TECHNOLOGY 2022; 346:126612. [PMID: 34954354 DOI: 10.1016/j.biortech.2021.126612] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Full-scale anaerobic digesters' performance is regulated by modifying their operational conditions, but little is known about how these modifications affect their microbiome. In this work, we monitored two originally mesophilic (35 °C) full-scale anaerobic digesters during 476 days. One digester was submitted to sub-mesophilic (25 °C) conditions between days 123 and 373. We characterized the effect of temperature modification using a multi-omics (metataxonomics, metagenomics, and metabolomics) approach. The metataxonomics and metagenomics results revealed that the lower temperature allowed a substantial increase of the sub-dominant bacterial population, destabilizing the microbial community equilibrium and reducing the biogas production. After restoring the initial mesophilic temperature, the bacterial community manifested resilience in terms of microbial structure and functional activity. The metabolomic signature of the sub-mesophilic acclimation was characterized by a rise of amino acids and short peptides, suggesting a protein degradation activity not directed towards biogas production.
Collapse
Affiliation(s)
- Francesc Puig-Castellví
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 75005 Paris, France; Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92160 Antony, France
| | - Cédric Midoux
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92160 Antony, France; Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France; Université Paris-Saclay, INRAE, BioinfOmics, MIGALE bioinformatics facility, 78350, Jouy-en-Josas, France
| | - Angéline Guenne
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92160 Antony, France
| | | | - Oscar Franchi
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92160 Antony, France; Universidad Adolfo Ibanez, Facultad de ingeniería y ciencias, 2520000 Viña del mar, Chile
| | - Chrystelle Bureau
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92160 Antony, France
| | - Céline Madigou
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92160 Antony, France
| | | | | | - Laurent Mazéas
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92160 Antony, France
| | - Douglas N Rutledge
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 75005 Paris, France; National Wine and Grape Industry Centre, Charles Sturt University, 2650 Wagga Wagga, Australia
| | | | - Olivier Chapleur
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92160 Antony, France.
| |
Collapse
|
3
|
Tsigkou K, Terpou A, Treu L, Kougias PG, Kornaros M. Thermophilic anaerobic digestion of olive mill wastewater in an upflow packed bed reactor: Evaluation of 16S rRNA amplicon sequencing for microbial analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113853. [PMID: 34624575 DOI: 10.1016/j.jenvman.2021.113853] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Olive mill wastewater, a by-product of olive oil production after the operation of three-phase decanters, was used in a thermophilic anaerobic digester targeting efficient bioconversion of its organic load into biogas. An active anaerobic inoculum originating from a mesophilic reactor, was acclimatized under thermophilic conditions and was filled into a high-rate upflow packed bed reactor. Its performance was tested towards the treatment efficacy of olive mill wastewater under thermophilic conditions reaching the minimum hydraulic retention time of 4.2 d with promising results. As analysis of the microbial communities is considered to be the key for the development of anaerobic digestion optimization techniques, the present work focused on characterizing the microbial community and its variation during the reactor's runs, via 16S rRNA amplicon sequencing. Identification of new microbial species and taxonomic groups determination is of paramount importance as these representatives determine the bioprocess outcome. The current study results may contribute to further olive mill wastewater exploitation as a potential source for efficient biogas production.
Collapse
Affiliation(s)
- Konstantina Tsigkou
- Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504, Patras, Greece
| | - Antonia Terpou
- Department of Agricultural Development, Agri-food, and Natural Resources Management, School of Agricultural Development, Nutrition & Sustainability, National and Kapodistrian University of Athens, GR-34400, Psachna, Greece
| | - Laura Treu
- Department of Biology, University of Padova, 35131, Padova, Italy
| | - Panagiotis G Kougias
- Soil and Water Resources Institute, Hellenic Agricultural Organisation DEMETER, 57001, Thermi, Thessaloniki, Greece
| | - Michael Kornaros
- Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504, Patras, Greece.
| |
Collapse
|
4
|
Slezak R, Grzelak J, Krzystek L, Ledakowicz S. Influence of initial pH on the production of volatile fatty acids and hydrogen during dark fermentation of kitchen waste. ENVIRONMENTAL TECHNOLOGY 2021; 42:4269-4278. [PMID: 32255721 DOI: 10.1080/09593330.2020.1753818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
The purpose of this work was to determine the effect of initial pH on the production of volatile fatty acids (VFA) and hydrogen (H2) in the dark fermentation processes of kitchen waste. The study was conducted in batch bioreactors of working volume 1 L for different initial pH in the range from 5.5 to 9.0. The dark fermentation processes were carried out for 4 days at 37°C. Initial organic load of the kitchen waste in all bioreactors amounted to 25.5 gVS/L. Buffering of pH during the fermentation process was carried out with the use of ammonia contained mainly in digested sludge. The optimal conditions for the production of VFA and H2 were achieved at the initial pH of 8. Production of VFA and H2 in these conditions was, respectively, 13.9 g/L and 72.4 mL/gVS. The main produced components of VFA were acetic and butyric acids. The production of ethanol and lactic acid was at very low levels due to the high ratio of the volatile fatty acids to total organic content of 0.86. With the optimal initial pH of 8 the yield of CO2 production was 0.30 gC/gC. High initial pH value (above 8) extended the lag phase duration in the course of H2 production. The dominant groups of micro-organisms at the most favourable initial pH of 8 for the production of VFA and H2 were Bacteroidetes, Firmicutes, Spirochaetes and Waste Water of Evry 1 (WWE1) at the phylum level.
Collapse
Affiliation(s)
- Radosław Slezak
- Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Lodz University of Technology, Lodz, Poland
| | - Justyna Grzelak
- Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Lodz University of Technology, Lodz, Poland
| | - Liliana Krzystek
- Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Lodz University of Technology, Lodz, Poland
| | - Stanisław Ledakowicz
- Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
5
|
Influence of Digester Temperature on Methane Yield of Organic Fraction of Municipal Solid Waste (OFMSW). APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11072907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study evaluates the anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) and digested sewage sludge (DSS) at lowered temperatures. AD batch tests for CH4 yield determination were carried out with DSS as inoculum between 23 and 40 °C. All results were related to organic dry matter and calculated for standard conditions (1013 hPa, 0 °C). The AD experiments at 40 °C and at 35 °C delivered specific CH4 yields of 325 ± 6 mL/g and 268 ± 27 mL/g for OFMSW alone. At lower temperatures, specific CH4 yields of 364 ± 25 mL/g (25 °C) and 172 ± 21 mL/g (23 °C) were reached. AD at 25 °C could be beneficial regarding energy input (heating costs) and energy output (CH4 yield). Plant operators could increase AD efficiencies by avoiding heating costs. The co-digestion of OFMSW together with DSS could lead to further synergies such as better exploitation of the energy potentials of DSS, but the digestate utilization could become problematic due to hygienic requirements. Efficiency potentials through lowered operating temperatures are limited. In further research, lowered process temperatures could be applied in the AD of energy crops due to large numbers of existing plants.
Collapse
|
6
|
Pagliano G, Ventorino V, Panico A, Romano I, Pirozzi F, Pepe O. Anaerobic Process for Bioenergy Recovery From Dairy Waste: Meta-Analysis and Enumeration of Microbial Community Related to Intermediates Production. Front Microbiol 2019; 9:3229. [PMID: 30687248 PMCID: PMC6334743 DOI: 10.3389/fmicb.2018.03229] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/12/2018] [Indexed: 11/28/2022] Open
Abstract
Dairy wastes are widely studied for the hydrogen and methane production, otherwise the changes in microbial communities related to intermediate valuable products was not deeply investigated. Culture independent techniques are useful tools for exploring microbial communities in engineered system having new insights into their structure and function as well as potential industrial application. The deep knowledge of the microbiota involved in the anaerobic process of specific waste and by-products represents an essential step to better understand the entire process and the relation of each microbial population with biochemical intermediates and final products. Therefore, this study investigated the microbial communities involved in the laboratory-scale anaerobic digestion of a mixture of mozzarella cheese whey and buttermilk amended with 5% w/v of industrial animal manure pellets. Culture-independent methods by employing high-throughput sequencing and microbial enumerations highlighted that lactic acid bacteria, such as Lactobacillaceae and Streptococcaceae dominated the beginning of the process until about day 14 when a relevant increase in hydrogen production (more than 10 ml H2 gVS-1 from days 13 to 14) was observed. Furthermore, during incubation a gradual decrease of lactic acid bacteria was detected with a simultaneous increase of Clostridia, such as Clostridiaceae and Tissierellaceae families. Moreover, archaeal populations in the biosystem were strongly related to inoculum since the non-inoculated samples of the dairy waste mixture had a relative abundance of archaea less than 0.1%; whereas, in the inoculated samples of the same mixture several archaeal genera were identified. Among methanogenic archaea, Methanoculleus was the dominant genus during all the process especially when the methane production occurred, and its relative abundance increased up to 99% at the end of the incubation time highlighting that methane was formed from dairy wastes primarily by the hydrogenotrophic pathway in the reactors.
Collapse
Affiliation(s)
- Giorgia Pagliano
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Valeria Ventorino
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | | | - Ida Romano
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Francesco Pirozzi
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.,Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Naples, Italy
| | - Olimpia Pepe
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
7
|
Hupfauf S, Plattner P, Wagner AO, Kaufmann R, Insam H, Podmirseg SM. Temperature shapes the microbiota in anaerobic digestion and drives efficiency to a maximum at 45 °C. BIORESOURCE TECHNOLOGY 2018; 269:309-318. [PMID: 30195223 DOI: 10.1016/j.biortech.2018.08.106] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 06/08/2023]
Abstract
Throwing longstanding habits over the pile may be necessary to improve biogas production, in particular when it comes to the process temperature. Its effect on biogas production was investigated with lab-scale reactors operated in fed-batch mode (cattle slurry and maize straw) at 10-55 °C over six months. Biochemical and microbial changes were comprehensively investigated. Production was highest and most efficient at 45 °C with an average methane yield of 166 NL kg-1 VS, and thus 12.8% and 9.6% higher than at 37 and 55 °C. Temperature significantly affected the microbiota and higher temperature provoked a shift from Bacteroidetes/Proteobacteria to Firmicutes. A transition from hydrogenotrophic to acetoclastic methanogenesis was observed from 10 to 45 °C, while the trend was reversed at 55 °C. The results contest the textbook notion of preferred and most efficient temperatures for AD and suggest reconsideration of the temperature range around 45 °C for efficient manure-based co-fermentation.
Collapse
Affiliation(s)
- Sebastian Hupfauf
- Institut für Mikrobiologie, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria.
| | - Pia Plattner
- Institut für Mikrobiologie, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| | - Andreas Otto Wagner
- Institut für Mikrobiologie, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| | - Rüdiger Kaufmann
- Institut für Ökologie, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Heribert Insam
- Institut für Mikrobiologie, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| | - Sabine Marie Podmirseg
- Institut für Mikrobiologie, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| |
Collapse
|
8
|
Nielsen M, Holst-Fischer C, Malmgren-Hansen B, Bjerg-Nielsen M, Kragelund C, Møller HB, Ottosen LDM. Small temperature differences can improve the performance of mesophilic sludge-based digesters. Biotechnol Lett 2017; 39:1689-1698. [PMID: 28849363 PMCID: PMC5636863 DOI: 10.1007/s10529-017-2418-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/18/2017] [Indexed: 11/29/2022]
Abstract
Objective To assess the effect of small temperature increases in mesophilic sludge-based digesters in order to develop and evaluate strategies for improving the biogas production in full-scale digesters. Results Methane production was strongly affected by small temperature differences, and this result was consistent across samples from 15 full-scale digesters. The specific methane yield varied between 42 and 97.5 ml g VS−1 after 15 days of incubation at 35 °C, and improved when increasing the digester temperature to 39 °C. Only a limited quantity of additional gas was required to balance out the cost of heating and a positive energy balance was obtained. Further increases in temperature, in some cases, negatively affected the production when operated at 42 °C compared to 39 °C. Conclusions Small temperature increases should be applied to mesophilic sludge-based digesters to optimize the biogas production and is applicable to digesters operated in the lower mesophilic temperature range.
Collapse
Affiliation(s)
- Maja Nielsen
- Department of Engineering, Aarhus University, Hangøvej 2, 8200, Aarhus N, Denmark.
| | | | - Bjørn Malmgren-Hansen
- Danish Technological Institute, Teknologiparken, Kongsvang Allé 29, 8000, Aarhus C, Denmark
| | | | - Caroline Kragelund
- Danish Technological Institute, Teknologiparken, Kongsvang Allé 29, 8000, Aarhus C, Denmark
| | - Henrik Bjarne Møller
- Department of Engineering, Aarhus University, Hangøvej 2, 8200, Aarhus N, Denmark
| | | |
Collapse
|