1
|
Birhanu AG. Mass spectrometry-based proteomics as an emerging tool in clinical laboratories. Clin Proteomics 2023; 20:32. [PMID: 37633929 PMCID: PMC10464495 DOI: 10.1186/s12014-023-09424-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/03/2023] [Indexed: 08/28/2023] Open
Abstract
Mass spectrometry (MS)-based proteomics have been increasingly implemented in various disciplines of laboratory medicine to identify and quantify biomolecules in a variety of biological specimens. MS-based proteomics is continuously expanding and widely applied in biomarker discovery for early detection, prognosis and markers for treatment response prediction and monitoring. Furthermore, making these advanced tests more accessible and affordable will have the greatest healthcare benefit.This review article highlights the new paradigms MS-based clinical proteomics has created in microbiology laboratories, cancer research and diagnosis of metabolic disorders. The technique is preferred over conventional methods in disease detection and therapy monitoring for its combined advantages in multiplexing capacity, remarkable analytical specificity and sensitivity and low turnaround time.Despite the achievements in the development and adoption of a number of MS-based clinical proteomics practices, more are expected to undergo transition from bench to bedside in the near future. The review provides insights from early trials and recent progresses (mainly covering literature from the NCBI database) in the application of proteomics in clinical laboratories.
Collapse
|
2
|
Nnachi RC, Sui N, Ke B, Luo Z, Bhalla N, He D, Yang Z. Biosensors for rapid detection of bacterial pathogens in water, food and environment. ENVIRONMENT INTERNATIONAL 2022; 166:107357. [PMID: 35777116 DOI: 10.1016/j.envint.2022.107357] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/10/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Conventional techniques (e.g., culture-based method) for bacterial detection typically require a central laboratory and well-trained technicians, which may take several hours or days. However, recent developments within various disciplines of science and engineering have led to a major paradigm shift in how microorganisms can be detected. The analytical sensors which are widely used for medical applications in the literature are being extended for rapid and on-site monitoring of the bacterial pathogens in food, water and the environment. Especially, within the low-resource settings such as low and middle-income countries, due to the advantages of low cost, rapidness and potential for field-testing, their use is indispensable for sustainable development of the regions. Within this context, this paper discusses analytical methods and biosensors which can be used to ensure food safety, water quality and environmental monitoring. In brief, most of our discussion is focused on various rapid sensors including biosensors and microfluidic chips. The analytical performances such as the sensitivity, specificity and usability of these sensors, as well as a brief comparison with the conventional techniques for bacteria detection, form the core part of the discussion. Furthermore, we provide a holistic viewpoint on how future research should focus on exploring the synergy of different sensing technologies by developing an integrated multiplexed, sensitive and accurate sensors that will enable rapid detection for food safety, water and environmental monitoring.
Collapse
Affiliation(s)
- Raphael Chukwuka Nnachi
- School of Water, Energy and Environment, Cranfield University, Milton Keynes MK43, 0AL, United Kingdom
| | - Ning Sui
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Bowen Ke
- Laboratory of Anesthesiology & Critical Care Medicine, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 61004, PR China
| | - Zhenhua Luo
- School of Water, Energy and Environment, Cranfield University, Milton Keynes MK43, 0AL, United Kingdom
| | - Nikhil Bhalla
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Shore Road, BT37 0QB Jordanstown, Northern Ireland, United Kingdom; Healthcare Technology Hub, Ulster University, Jordanstown Shore Road, BT37 0QB, Northern Ireland, United Kingdom
| | - Daping He
- School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Milton Keynes MK43, 0AL, United Kingdom.
| |
Collapse
|
3
|
Use of MALDI-TOF to detect colonized vascular catheter tips after 6 and 12h of incubation. J Microbiol Methods 2016; 128:10-12. [PMID: 27354011 DOI: 10.1016/j.mimet.2016.06.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 10/21/2022]
Abstract
We analyzed by MALDI-TOF MS 80 catheter tips after 6h and 12h of incubation and the sensitivity of each incubation period for the identification of colonization and C-RBSI was, respectively, 9.5%-NA and 42.9%-28.6%. Despite MALDI-TOF MS cannot be used to predict catheter colonization, it may rule out C-RBSI.
Collapse
|
4
|
Guembe M, Pérez-Granda MJ, Cruces R, Rodríguez-Sánchez B, Ruíz A, Alcalá L, Bouza E. MALDI-TOF is not useful in the diagnosis of catheter colonization based on superficial cultures: results from an in vitro study. Diagn Microbiol Infect Dis 2015; 84:7-11. [PMID: 26508104 DOI: 10.1016/j.diagmicrobio.2015.09.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/07/2015] [Accepted: 09/27/2015] [Indexed: 10/22/2022]
Abstract
We compared in an vitro model the yields of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and conventional culture (CC) for the detection of catheter colonization with superficial catheter samples (SS). We used blood culture bottles (BCB) with an inserted cannula and incubated at 37 °C. The BCB were manipulated with different contaminations and when a BCB turned positive, SS were obtained to perform both techniques. To compare both techniques we analyzed the mean time to colonization (MTC) and the mean time to a result (MTR). The MTC (SD, days) by CC and MALDI-TOF was as follows: hub, 0.59 (0.79) versus 1.07 (1.39), P=0.06; surface: 0.62 (0.67) versus 0.82 (0.81), P<0.001. The MTR (SD, days) of CC and MALDI-TOF was as follows: hub: 1.58 (0.79) versus 2.25 (1.48), P=0.04; surface: 1.62 (0.67) versus 1.95 (0.80), P<0.001. In general, the use of MALDI-TOF performed directly with SS was no better than CC and did not anticipate colonization results.
Collapse
Affiliation(s)
- María Guembe
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.
| | - María Jesús Pérez-Granda
- CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain; Cardiac Surgery Postoperative Care Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Raquel Cruces
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Belén Rodríguez-Sánchez
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Adrián Ruíz
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Luis Alcalá
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Emilio Bouza
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
5
|
Singhal N, Kumar M, Kanaujia PK, Virdi JS. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol 2015; 6:791. [PMID: 26300860 PMCID: PMC4525378 DOI: 10.3389/fmicb.2015.00791] [Citation(s) in RCA: 808] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/21/2015] [Indexed: 01/13/2023] Open
Abstract
Currently microorganisms are best identified using 16S rRNA and 18S rRNA gene sequencing. However, in recent years matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has emerged as a potential tool for microbial identification and diagnosis. During the MALDI-TOF MS process, microbes are identified using either intact cells or cell extracts. The process is rapid, sensitive, and economical in terms of both labor and costs involved. The technology has been readily imbibed by microbiologists who have reported usage of MALDI-TOF MS for a number of purposes like, microbial identification and strain typing, epidemiological studies, detection of biological warfare agents, detection of water- and food-borne pathogens, detection of antibiotic resistance and detection of blood and urinary tract pathogens etc. The limitation of the technology is that identification of new isolates is possible only if the spectral database contains peptide mass fingerprints of the type strains of specific genera/species/subspecies/strains. This review provides an overview of the status and recent applications of mass spectrometry for microbial identification. It also explores the usefulness of this exciting new technology for diagnosis of diseases caused by bacteria, viruses, and fungi.
Collapse
Affiliation(s)
- Neelja Singhal
- Department of Microbiology, University of Delhi New Delhi, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi New Delhi, India
| | - Pawan K Kanaujia
- Department of Microbiology, University of Delhi New Delhi, India
| | | |
Collapse
|