1
|
Chou K, Liu J, Lu X, Hsiao HI. Quantitative microbial spoilage risk assessment of Aspergillus niger in white bread reveal that retail storage temperature and mold contamination during factory cooling are the main factors to influence spoilage. Food Microbiol 2024; 119:104443. [PMID: 38225048 DOI: 10.1016/j.fm.2023.104443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/17/2024]
Abstract
The present study developed a model for effectively assessing the risk of spoilage caused by Aspergillus niger to identify key control measures employed in bakery supply chains. A white bread supply chain comprising a processing plant and two retail stores in Taiwan was selected in this study. Time-temperature profiles were collected at each processing step in summer and winter. Visual mycelium diameter predictions were validated using a time-lapse camera. Six what-if scenarios were proposed. The mean risk of A. niger contamination per package sold by retailer A was 0.052 in summer and 0.036 in winter, and that for retailer B was 0.037 in summer and 0.022 in winter. Sensitivity analysis revealed that retail storage time, retail temperature, and mold prevalence during factory cooling were the main influencing factors. The what-if scenarios revealed that reducing the retail environmental temperature by 1 °C in summer (from 23.97 °C to 22.97 °C) and winter (from 23.28 °C to 22.28 °C) resulted in a reduction in spoilage risk of 47.0% and 34.7%, respectively. These results indicate that food companies should establish a quantitative microbial risk assessment model that uses real data to evaluate microbial spoilage in food products that can support decision-making processes.
Collapse
Affiliation(s)
- Kelvin Chou
- Department of Food Science, National Taiwan Ocean University, Taiwan
| | - Jinxin Liu
- Department of Food Science and Agricultural Chemistry, McGill University, Canada
| | - Xiaonan Lu
- Department of Food Science and Agricultural Chemistry, McGill University, Canada
| | - Hsin-I Hsiao
- Department of Food Science, National Taiwan Ocean University, Taiwan.
| |
Collapse
|
2
|
Afandi N, Satgunam M, Mahalingam S, Manap A, Nagi F, Liu W, Johan RB, Turan A, Wei-Yee Tan A, Yunus S. Review on the modifications of natural and industrial waste CaO based sorbent of calcium looping with enhanced CO 2 capture capacity. Heliyon 2024; 10:e27119. [PMID: 38444493 PMCID: PMC10912718 DOI: 10.1016/j.heliyon.2024.e27119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
The calcium looping cycle (CaL) possesses outstanding CO2 capture capacity for future carbon-capturing technologies that utilise CaO sorbents to capture the CO2 in a looping cycle. However, sorbent degradation and the presence of inert materials stabilise the sorbent, thereby reducing the CO2 capture capacity. Consequently, the CaO sorbent that has degraded must be replenished, increasing the operational cost for industrial use. CaO sorbents have been modified to enhance their CO2 capture capacity and stability. However, various CaO sorbents, including limestone, dolomite, biogenesis calcium waste and industrial waste, exhibit distinct behaviour in response to these modifications. Thus, this work comprehensively reviews the CO2 capture capacity of sorbent improvement based on various CaO sorbents. Furthermore, this study provides an understanding of the effects of CO2 capture capacity based on the properties of the CaO sorbent. The properties of various CaO sorbents, such as surface area, pore volume, particle size and morphology, are influential in exhibiting high CO2 capture capacity. This review provides insights into the future development of CaL technology, particularly for carbon-capturing technologies that focus on the modifications of CaO sorbents and the properties that affect the CO2 capture capacity.
Collapse
Affiliation(s)
- Nurfanizan Afandi
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia
- Department of Mechanical Engineering, College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia
| | - M. Satgunam
- Institute of Power Engineering (IPE), Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia
| | - Savisha Mahalingam
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia
| | - Abreeza Manap
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia
- Department of Mechanical Engineering, College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia
| | - Farrukh Nagi
- UNITEN R&D Sdn Bhd, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia
| | - Wen Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Rafie Bin Johan
- Nanotechnology and Catalysis Research Center (NANOCAT), University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Ahmet Turan
- Materials Science and Nanotechnology Engineering Department, Faculty of Engineering, Yeditepe University, 34755, Atasehir, Istanbul, Turkey
| | - Adrian Wei-Yee Tan
- Smart Manufacturing and Systems Research Group (SMSRG), University of Southampton Malaysia, Iskandar Puteri, 79100, Malaysia
| | - Salmi Yunus
- Materials Engineering and Testing Group, TNB Research Sdn Bhd, Kawasan Institusi Penyelidikan, No. 1 Lorong Ayer Itam, Kajang, 43000, Selangor, Malaysia
| |
Collapse
|
3
|
Hannan F, Islam F, Huang Q, Farooq MA, Ayyaz A, Fang R, Ali B, Xie X, Zhou W. Interactive effects of biochar and mussel shell activated concoctions on immobilization of nickel and their amelioration on the growth of rapeseed in contaminated aged soil. CHEMOSPHERE 2021; 282:130897. [PMID: 34470145 DOI: 10.1016/j.chemosphere.2021.130897] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/06/2021] [Accepted: 05/15/2021] [Indexed: 06/13/2023]
Abstract
Mussel shell (MS) and biochar (BC) are commonly used for the remediation of metal contaminated soil. However, less research has been focused to examine the efficacy of their combinations to reduce metal toxicity in crop plants. This study was therefore conducted to investigate the effects of BC, MS and their activated concoctions on the soil properties, enzyme activities and nickel (Ni) immobilization in aged Ni contaminated soil. Moreover, the growth, photosynthetic pigments and anti-oxidative machnery of Brassica napus plants has also been investigated in order to determine amendments efficiency in reducing soil Ni toxicity for plants. The results showed that the application of Ni adversely affected soil health and trigged stress responses by inducing oxidative stress in B. napus. However, the incorporation of amendments reduced the bioavailability of Ni, and the concoctions of BC and MS showed promising results in the immobilization of Ni. Among various combinations of BC and MS, treatment with BC + MS (3:1) significantly reduced Ni uptake, decreased reactive oxygen species (ROS) and enhanced antioxidant defense of B. napus plants. Results showed that amendment's combinations stimulated the transcriptional levels of ROS scavenging enzymes and suppressed the expression level of Ni transporters. The morphological and physical characterization techniques (i.e. SEM, BET, EDS, FTIR and X-ray diffraction analyses) showed that amendment's combinations had relatively higher Ni adsorption capacity, indicating that BC and MS concoctions are efficient immobilizing agents for minimizing Ni availability, preventing oxidative toxicity and promoting growth and biomass production in rapeseed plants under metal stress conditions.
Collapse
Affiliation(s)
- Fakhir Hannan
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Faisal Islam
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Qian Huang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad A Farooq
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Ahsan Ayyaz
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Rouyi Fang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Basharat Ali
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Xiaohong Xie
- Department of Landscape Architecture, Zhejiang Wanli University, Ningbo, 315100, China.
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China; Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Bonnard M, Boury B, Parrot I. Key Insights, Tools, and Future Prospects on Oyster Shell End-of-Life: A Critical Analysis of Sustainable Solutions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:26-38. [PMID: 31657905 DOI: 10.1021/acs.est.9b03736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Oyster farming represents one of the most developed aquaculture activities, producing delicacies unfortunately related to a direct accumulation of waste shells. Facing what is becoming an environmental issue, chemists are currently developing solutions to add value to this wild source of raw material in line with the principles of sustainable chemistry. An argumentative overview of this question is proposed here with a focus on recent data. Starting with a presentation of the environmental impact of oyster farming, existing and promising applications are then classified according to the type of raw materials derived from the oyster shell, namely the natural oyster shell (NOS), the calcined natural oyster shell (CNOS), and biomolecules of the organic matrix extracted from the oyster shell. Their relevance is discussed in regard to their scalability, originality, and sustainability. This review constitutes the first critical compilation on oyster shell applications, with the aim to provide essential elements to better comprehend the recycling of waste oyster shells.
Collapse
Affiliation(s)
- Michel Bonnard
- Institut des Biomolécules Max Mousseron, CNRS, Université Montpellier, ENSCM, Montpellier 34095, France
- Tarbouriech-Médithau, Marseillan 34340, France
| | - Bruno Boury
- Institut Charles Gerhardt, CNRS, Université Montpellier, ENSCM, Montpellier 34095, France
| | - Isabelle Parrot
- Institut des Biomolécules Max Mousseron, CNRS, Université Montpellier, ENSCM, Montpellier 34095, France
| |
Collapse
|