Development of a selective chloride sensing platform using a screen-printed platinum electrode.
Talanta 2018;
195:771-777. [PMID:
30625616 DOI:
10.1016/j.talanta.2018.12.008]
[Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022]
Abstract
A new and selective voltammetric method for chloride determination is proposed, based on platinum and chloride interactions. A screen-printed platinum electrode (SPPtE) functions as a sensing platform, which promotes the formation of chloro-adsorbed species on the electrode surface, acting as an effective means of anion-determination in several matrices. The pretreatment of the SPPtE and careful control of the cathodic stripping voltammetric parameters yielded a well-defined electrochemical signal. This cathodic peak was due to the adsorption of chlorine, which had previously been oxidized from chloride anions in the initial anodic deposition step. It offers a simple, low-cost, fast, reproducible (RSD < 6%) and precise method for selective chloride determination, with limit of detection of 0.76 mM, and a sensitivity of - 24.147 µA mM -1 for a broad determination range of up to 150 mM. Chloride determination was correctly performed with single drops of environmental, pharmaceutical and food samples. In addition, the sensor was successfully adapted as a flexible screen-printed platinum electrode sensor using Gore-Tex® as support for printing.
Collapse