1
|
Candel FJ, Salavert M, Cantón R, Del Pozo JL, Galán-Sánchez F, Navarro D, Rodríguez A, Rodríguez JC, Rodríguez-Aguirregabiria M, Suberviola B, Zaragoza R. The role of rapid multiplex molecular syndromic panels in the clinical management of infections in critically ill patients: an experts-opinion document. Crit Care 2024; 28:440. [PMID: 39736683 DOI: 10.1186/s13054-024-05224-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/19/2024] [Indexed: 01/01/2025] Open
Abstract
Rapid multiplex molecular syndromic panels (RMMSP) (3 or more pathogens and time-to-results < 6 h) allow simultaneous detection of multiple pathogens and genotypic resistance markers. Their implementation has revolutionized the clinical landscape by significantly enhancing diagnostic accuracy and reducing time-to-results in different critical conditions. The current revision is a comprehensive but not systematic review of the literature. We conducted electronic searches of the PubMed, Medline, Embase, and Google Scholar databases to identify studies assessing the clinical performance of RMMSP in critically ill patients until July 30, 2024. A multidisciplinary group of 11 Spanish specialists developed clinical questions pertaining to the indications and limitations of these diagnostic tools in daily practice in different clinical scenarios. The topics covered included pneumonia, sepsis/septic shock, candidemia, meningitis/encephalitis, and off-label uses of these RMMSP. These tools reduced the time-to-diagnosis (and therefore the time-to-appropriate treatment), reduced inappropriate empiric treatment and the length of antibiotic therapy (which has a positive impact on antimicrobial stewardship and might be associated with lower in-hospital mortality), may reduce the length of hospital stay, which could potentially lead to cost savings. Despite their advantages, these RMMSP have limitations that should be known, including limited availability, missed diagnoses if the causative agent or resistance determinants are not included in the panel, false positives, and codetections. Overall, the implementation of RMMSP represents a significant advancement in infectious disease diagnostics, enabling more precise and timely interventions. This document addresses relevant issues related to the use of RMMSP on different critically ill patient profiles, to standardize procedures, assist in making management decisions and help specialists to obtain optimal outcomes.
Collapse
Affiliation(s)
- Francisco Javier Candel
- Clinical Microbiology and Infectious Diseases, Hospital Clínico Universitario San Carlos, IdISSC & IML Health Research Institutes, 28040, Madrid, Spain.
| | - Miguel Salavert
- Infectious Diseases Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Rafael Cantón
- Microbiology Department, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, , Madrid, Spain
| | - José Luis Del Pozo
- Infectious Diseases Unit, Microbiology Department, Clínica Universidad de Navarra, Navarra, Spain
- IdiSNA: Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Fátima Galán-Sánchez
- Microbiology Department, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Instituto de Investigación Biomédica de Cádiz (INIBICA), Cádiz, Spain
| | - David Navarro
- Microbiology Department, INCLIVA Health Research Institute, Clinic University Hospital, Valencia, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Alejandro Rodríguez
- Intensive Care Medicine Department, Hospital Universitario de Tarragona Joan XXIII, Universitat Rovira I Virgili, CIBER Enfermedades Respiratorias, d'investigacio Sanitaria Pere Virgili, Tarragona, Spain
| | - Juan Carlos Rodríguez
- Microbiology Department, Dr. Balmis University General Hospital, Alicante, Spain
- Department of Microbiology, Institute for Health and Biomedical Research (ISABIAL), Miguel Hernández University, Alicante, Spain
| | | | - Borja Suberviola
- Intensive Care Medicine Department, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Rafael Zaragoza
- Critical Care Department, Hospital Universitario Dr. Peset, Valencia, Spain
| |
Collapse
|
2
|
Richter-Dahlfors A, Kärkkäinen E, Choong FX. Fluorescent optotracers for bacterial and biofilm detection and diagnostics. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2246867. [PMID: 37680974 PMCID: PMC10481766 DOI: 10.1080/14686996.2023.2246867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/03/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023]
Abstract
Effective treatment of bacterial infections requires methods that accurately and quickly identify which antibiotic should be prescribed. This review describes recent research on the development of optotracing methodologies for bacterial and biofilm detection and diagnostics. Optotracers are small, chemically well-defined, anionic fluorescent tracer molecules that detect peptide- and carbohydrate-based biopolymers. This class of organic molecules (luminescent conjugated oligothiophenes) show unique electronic, electrochemical and optical properties originating from the conjugated structure of the compounds. The photophysical properties are further improved as donor-acceptor-donor (D-A-D)-type motifs are incorporated in the conjugated backbone. Optotracers bind their biopolymeric target molecules via electrostatic interactions. Binding alters the optical properties of these tracer molecules, shown as altered absorption and emission spectra, as well as ON-like switch of fluorescence. As the optotracer provides a defined spectral signature for each binding partner, a fingerprint is generated that can be used for identification of the target biopolymer. Alongside their use for in situ experimentation, optotracers have demonstrated excellent use in studies of a number of clinically relevant microbial pathogens. These methods will find widespread use across a variety of communities engaged in reducing the effect of antibiotic resistance. This includes basic researchers studying molecular resistance mechanisms, academia and pharma developing new antimicrobials targeting biofilm infections and tests to diagnose biofilm infections, as well as those developing antibiotic susceptibility tests for biofilm infections (biofilm-AST). By iterating between the microbial world and that of plants, development of the optotracing technology has become a prime example of successful cross-feeding across the boundaries of disciplines. As optotracers offers a capacity to redefine the way we work with polysaccharides in the microbial world as well as with plant biomass, the technology is providing novel outputs desperately needed for global impact of the threat of antimicrobial resistance as well as our strive for a circular bioeconomy.
Collapse
Affiliation(s)
- Agneta Richter-Dahlfors
- AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Fiber and Polymer Technology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Elina Kärkkäinen
- AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ferdinand X. Choong
- AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
López-Pintor JM, Sánchez-López J, Navarro-San Francisco C, Sánchez-Díaz AM, Loza E, Cantón R. Real Life Clinical Impact of Antimicrobial Stewardship Actions on the Blood Culture Workflow from a Microbiology Laboratory. Antibiotics (Basel) 2021; 10:antibiotics10121511. [PMID: 34943723 PMCID: PMC8698396 DOI: 10.3390/antibiotics10121511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Accelerating the diagnosis of bacteremia is one of the biggest challenges in clinical microbiology departments. The fast establishment of a correct treatment is determinant on bacteremic patients' outcomes. Our objective was to evaluate the impact of antimicrobial therapy and clinical outcomes of a rapid blood culture workflow protocol in positive blood cultures with Gram-negative bacilli (GNB). METHODS A quasi-experimental before-after study was performed with two groups: (i) control group (conventional work-protocol) and (ii) intervention group (rapid workflow-protocol: rapid identification by Matrix-Assisted Laser Desorption/Ionization-Time-Of-Flight (MALDI-TOF) and antimicrobial susceptibility testing (AST) from bacterial pellet without overnight incubation). Patients were divided into different categories according to the type of intervention over treatment. Outcomes were compared between both groups. RESULTS A total of 313 patients with GNB-bacteremia were included: 125 patients in the control group and 188 in the intervention. The time from positive blood culture to intervention on antibiotic treatment decreased from 2.0 days in the control group to 1.0 in the intervention group (p < 0.001). On the maintenance of correct empirical treatment, the control group reported 2.0 median days until the clinical decision, while in the intervention group was 1.0 (p < 0.001). In the case of treatment de-escalation, a significant difference between both groups (4.0 vs. 2.0, p < 0.001) was found. A decreasing trend on the change from inappropriate treatments to appropriate ones was observed: 3.5 vs. 1.5; p = 0.12. No significant differences were found between both groups on 7-days mortality or on readmissions in the first 30-days. CONCLUSIONS Routine implementation of a rapid workflow protocol anticipates the report of antimicrobial susceptibility testing results in patients with GNB-bacteremia, decreasing the time to effective and optimal antibiotic therapy.
Collapse
Affiliation(s)
- Jose Maria López-Pintor
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Sánchez-López
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carolina Navarro-San Francisco
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ana Maria Sánchez-Díaz
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elena Loza
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, 28029 Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
4
|
Merino E, Gimeno A, Alcalde M, Coy J, Boix V, Molina-Pardines C, Ventero MP, Galiana A, Caro E, Rodríguez JC. Impact of Sepsis Flow Chip, a novelty fast microbiology method, in the treatment of bacteremia caused by Gram-negative bacilli. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2021; 34:193-199. [PMID: 33764003 PMCID: PMC8179947 DOI: 10.37201/req/109.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Objective The aim of this study was to assess the impact of the information provided by the new Sepsis Chip Flow system (SFC) and other fast microbiological techniques on the selection of the appropriate antimicrobial treatment by the clinical researchers of an antimicrobial stewardship team. Methods Two experienced clinical researchers performed the theoretical exercise of independently selecting the treatment for patients diagnosed by bacteremia due to bacilli gram negative (BGN). At first, the clinicians had only available the clinical characteristics of 74 real patients. Sequentially, information regarding the Gram stain, MALDI-TOF, and SFC from Vitro were provided. Initially, the researchers prescribed an antimicrobial therapy based on the clinical data, later these data were complementing with information from microbiological techniques, and the clinicians made their decisions again. Results The data provided by the Gram stain reduced the number of patients prescribed with combined treatments (for clinician 1, from 23 to 7, and for clinician 2, from 28 to 12), but the use of carbapenems remained constant. In line with this, the data obtained by the MALDI-TOF also decreased the combined treatment, and the use of carbapenems remained unchanged. By contrast, the data on antimicrobial resistance provided by the SFC reduced the carbapenems treatment. Conclusions From the theoretical model the Gram stain and the MALDI-TOF results achieved a reduction in the combined treatment. However, the new system tested (SFC), due to the resistance mechanism data provided, not only reduced the combined treatment, it also decreased the prescription of the carbapenems.
Collapse
Affiliation(s)
| | | | | | | | | | - C Molina-Pardines
- Carmen Molina Pardines, Department of Microbiology, General University Hospital of Alicante-ISABIAL, Spain.
| | | | | | | | | |
Collapse
|
5
|
Bou G, Cantón R, Martínez-Martínez L, Navarro D, Vila J. Fundamentals and implementation of Microbiological Diagnostic Stewardship Programs. Enferm Infecc Microbiol Clin 2020; 39:248-251. [PMID: 32234252 DOI: 10.1016/j.eimc.2020.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/31/2020] [Accepted: 02/08/2020] [Indexed: 01/14/2023]
Abstract
Microbiological diagnostic stewardship programs promote coordinated measures aimed at optimizing the use of diagnostic techniques, thus favouring the adoption of adequate and cost-effective therapeutic, clinical and preventive decisions. The implementation of microbiological diagnostic stewardship relies upon the creation of multidisciplinary committees led by clinical microbiologists for the design of diagnostic algorithms, the adequacy of the laboratory computer system to monitor the relevance of the requested diagnostic tests, the implementation of a quality control system, the design and performance of studies of cost-effectiveness, the training of the petitioner and the technical and nursing staff and the continuous evaluation of the program. The incorporation of microbiological diagnostic stewardship in routine care reports tangible benefits for the patient while strengthening the pivotal role of the clinical microbiologist in the management of infectious diseases.
Collapse
Affiliation(s)
- Germán Bou
- Servicio de Microbiología-Instituto de Investigación Biomédica, Complejo Hospitalario Universitario A Coruña, A Coruña, España
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, España
| | - Luis Martínez-Martínez
- Unidad de Gestión Clínica de Microbiología, Hospital Universitario Reina Sofía, Departamento de Microbiología, Universidad de Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, España
| | - David Navarro
- Servicio de Microbiología, Hospital Clínico Universitario, Valencia, España Departamento de Microbiología, Facultad de Medicina, Universitat de València, Valencia, España.
| | - Jordi Vila
- Servicio de Microbiología, Hospital Clinic, Facultad de Medicina, Universidad de Barcelona, Instituto de Salud Global de Barcelona, Barcelona, España
| |
Collapse
|